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Abstract

We propose novel tests for the detection of Markov switching deviations from forecast

rationality. Existing forecast rationality tests either focus on constant deviations from forecast

rationality over the full sample or are constructed to detect smooth deviations based on non-

parametric techniques. In contrast, our proposed tests are parametric and have an advantage

in detecting abrupt departures from unbiasedness and efficiency, which we demonstrate

with Monte Carlo simulations. Using the proposed tests, we investigate whether Blue Chip

Financial Forecasts for the Federal Funds Rate are unbiased. Our tests find evidence of

a state-dependent bias: forecasters tend to systematically overpredict interest rates during

periods of monetary easing, while the forecasts are unbiased otherwise. We show that a similar

state-dependent bias is also present in market-based forecasts of interest rates, but not in the

forecasts of real GDP growth and GDP deflator-based inflation. Our results emphasize the

special role played by monetary policy in shaping survey interest rate expectations above and

beyond macroeconomic fundamentals.
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1 Introduction

Producing accurate forecasts for economic variables is an important task for both researchers

and policymakers alike. A desirable property that forecasts should have is optimality. When

evaluating forecasts using a quadratic loss, forecast optimality implies that the forecast error

should not be predictable by a constant (unbiasedness), the forecast itself (efficiency), or any

information available at the time the forecast is made; otherwise, it is reasonable to conclude that

the forecast is suboptimal and can be improved.

However, it is well known that forecasting performance can be unstable over time, and changes

in the forecast’s quality may be associated with recurring periods of economic importance.

For instance, Joutz and Stekler (2000) find that the Federal Reserve Board’s (Fed) forecasts

overestimated output growth in slowdowns and recessions and underestimated it in recoveries.

Similarly, inflation is typically underpredicted when it is rising and overpredicted when it is

declining. Granziera et al. (2021) reach similar conclusions for the European Central Bank’s (ECB)

inflation forecasts: the ECB tends to overpredict (underpredict) inflation when inflation is below

(above) target. Sinclair et al. (2010) show that information on real and inflationary cycles, though

incorporated in the Fed’s nowcast, are not incorporated into one-quarter-ahead forecasts.

Evaluating forecasts that may have state-dependent forecast rationality (unbiasedness and

efficiency) properties requires particular care since standard tests of absolute and relative forecast

evaluations are misleading in the presence of instabilities (Rossi, 2013). As a consequence, the

literature on the evaluation of the absolute (and relative) performance of forecasting models

has developed techniques to robustify inference, where instabilities are accounted for non-

parametrically; see for instance Rossi and Sekhposyan (2016).

We contribute to this literature by proposing two novel tests that are robust to the presence

of time variation. The novelty is that we assume a parametric form of time variation driven by

unobserved states; namely, we assume that the forecast errors follow a Markov switching process.

Consequently, our tests are more powerful than non-parametric tests of forecast rationality when

the forecasting performance varies over time in a regime-switching manner. Our approach is

relevant in situations where the rationality of the forecasts depends on exogenous, unobserved

(or a priori unknown but observable) cycles. An interesting extension would be to adapt the tests

to models of endogenous regime-switching, where the regime depends on whether a latent factor

takes a value above or below some threshold (Chang et al., 2017).

To demonstrate the empirical relevance of our approach consider Figure 1, which displays the
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forecast errors of three-month-ahead (effective) Federal Funds Rate (FFR) forecasts from the Blue

Chip Financial Forecasts (BCFF) survey; the forecast error is measured by the difference between

the realization and the forecast. The figure also depicts our estimated Markov switching forecast

error mean (dashed-dotted line).1 The estimation results imply deviations from unbiasedness

during periods of monetary easing (when interest rates, depicted by the dashed black line, are

decreasing); this state dependence was identified by the Markov switching model and did not

require ex-ante specification of the state variable.

Importantly, our proposed tests can uncover recurring periods of deviations from forecast

rationality, even when traditional tests do not reject, on average, over the full sample. Deviations

from forecast rationality could be linked to important economic events, such as recessions,

financial distress, or other economic circumstances. For instance, Bullard (2016) announced that

the St. Louis Fed has abandoned the view of the economy having a single steady-state in favor of

a regime-switching world with several steady states. Alternatively, occasional deviations from

forecast rationality could be potentially related to information frictions or the way agents learn

at different times. Our procedure allows researchers to treat the periods when the absolute

performance varies as an unknown state variable, identify the periods when the forecast was

biased as well as quantify the bias.

