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Abstract

When learning to play a game well, does it help to play against an opponent who makes the same sort of

mistakes one tends to make or is it better to play against a procedurally rational algorithm, which never

makes mistakes? This paper investigates subject performance in the game of Nim. We �nd evidence that

subject performance improves more when playing against a human opponent than against a procedurally

rational algorithm. We also �nd that subjects learn to recognize certain heuristics that improve their overall

performance in more complex games.
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1 Introduction

When learning to play a game well, does it help to play against an opponent who makes the same
sort of mistakes one tends to make or is it better to play against a procedurally rational algorithm,
which never makes mistakes. A procedurally rational algorithm is unforgiving. If one makes a
mistake, one never gets another chance to win. An error prone opponent may miss one's mistakes
and give one multiple chances to �nd a way to win. This paper reports an experiment to address two
questions: (i) Do people learn to recognize winning positions over time? and, (ii) If they do, does
playing against human opponents rather than a procedurally rational algorithm in�uence learning?

The experiment uses an AXA′ design. Learning is investigated by comparing subject perfor-
mance in the �rst A treatment with the last A′ treatment. In the A treatments, subjects play
against the procedurally rational algorithm. In the X treatment, subjects either played against a
human or against the procedurally rational algorithm. Performance can then be compared across
subjects in the �nal A′ treatment. The research hypotheses are that performance in the �rst and
last A treatment will be the same and that playing against humans will not change performance in
the last A treatment. Both hypotheses will be formally rejected.

We �nd evidence that subject performance improves over time. As in McKinney and Van Huyck
[2013], the increase in performance is greater in games that can be solved using heuristics that lessen
the subjects' reliance on backwards induction. We still �nd little evidence that subjects completely
master even basic heuristics, but we are able to model their performance in a way that shows that
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subjects that never play against other humans do not perform as well in the last set of games as
those that do. Playing against an error prone opponent does improve learning.

2 Analytical Framework

To focus the analysis, consider the game of Nim. Nim is a two player game in which the players
alternate taking one or more stones from one ofm rows. The player who takes the last stone wins. A
game of Nim can be summarized by a 1×m vector of natural numbers, g, with elements gi denoting
the number of stones in row i. Let G denote the set of all Nim games, where g = {g ∈ ℵm|m ∈ ℵ}and
ℵ denotes the natural numbers. The rank of Nim game g, r(g), is equal to the number of stones
used in the game:

r(g) =

m∑
i=1

gi

Every Nim game g ∈ G has a game theoretic value that is either a win for the �rst mover, W, or
a loss, L. Let the value function be denoted v(g) : G→ {W,L}. In addition, procedurally rational
algorithms exist for all Nim Games.1

Using a procedurally rational algorithm, all Nim games can be categorized into one of two sets:
balanced games, B, or unbalanced games, U. Following McKinney and Van Huyck [2007], convert
the decimal representation of the natural numbers in g into the equivalent binary representation.
Let b(g) denote the binary representation. Let dj(gi) denote the digit in the 2j−1 position of b(gi),
where dj(gi) ∈ {0, 1}. The set of balanced Nim games, B, is

B =

{
g ∈ G|

m∑
i=1

dj(gi) is even ∀j

}

and the set of unbalanced Nim games, U , is

U = {g ∈ G|g /∈ B} .

The value function is then expressed as follows:

v(g) =

{
W

L

if g ∈ U

if g ∈ B

Substantively rational players will win all unbalanced Nim games and lose all balanced Nim games.
Our previous studies have investigated four measures of the complexity of a Nim game.2 The

most intuitive is rank. Nim Games with longer play paths are more di�cult to think through than
those with shorter play paths. A second measure of complexity is the number of rows or shortest
play path through the extensive form. A third measure, NT-complexity, is the number of non-
trivial decision nodes in the extensive form of the game. The fourth measure of complexity is the
probability a blunderer wins the game playing against a procedurally rational opponent, where a
blunderer is a player who chooses a uniformly random feasible action at every information set they
are assigned.

McKinney and Van Huyck [2013] found that subject performance was in�uenced by the presence
of heuristics that allow them to play signi�cantly better than a blunderer. The most e�ective
heuristic is move copying (MC): If a player can leave a subgame with two equal rows of stones then
she can always win by copying her opponents move in each subsequent subgame until she �nally
removes the �nal stone and wins the game. Move copying can easily be expanded to all games with

1 See Bouton [1901-1902] for the details of the solution algorithm. See Conway [2001] for an alternative solution
algorithm.