Figure 1: Forecast errors with Markov switching bias

Note: The solid line (left-hand side y-axis) shows the forecast errors: the difference between the FFR realizations
and the respective BCFF’s three-month-ahead forecasts. The dashed-dotted line (left-hand side y-axis) shows a
regime-switching unconditional mean estimated using the smoothed state probabilities implied by a two-state Markov
switching model; see Section 5 for the description of the model. The dashed line (right-hand side y-axis) shows the
FFR level. Grey shaded areas display NBER recession periods.

In this paper, we propose forecast rationality tests that build on Hansen (1992)’s tests for

detecting Markov switching and on the bootstrap procedure proposed in Qu and Zhuo (2021) (we

1See Section 5 for more details.
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also consider extensions of Garcia (1998) in the Online Appendix). Testing for Markov switching

requires non-standard inference because of several problems. First, the hyper-parameters of

the switching process (for instance, the state-to-state transition probabilities) are not identified

under the null hypothesis of parameter stability (Davies, 1977, 1987). Second, under the null of

parameter stability, the score with respect to the restricted parameters is identically zero, which

violates standard regularity conditions imposed to derive an asymptotic chi-squared distribution

via a usual second-order Taylor expansion. Consequently, standard Likelihood ratio (LR), Wald,

and Lagrange multiplier tests do not have a chi-squared distribution, even asymptotically. Third,

the conditional regime probabilities follow a stochastic process that can only be represented

recursively, thus making higher-order Taylor approximations infeasible. Furthermore, there are

multiple ways to impose the null of a single state, which further complicates inference, in addition

to creating a boundary parameter problem for the null parameter space. Hansen (1992), Garcia

(1998), Cho and White (2007), Carter and Steigerwald (2012), and Qu and Zhuo (2021) discuss

these issues in detail and make significant contributions, thus shaping our knowledge on how to

test for the number of regimes in Markov-switching models.

Our paper builds on the existing literature and proposes a Markov switching test in a forecast

rationality framework, where we impose a joint null hypothesis that there is a single regime and

that the relevant parameters are restricted to zero under the null hypothesis. More specifically, we

rely on Hansen (1992) who treated the likelihood function as a stochastic process and obtained

a lower bound for the likelihood ratio test. In addition, we use the bootstrap procedure of Qu

and Zhuo (2021) to test our null. The bootstrap addresses several of the difficulties associated

with testing for Markov switching outlined above and performs well in finite samples. Qu and

Zhuo’s (2021) bootstrap, though building on Cho and White (2007), does not explicitly address

the boundary parameter issue of the composite null that the latter focused on, even though they

analyze situations when the transition probabilities are close to the boundary.

In particular, we adapt these tests to our absolute forecast evaluation context and refer to them

as the “absolute forecast evaluation - Hansen” (AFE-H) and the "bootstrap" (AFE-BS). In addition,

the Online Appendix also investigates the “absolute forecast evaluation - Garcia” (AFE-G) test

inspired by Garcia (1998). The main difference between our proposed tests relative to the ones

in the literature is that Hansen (1992) and Qu and Zhuo (2021) test for Markov switching in

the parameters of a model, leaving the values of the parameters unspecified under the null. In

contrast, we test for Markov switching directly in the forecast errors by specifying parameter
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values such that forecast rationality is satisfied under the null. That is, we test for forecast

rationality in the full out-of-sample portion of the data against local, regime-switching deviations.

More specifically, consider a standard forecast unbiasedness test (Mincer and Zarnowitz, 1969),

which evaluates whether the forecast error has a zero mean against the alternative that the mean

differs from zero. Instead, under the alternative of our approach, we let the forecast error evolve

according to a Markov switching process, and jointly test that the mean of the forecast error is

time-invariant and equal to zero.

Aside from the literature on testing for Markov switching, we also relate to a large literature

on the evaluation of the absolute predictive performance (Mincer and Zarnowitz, 1969; West

and McCracken, 1998; Rossi and Sekhposyan, 2016). Mincer and Zarnowitz (1969) and West

and McCracken (1998) assume a constant mean of the forecast error and a constant efficiency

parameter, an assumption that is violated in the presence of time variation. Rossi and Sekhposyan

(2016) propose a non-parametric test for forecast rationality that is robust to instabilities, which is

useful in the situations where rationality is time-varying yet, on average, holds in the full sample.

Given the non-parametric nature, their test performs well when time-variation is smooth and

persistent, while our proposed tests have stronger power in the presence of abrupt, short-lived

and recurring deviations from rationality. In fact, our tests can detect deviations from rationality

that occur for short periods of time, as long as the deviations occur repeatedly.2 Note that in our

work we focus on model-free or survey-based forecasts, as well as forecasts obtained either with

a rolling window with finite size or a recursive window where the contribution of parameter

estimation error can be reasonably ignored (for instance, when the estimation sample size is

relatively large compared to the evaluation sample size).

We investigate the finite sample properties of our proposed tests with Monte Carlo simulations.

The simulations show empirical rejection frequencies close to the nominal size when testing

the null hypothesis of unbiasedness and efficiency using the AFE-BS test. For unbiasedness,

the AFE-H is well sized in medium to large samples and somewhat undersized when testing

for efficiency. In terms of power, the rejection frequencies are similar to the test of West and

McCracken (1998) and the Fluctuation rationality test of Rossi and Sekhposyan (2016) for the

alternative of a constant deviation from rationality, and clearly outperform both under a Markov

switching alternative.

Turning to the empirical analysis, we investigate potential biases in the BCFF survey pre-

2In a two-state model, the expected duration of regime j is given by 1/(1− pjj), where pjj is the state-to-state
transition probability of regime j. Therefore, for instance, the expected duration of a state with a state-to-state transition
probability as high as 90% is only ten periods.
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dictions for the FFR. When we consider the three-month- and six-month-ahead forecast errors,

our test rejects unbiasedness in favor of a two-regime model. The estimated regimes indicate

that the forecasts are unbiased in the first regime, the one that is prevalent most of the time.

However, there is evidence of a second regime in which the forecasters overestimate the FFR. The

occurrence of the second regime is associated with monetary policy easing and is not limited to

recessionary periods. The biases are present not only in survey forecasts but also in market-based

forecasts, suggesting that the lack of forecast rationality is not specific to the survey but inherent

to difficulty in forecasting. We investigate the role of disagreement among panelists as well

as the role of monetary policy uncertainty based on newspaper articles (Baker et al., 2016) in

explaining this regime-dependent behavior. We find no clear association with disagreement,

while the regimes appear to be weakly associated with monetary policy uncertainty. Our findings

on state-dependent biases can be used to improve the forecasts; for instance, by adjusting for a

bias only in monetary easing episodes.

The paper is organized as follows. Section 2 introduces the econometric framework and

formalizes the null hypothesis. Section 3 introduces the proposed test statistics. Section 4

provides a Monte Carlo analysis of the size and power of our proposed procedures, while

Section 5 illustrates the usefulness of our test in an empirical analysis. Section 6 concludes.

2 Econometric framework

We consider the situation where the researcher has a series of out-of-sample predictions, yt,h,

made at time t, h-periods into the future, whose corresponding realizations are denoted by yt+h,

for t = 1, ..., T. Let εt,h ≡ yt+h − yt,h denote the forecast error. We are interested in testing whether

the forecast error is unbiased, efficient, and rational (i.e. jointly unbiased and efficient) — while

being able to detect regime-switching deviations from the respective forecast rationality property.