2 See McKinney and Van Huyck [2006, 2007] for a more extensive discussion of complexity measures for Nim.
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any number of pairs of equal rows. For example, removing one stone from row 3 in game (5,3,4,5)
leaves a game with two pairs of equal rows. A player that understands the move copying heuristic
should be able to win game (5,3,4,5) against a procedurally rational opponent even if she lacks the
ability to analyze the games extensive form and solve it via backwards induction.3

3 Experimental Design

The experiment consisted of 4 sessions with 20 participants in each session. Each session contained
three treatments. In the �rst and last Treatments (A and A′), the subjects played against a
procedurally rational algorithm. In the middle treatment the subjects either played against one
another, treatment B, or against the procedurally rational algorithm, treatment C. Two sessions
used the A treatment, B treatment, A′ treatment design and shall be denoted ABA′ sessions below.
Two sessions use the A treatment, C treatment, A′ treatment design and shall be denoted ACA′

sessions below. Comparing behavior within and between the ABA′ and ACA′ sessions test for
di�erences in learning.

One of the crucial design issues was controlling the amount of time available to the participants
when playing against other subjects or against a procedurally rational algorithm during the middle
treatment of a session. The procedurally rational algorithm can be executed almost instantly on the
computers available in the Economic Research Laboratory (ERL). The participants had 60 seconds
to make their decisions for each game. The subjects' timer only moves when it is their turn to make
a decision. If time expires the game is recorded as a loss, the subject earned $0.10, and the timer
restarts for the next game. In the �rst and last treatments the procedurally rational algorithm took
one second to play and thus never timed out. In the middle treatment of the ACA′ sessions, the
computer program samples from the set of decision times observed in the middle treatment of the
ABA′ sessions, when our subjects played against each other. As a result, it was possible for the
computer implementing the procedurally rational algorithm to time out and lose a winning position
in the middle treatment of the ACA′ sessions.4

In all sessions Treatments A and A′ contained 31 games; the 27 games from Treatment 1 of
McKinney and Van Huyck [2007] as well as four additional unbalanced games. Of these 31 games,
22 were unbalanced and 9 were balanced. Across the �rst and last treatments the games di�ered
only in the order of their rows and their order of presentation on the record grid. Subjects were
always the �rst mover. The games ranged in complexity from rank 3 to 17 and had shortest play
paths ranging from 1 to 5. Subjects earned $0.60 for a win and $0.10 for a loss. Appendix A list
the 31 games ordered by NT-complexity.

Figure 1 is a screen grab of the graphical interface used in Treatments A and A′. The Nim
game was displayed in the upper left corner. Subjects played the game by clicking on a stone (black
circle) to remove it and every stone to the right. The timers were displayed to the right of the game
grid. Instructions were found to the right of the timers. A dialog reminding the subjects of the
current mover and what just happened appears below the game grid. All 31 games were displayed
on the record grid at the bottom of the screen, and subjects could choose to play the games in any
order. Subjects played at their own pace.

Treatment B (the second session in the ABA′ design) was designed to replicate Treatment 1 of
McKinney and Van Huyck [2006]. Each subject played 19 pairs of games against each of the other
participants in the session. Each pair (match) contained one balanced and one unbalanced game.
The 38 games had ranks ranging from 12 to 17. The games were still worth $0.60 for a win and
$0.10 for a loss. The subjects were paired through a round robin algorithm. At the beginning of
each match, subjects were assigned either the role of �rst mover or second mover. This assignment
was based on each subjects' prior assignments. The role of �rst or second mover did not change

3 When given the opportunity to play the same game repeatedly Dufwenberg et al. [2010] and Gneezy et al. [2010]
show that subjects do learn to backwards induct in games similar to Nim.

4 There are a total of 14 forfeits by humans in treatment B. The program produced 9 forfeits in treatment C. The
humans forfeit 25 times in treatment C.
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Fig. 1: Treatment A and A′ Graphical User Interface
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during a match. The subject who had been assigned the role of �rst mover fewer times was assigned
the role of �rst mover at the beginning of a new match. In the event of a tie, the role of �rst mover
was assigned at random. The C treatment of the ACA′ sessions contained the same games as the
B treatment of the ABA′ sessions.

Figure 2 is a screen grab of the interface used in Treatment B. The computer's timer is replaced
with the other participant's timer. If either timer expires, that participant received $0.10 for the
loss and the other participant received $0.60 for the win. The record grid at the bottom displays
only the games for the current match and all games played in previous matches. Subjects could
not move on to the next match until all 20 subjects had completed the current match.