For simplicity, consider the leading case of a forecast rationality regression with two regimes:

εt,h = βxt+h + St+hβsxt+h +
d

∑
i=1

φiεt−i,h + et+h, (1)

where St+h is a latent, stationary Markov chain with St+h ∈ {0, 1}; et+h is a mean zero error

term with a constant variance; xt+h = [1, yt,h]
′; and φi are the lag coefficients included to control

for potential autocorrelation.3 The stationary Markov chain St+h is characterized by the two

3The constant variance assumption could be relaxed by allowing for conditional heteroskedasticity. More specifically,
the case where the variance follows a Markov switching process is discussed in Section 4.3.
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state-to-state transition probabilities (p, q), which take values between zero and one. The vectors

β = (µ, γ) and βs = (µs, γs) contain the relevant parameters for rationality regressions. The

parameters µ and µs are the relevant parameters for the unbiasedness test, while γ and γs (the

regression coefficients on the forecasts) are the relevant parameters for the efficiency test. Note

that the vector xt+h can be extended to contain more regressors, making our test applicable, in

general, to all regression-based tests of predictive ability. For notational simplicity, we drop the

autoregressive coefficients (φi) in what follows. This simplification is inconsequential since they

are neither parameters of interest nor state-dependent.

Rationality: The test for rationality is a joint test of unbiasedness and efficiency, and our null and

alternative hypothesis are:

HR
0 : β = βs = 0 vs. HR

A : β 6= 0, βs 6= 0, or (β, βs) 6= 0. (2)

In contrast, traditional tests of Markov switching (Hansen, 1992; Garcia, 1998; Carrasco et al.,

2014; Qu and Zhuo, 2021) consider the null hypothesis

HMS
0 : βs = 0,

but leave the value of β unspecified under the null. Traditional tests of forecast rationality, on the

other hand, (Mincer and Zarnowitz, 1969; West and McCracken, 1998) consider the model

εt,h = βxt+h + et+h,

and restrict the value of β to be equal to zero under the null hypothesis, while βs is not part of

the model’s parameter space.

Unbiasedness: In the special case of unbiasedness tests, xt+h = 1, our null and alternative

hypotheses are:

HU
0 : µ = µs = 0 vs. HU

A : µ 6= 0, µs 6= 0, or (µ, µs) 6= 0. (3)
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Existing tests for Markov switching test the null hypothesis of no time variation:

HMS
0 : µs = 0,

but do not impose µ = 0. However, the additional restriction of

HU
0 : µs = µ = 0

is important in order to have power against a constant deviation from forecast rationality.

Traditional tests for unbiasedness (Mincer and Zarnowitz, 1969; West and McCracken, 1998)

implement the regression

εt,h = µ + et+h,

where the null hypothesis is that µ is equal to zero, and µs is not part of the model’s parameter

space. Consequently, the tests lack power in the case of Markov switching deviations from forecast

unbiasedness.

Efficiency: In the special case of efficiency tests, xt+h = [yt,h], our null and alternative hypotheses

are

HE
0 : γ = γs = 0 vs. HE

A : γ 6= 0, γs 6= 0, or (γ, γs) 6= 0. (4)

The null in existing tests for Markov switching is

HMS
0 : γs = 0,

and the value of γ is unrestricted under the null hypothesis. On the other hand, traditional

forecast efficiency tests (Mincer and Zarnowitz, 1969; West and McCracken, 1998) implement the

regression

εt,h = yt,hγ + et+h,

where the value of γ is restricted to be to be zero under the null hypothesis, and γs is not part of

the model’s parameter space.
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3 Testing for Markov switching rationality

This section introduces our Markov switching forecast rationality tests, inspired by Hansen

(1992) and Qu and Zhuo (2021). We also consider a test inspired by Garcia (1998) in the Online

Appendix.

3.1 AFE-H test for rationality

Let α0 denote the parameter vector under our null hypotheses, formulated in Section 2, and let

α ∈ A, with A being a compact metric space, denote a given alternative. Hansen (1992) considers

the likelihood ratio as an empirical process indexed by the parameters of interest, α = (βs, p, q),

where (p, q) are transition probabilities, and depending further on the nuisance parameters,

θ = (β, φ1, ..., φd, σ). To use the strategy of Hansen (1992) for testing our joint null hypothesis, we

need to partition the parameter space differently since our null hypotheses specify both β and βs.

Therefore, we cannot treat β as a nuisance parameter, instead, we must add it to the vector of

parameters of interest.

Therefore, the three relevant parameter vectors for us are α = (β, βs, p, q), α = (µ, µs, p, q), and

α = (γ, γs, p, q), for testing rationality, unbiasedness, and efficiency respectively. The vector of

nuisance parameters reduces to the lag coefficients and the standard deviation, θ = (φ1, ..., φd, σ).

The subsequent derivation follows closely Hansen (1992). Let us define

θ̂ = max
θ∈Θ

LT
(
α0, θ

)
to be the the maximum likelihood estimation (MLE) of the nuisance parameters under the null,

α0, and let

θ̂(α) = max
θ∈Θ

LT
(
α, θ(α)

)
denote the MLE of the nuisance parameters under the alternative α. The likelihood ratio is defined

as

L̂RT(α) = LT
(
α, θ̂(α)

)
− LT(α0, θ̂),

with

LT
(
α, θ̂(α)

)
=

T

∑
t=1

`t
(
α, θ̂(α)

)
and LT

(
α0, θ̂

)
=

T

∑
t=1

`t
(
α0, θ̂

)
,

where `t denotes the log likelihood of observation t, which is allowed to exhibit serial correlation
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and heterogeneity.4 As in Hansen (1992), the likelihood ratio is split into its expected value, RT(α),

and its deviation from that expectation, QT(α),

L̂RT(α) = RT(α) + QT(α) + Op(1),

where

RT(α) = E
[
LT
(
α, θ(α)

)
− LT

(
α0, θ

)]
= E

[ T

∑
t=1

[
`t
(
α, θ(α)

)
− `t(α0, θ)

]]
,

and

QT(α) =
T

∑
t=1

qt(α) =
T

∑
t=1

[
`t
(
α, θ(α)

)
− `t(α0, θ)− E

[
`t
(
α, θ(α)

)
− `t(α0, θ)

]]
,

while θ and θ(α) denote the large sample values of the MLE of θ̂ and θ̂(α). Note that QT(α) has a

mean of zero. The parameter estimation error that is present in the sample analog of RT(α) and

QT(α) is included in the term Op(1). Please see the Online Appendix for details.

Under the null, RT(α) ≤ 0 since the value of RT(α) is maximized at the true parameter α0

(under the null). It follows that

1√
T

L̂RT(α) ≤
1√
T

QT(α) + op(1).

Let VT(α) denote the variance of the qt(α). For a fixed α, and by standardizing with VT(α),

the zero mean process QT(α) converges to a standard Normal distribution by a Central Limit

Theorem (CLT):
1√
T

QT(α)

V1/2
T (α)

=
1√
T

Q∗T(α)→d N(0, 1). (5)

The asymptotic distribution of the bound, 1√
T

Q∗T(α), uniformly over α ∈ A, can be derived by

applying an empirical process CLT, using the assumptions stated in Hansen (1992), to eq. (5):

sup
α∈A

1√
T

L̂R
∗
T
(
α, θ(α)

)
≤ sup

α∈A

1√
T

Q∗T(α) + op(1)→d sup
α∈A

Q∗(α). (6)

The process Q∗(α) is Gaussian with covariance function:

K∗(α1, α2) =
∑∞

k=−∞ Eqt(α1)qt+k(α2)

V(α1)
1
2 V(α2)

1
2

,

where V(αi) denotes the probability limit of the sample analog VT(αi).

Since the covariance function, K∗(·, ·), depends through qt(αi) on the data, critical values

4The serial correlation is restricted to near-epoch dependence.
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cannot be tabulated for the general case. Instead, analog to Hansen (1992), critical values can be

approximated by drawing independently and identically distributed (iid) Gaussian processes that

have covariance function K̂∗(·, ·), the empirical counterpart of the unknown K∗(·, ·). Doing so is

straightforward and requires the simulation of

Q∗j
T (αi) =

∑M
m=0 ∑T

t=1 q̂t(αi)v
j
t+m√

1 + MVT(αi)
1
2

,

based on J replications, where the vj
t+m, for j = 1, ..., J, are iid N(0, 1) variates, and q̂t(αi) is the

empirical counterpart of qt(αi). The Q∗j
T (αi) have K̂∗(·, ·) as a covariance function and, hence,

approximate the asymptotic distribution. Moreover, Hansen (1996) points out that the likelihood

components qt(αi) are serially correlated even if the data is iid and, therefore, a Bartlett kernel

is used to account for the autocorrelation. The Bartlett’s bandwidth parameter, M, can be data

dependent; typical choices are M = T1/4 or M = [4(T/100)2/9] + 1.5 Critical value are then

obtained as percentiles from the distribution of {Q∗j
T }

J
j=1, with Q∗j

T = supα∈A Q∗j
T (αi).