Treatment C (the second treatment in the ACA′ session) was identical to Treatment B with one
exception; The subjects were not paired against one another. The 38 games were once again played
against the procedurally rational algorithm. In order to simulate the humans' deliberation process,
the computer now paused before making its decision. In order to best simulate the amount of time
that an actual human player spends deliberating each move, the length of the pause is determined
by uniformly sampling from the previously recorded times from the ABA′ design for similar games.

No session lasted more than two hours. Players could earn a maximum of $41.50 in the ACA′

sessions and $51.00 in the ABA′ sessions. This di�erence re�ects the fact that the produrally
rational algorithm never makes an mistake and, hence, it is not possible to win balanced games in
treatment C. In order to earn the maximum of $51 a subject had to win not only all unbalanced
games in all three treatments, but also the balanced games in treatment B. In the ACA′ sessions,
the subject could theoretically earn slightly more than $41.50 if the computer timed out and thus
lost an unbalanced game in treatment C.

4 Experimental Results

Earnings varied greatly across subjects. Subject earnings ranged from $14.00 to $39.00. The average
earnings were $23.96, 58 percent of the earnings that substantively rational players would earn. The
average subject in the ABA′ sessions earned $27.39 and the average subject in the ACA′ design
earned $20.54 Subjects with the highest earnings were from the ABA′ sessions. The procedurally
rational algorithm in the ACA′ sessions was rarely defeated even when it started in a losing position,
because the middle treatment games are di�cult to solve by backwards induction.

The average subject won 34 percent of the unbalanced games, which have a game theoretic
value of a win, when in teh role of the �rst mover. In treatments A and A′, 9 of the 31 games were
balanced and thus impossible for the subject to win. In treatments B and C half of the games,
19, were balanced, which means that when playing against the procedurely rational algorithm in
treatment C they were unwinnable.

Figures 3(a) and 3(b) plot the win frequencies by game for the A and A′ treatments by session
design. The games are ordered by the probability a blunderer would win them starting on the
left with (1,0,0,1,1), which can not be lost, and ending with (4,0,2,7,0), which almost no one wins
even though it is a winnable game. The subjects do better in the simpler games like (2,1,0,0,1)
and (0,0,0,0,6) where the win frequency approachs 100 percent. In the simple cases on the left
of the �gures, the subjects' win frequency is signi�cantly greater than the blunderer model would
predict. However, as the games get more complicated, human behavior in only a few games is
statistically di�erent from blunderer behavior. These spikes are games that allow the move copying
heuristic. For example, even though (0,6,0,2,6) is a rank 14 game it is easy to win if you know the
move copying heuristic. Simply, take the two stones in the forth row leaving (0,6,0,0,6) and move
copy until the end of the game and the human wins. As the games get more complicated, human
performance in the games where the move copying heuristic is applicable is considerably greater
than in the games without a solution by the move copying heuristic.
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Fig. 2: Treatment B Graphical User Interface
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Fig. 3: Win frequencies by game

(a) ABA′ sessions

(b) ACA′ sessions
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Another feature of Figures 3(a) and 3(b) is that the red line connecting performance in treatment
A′is consistently above the blue line connecting performance in treatment A. There is economically
signi�cant learning going on between the two treatments.

Paired comparisons of the average win percentages for all unbalanced games in treatments A
and A′ are presented in Table 1. In all cases there is an increase in win percentage across the two
treatments. T -tests con�rm the di�erences in the means and non-parametric tests show that the
distributions are not the same. P -values for all the tests are presented in the last three columns
of the table. All test statistics were signi�cant at the 99 percent level. On average the subjects do
statistically and economically signi�cantly better in treatment A′ than in treatment A.

There is more learning in the sessions played against a human, ABA′, than in the sessions played
against the procedurally rational algorithm, ACA′. Against humans the increased win percentage
is 31 percent in move copying games. In the ACA′ sessions the improvement is 21 percent. For
non-move copying games the improvement is small, 9 percent and the same for both. Playing 38
games with a human teaches our subjects how to win winnable move copying games more e�ectively
than playing the 38 games against a procedurally rational algorithm.