To obtain a set of Q∗T(αi), ones has to estimate the model under the alternative over a grid

of values for α = (β, βs, p, q). Table 1 displays the average critical values we obtain when we

implement the AFE-H test of unbiasedness and efficiency. Let the data be generated by yt = et,

where et ∼ N(0, 1). The partitions of the parameter vectors are in this case α = (µ, µs, p, q), and

α = (γ, γs, p, q) respectively. The column denoted by ‘H’ shows the critical values for the original

Hansen (1992) null, HMS
0 : µs = 0 and HMS

0 : γs = 0, with αU = (µs, p, q) and αE = (γs, p, q). As the

approximation of the asymptotic distribution is data dependent, the numbers are obtained by

averaging the critical values over all Monte Carlo replications. The aim of this exercise is not to

tabulate critical values, which would be invalid due to the data dependence of the asymptotic

distribution, but to show how the additional parameter restriction changes the critical values we

obtain. As expected, the critical values of the AFE-H test are larger on average, reflecting the

additional restriction of the AFE-H on the null parameter space.

As mentioned, in order to implement the AFE-H test in practice, the researcher needs to

decide on the grid values for (p, q) and (β, βs). When evaluating the likelihood ratio process

under the Markov switching alternative, for each point on the grid, the researcher will optimize a

constrained (imposing the grid point values) likelihood to obtain θ̂(α). The model under the null

hypothesis, on the other hand, is estimated with the constraint that (β = 0, βs = 0), i.e. there is

5In addition, in applications of the AFE-H, the researcher can easily simulate the asymptotic distribution for
different values of M to gauge the impact of the serial correlation on the critical values. Our results where not sensitive
to the choice of M, which is in line with the findings of Hansen (1996).
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Table 1: Average critical values
Unbiasedness Efficiency

Nominal Size AFE-H H AFE-H H
1% 3.60 2.80 3.44 3.24
5% 3.01 2.51 2.84 2.64
10% 2.72 2.18 2.53 2.33

Note: The table shows the average critical values based on
our simulations for the proposed AFE-H test and the original
Hansen (1992), labeled ‘H’, test for a standard Normal DGP, a
sample size of T = 500, and 500 Monte Carlo simulations.

no Markov switching present by assumption. The grid points under the alternative serve as a

basis for the construction of the test statistics as well the limiting distribution, thus deserving

particular interest.

Since (p, q) are bounded below by zero and above by one, the grid choice for (p, q) is about

how many grid points to consider; we used 12 grid points in our Monte Carlo and did not

experience the results to be very sensitive to slightly different choices. In addition, state-to-

state transition probabilities in Markov switching models are often well above 0.5, such that

the researcher may as well restrict the grid of (p, q) accordingly. The grid choice for (β, βs) is

somewhat more difficult since their domain is not restricted to be between zero and one. Although

the grid values for (β, βs) will vary with the empirical application, the researcher can typically

rule out large values for the grid since the left hand side variable is the forecast error, which tends

to be small. In general, we recommend to plot the data, and to estimate an unrestricted Markov

switching rationality regression to get an idea of where to set the grid for (β, βs) in practice.

Relative to Hansen (1992), our proposed procedure could be somewhat more computationally

intensive, since it requires evaluating the constrained likelihood with a grid structure for an

additional parameter, β. In our simulations the performance of the tests are not very sensitive to

the choice of the grid points.

The estimation of the Markov switching model (with our without grid) is implemented

efficiently using the expectation-maximization (EM) algorithm described in Hamilton (1990).

However, the researcher can rely on other approaches, as for instance, on the filtering techniques

for endogeneous switching outlined in (Chang et al., 2017).

3.2 AFE-BS test for forecast rationality

Qu and Zhuo (2021) showed that when testing for Markov-switching, a parametric bootstrap

consistently approximates the asymptotic distribution of the likelihood ratio test as long as it
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correctly reproduces the covariance function of the limiting distribution derived in Qu and Zhuo’s

(2021) Proposition 1.