Although the comparisons of mean win percentages provide strong evidence of learning, the
heterogeneous payo�s across subjects suggest that there are di�erences that are not detectible in
the means. In order to account for changes at the subject level we developed a random e�ect logit
model. We model the probability of winning a game in Treatments A and A′ as a function of rank,
treatment (A or A′), design (ABA′ or ACA′) , and the presence of the move copying heuristic (MC
or nonMC). We also interact the treatment and MC variables. The baseline is the nonMC games
in treatment A. We then add the interactions to detect di�erences across the ABA′ and ACA′

designs. The results of the model are presented in Table 2.
The coe�cients for Rank, Treatment, and Move Copying in treatment A′ are statistically sig-

ni�cant at the 95 percent level or better. Focusing on the coe�cient for rank in the baseline case
gives an estimated rationality bound of rank 5, that is, subjects win about half the games of rank
5. This is similar to, but slightly less than, the measured rationality bounds reported in McKinney
and Van Huyck [2007].5 This may be a more accurate measure as it accounts for the move copying
heuristic. Notice that all rank 5 Nim games are winnable and can be won by using the move copying
heuristic. The measured rationality bound is again found to be remarkably low.

The model a�rms that subjects have more trouble solving the higher ranked games in the �rst
treatment in which the move copying heuristic is not applicable. The model also interacts the
treatment and move copying variables with the ABA′ dummy variable. There is no statistical
di�erence in the ABA′ subjects' ability to solve most of the games, but subjects do signi�cantly
better in move copying games in treatment A′. The random e�ects logit model con�rms the
economic and statistical signi�cance of the learning that takes place in treatment B. When learning
the move copying heuristic, it helps to play against an error prone opponent.

5 Conclusion

The ability to recognize the move copying heuristic plays a major role in a subject's ability to win
winnable Nim games. In all treatments our subjects perform signi�cantly better in games where the
move copying heuristic is applicable. They learn the move copying heuristic more e�ectively when
playing against error prone opponents like themselves. We found that subjects that had experience
playing games against other humans showed a signi�cant increase in their ability to solve games in
which the move copying heuristic is applicable.

5 Our previous studies did not limit the time subjects had to play the game. Being timed may account for the
lower estimated rationality bound. Deck and Jahedi [2013] show that cognitive load can in�uence economic decision
making.
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Table 1:  Win percentage for Unbalanced Games-Paired tests

Number
of

games
Treatment

A
Treatment

A’ Difference

t-tests
Ho:

Equal
means

Sign
tests Ho:

Equal
medians

Smirnov tests
Ho: Equal

distributions

A
B

A

MC 15 30.17% 61.00% 30.83% 0.000 0.0000 0.0000
nonMC 7 10.36% 19.64% 9.29% 0.000 0.0000 0.0000

All 22 23.86% 47.84% 23.98% 0.0000 0.0000 0.0000

A
C

A

MC 15 36.17% 57.00% 20.83 0.000 0.0001 0.0000
nonMC 7 12.14% 20.71% 8.57% 0.0005 0.0025 0.0000

ACA 22 28.52% 45.45% 16.93% 0.0000 0.0001 0.0000

T
ot

al

MC 15 31.17% 59.00% 25.83% 0.000 0.0000 0.0000
nonMC 7 11.25% 20.18% 8.93% 0.000 0.0000 0.0000
Total 22 26.19% 46.65% 20.45% 0.0000 0.0000 0.0000

The p-values are reported for all statistical tests in the last three columns.  All tests are calculated
using sample sizes of n=40 subjects in each design. MC denotes move copying games and 
nonMC denotes games that are not move copying games.



Table 2:  Random Effects Logit Model of the Probability of Winning

Variable Coefficient
Standard

Error

Constant 2.284** .268

Rank -0.462** .019

MC games in Treatment A 0.361** 0.207

MC games in Treatment A’ 1.771** 0.206

nonMC games in Treatment A Baseline

nonMC games in Treatment A’ 1.023** 0.244

In
te

ra
ct

io
n 

w
it

h
A

B
A

MC games in Treatment A -0.085*** 0.290

MC games in Treatment A’ 0.613** 0.289

nonMC games in Treatment A 0.218*** 0.430

nonMC games in Treatment A’ 0.287*** 0.382

n 3520
subjects 80
games 44
log likelihood -1527.47

**99%, *95%,



 20 

 
APPENDIX A 

      
Treatment 1 Games 

Game Value Rank Rows Log of Blunderer's 
g v(g) r(g) m NT-complexity win prob. 

(1,0,0,1,1) W 3 3 - 1.0000 
(2,1,0,0,1) W 4 3 1.61 0.2500 
(2,2,0,0,0) L 4 2 1.95 0.0000 
(1,0,1,2,1) W 5 4 2.77 0.2000 
(0,0,0,0,6) W 6 1 2.77 0.1667 
(0,2,0,1,2) W 5 3 3.09 0.0667 
(1,1,2,1,1) W 6 5 4.17 0.1667 
(3,1,2,0,0) L 6 3 4.23 0.0000 
(0,1,1,5,0) W 7 3 4.82 0.1429 
(2,1,3,1,0) W 7 4 5.79 0.0476 
(0,2,1,5,0) W 8 3 6.33 0.0083 
(0,2,7,0,0) W 9 2 6.44 0.0370 
(1,0,3,3,1) L 8 4 7.16 0.0000 
(2,0,1,2,3) W 8 4 7.39 0.0417 
(0,0,0,4,6) W 10 2 8.00 0.0010 
(4,1,0,2,2) W 9 4 8.64 0.0222 
(5,0,0,6,0) W 11 2 9.11 0.0001 
(1,4,4,1,0) L 10 4 9.71 0.0000 
(2,7,0,2,0) W 11 3 9.93 0.0303 
(0,2,3,3,2) L 10 4 10.48 0.0000 
(1,2,4,1,2) W 10 5 10.63 0.0200 
(0,6,0,4,2) L 12 3 11.70 0.0000 
(4,0,2,7,0) W 13 3 12.80 0.0000 
(1,4,1,5,1) L 12 5 13.10 0.0000 
(1,5,2,2,2) W 12 5 13.74 0.0008 
(0,6,0,2,6) W 14 3 14.18 0.0000 
(0,3,6,5,0) L 14 3 14.57 0.0000 
(2,4,5,1,1) W 13 5 14.98 0.0001 
(7,0,0,4,5) W 16 3 17.26 0.0001 
(4,7,0,5,1) W 17 4 19.77 0.0000 
(3,3,1,5,4) L 16 5 20.42 0.0000 
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Treatment 2 Games 

Game Round Value Rank Rows Log of Blunderer's 
g   v(g) r(g) m NT-complexity win prob. 

(5,3,4,5,0) 1 0 17 4 20.97 0.0000 
(7,4,3,0,0) 1 1 14 3 14.39 0.0000 
(5,4,0,4,4) 2 0 17 4 21.11 0.0000 
(2,0,5,3,4) 2 1 14 4 16.21 0.0000 
(7,0,3,7,0) 3 0 17 3 18.27 0.0000 
(2,5,0,5,2) 3 1 14 4 15.92 0.0000 
(6,3,7,1,0) 4 0 17 4 19.54 0.0000 
(1,5,1,0,5) 4 1 12 4 12.19 0.0000 
(3,0,2,7,5) 5 0 17 4 20.23 0.0000 
(0,7,2,4,1) 5 1 14 4 15.09 0.0000 
(4,7,2,4,0) 6 0 17 4 20.36 0.0000 
(6,0,7,0,1) 6 1 14 3 13.46 0.0000 
(6,4,5,2,0) 7 0 17 4 20.55 0.0000 
(3,3,3,0,3) 7 1 12 4 13.56 0.0000 
(0,6,5,6,0) 8 0 17 3 18.77 0.0000 
(3,0,4,6,1) 8 1 14 4 15.56 0.0000 
(6,0,4,3,4) 9 0 17 4 20.87 0.0000 
(0,6,6,0,0) 9 1 12 2 10.19 0.0000 
(5,3,0,3,6) 10 0 17 4 20.73 0.0000 
(2,7,0,0,5) 10 1 14 3 14.10 0.0000 
(4,6,1,0,6) 11 0 17 4 19.86 0.0000 
(0,4,4,2,2) 11 1 12 4 13.24 0.0000 
(2,0,2,7,6) 12 0 17 4 19.81 0.0000 
(4,3,3,4,0) 12 1 14 4 16.51 0.0000 
(5,0,5,5,2) 13 0 17 4 20.66 0.0000 
(1,5,6,2,0) 13 1 14 4 15.27 0.0000 
(6,0,6,3,2) 14 0 17 4 20.31 0.0000 
(1,6,6,0,1) 14 1 14 4 14.62 0.0000 
(2,7,1,0,7) 15 0 17 4 19.03 0.0000 
(7,0,0,0,7) 15 1 14 2 12.31 0.0000 
(4,6,1,5,1) 16 0 17 5 21.05 0.0001 
(3,4,4,1,2) 16 1 14 5 17.21 0.0000 
(4,7,1,2,3) 17 0 17 5 21.31 0.0000 
(1,1,6,2,4) 17 1 14 5 16.26 0.0000 
(2,2,5,3,5) 18 0 17 5 22.20 0.0000 
(3,2,1,3,3) 18 1 12 5 14.19 0.0000 
(2,2,5,7,1) 19 0 17 5 21.00 0.0000 
(1,5,2,2,4) 19 1 14 5 21.00 0.0000 
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