Recall that the model under the null hypothesis reduces to an AR(d). Following Qu and Zhuo

(2021), let Λ(p,q) = {(p, q) : 0.02 ≥ p, q ≤ 0.98 and p + q ≥ 1.02} denote the set of feasible

values for (p, q). Let LL0,T and LLA,T,Λ(p,q)
(note that we subsequently drop the subscript Λ(p,q)

for notational convenience) denote the log-likelihood under the null and under the alternative

hypothesis, respectively.6 Let LRT = 2
(
LL0,T − LLA,T,Λ(p,q)

)
denote the likelihood-ratio.

Parametric bootstrap for testing forecast rationality: In order to construct the likelihood ration

test, we need to evaluate the likelihood under both the null and the alternative. This requires

us to re-sample both εt,h and xt+h, respecting their covariance structure.7 Let φ̂i,0, for i = 1, ..., d,

denote the parameter estimates of the autoregressive coefficients under the null. Let φ̂i,x and φ̂i,εx ,

for i = 1, .., dx, denote the parameter estimates of a regression xt+h on dx lags of εt,h and xt+h

jointly. Let êt+h and êx,t+h denote the estimated error term of the regression of εt,h on its own lags

and of the regression of xt+h on its own lags and lags of εt,h, respectively. Further, let Σ̂e denote

the covariance matrix of [êt+h, êx,t+h]
′, and d∗ = max(d, dx). Then, for j = 1, ..., J, we proceed with

the following steps:

1. Draw T + d∗ random variables from N(0, Σ̂e) and denote by {v∗t,j}T
t=−d∗+1 the set of draws.

2. Construct a series ε∗t,h,j and x∗t+h,j, for t = 1, ..., T using v∗t,j, φ̂i,0 for i = 1, ..., d, and (φ̂i,x, φ̂i,εx),

for i = 1, ..., dx. We elaborate details about this step below.

3. Using {ε∗t,h,j, x∗t+h,j}T
t=1, compute the bootstrap log-likelihood under the null, LL∗0,T,j, and

under the alternative, LL∗A,T,j.

4. Store the bootstrapped likelihood ratio: LR∗T,j = 2
(
LL∗A,T,j − LL∗0,T,j

)
.

After J iterations, we obtain a set of the bootstrapped likelihood ratio statistic, {LR∗T,j}
J
j=1, that

approximates the asymptotic distribution.

For the case of forecast unbiasedness, xt+h = 1, the researcher only has to re-sample εt,h and,

therefore, v∗t,j is a scalar, drawn from N(0, σ̂2
e,0), where σ̂2

e,0 denotes the estimated variance of

6To reduce the computational costs of the estimation procedure under the alternative, we proceed as follows.
In a first step, we maximize the log-likelihood of the model under the alternative without taking into account the
restrictions on (p, q) embedded in Λ(p,q). If the obtained maximum implies values for (p, q) outside of the feasible
set Λ(p,q), we resort to estimating the model over a 2-tuple of 10 equally-spaced grid values for (p, q) in [0.02, 0.98];
otherwise, we proceed with the maximum obtained in the first step.

7We assume normal errors to illustrate the bootstrap procedure, since a normality assumption is the leading case
for Markov switching applications.

12



êt+h. Then, if d > 0, set (ε∗−d+1,h,j, ..., ε∗0,h,j) equal to (1−∑d
i φ̂i,0)

−1(v∗−d+1,h,j, ..., v∗0,h,j). We further

generate ε∗t,h,j = ∑d
i=1 φ̂i,0ε∗t−i,j,h + v∗t,h,j recursively for t = 1, ..., T; if d = 0, set ε∗t,h,j = v∗t,h,j.

For the case of forecast efficiency, we need to resample xt+h = 1 and εt,h jointly. The bootstrap

procedure of Qu and Zhuo (2021) does not directly apply in this case, and they do not recommend

using a fixed-regressor bootstrap. Instead, we implement the following procedure following the

recommendation of Qu and Zhuo (2021). If the DGP is yt = ψyt−1 + ut, the forecasting model will

be yt,1 = ψyt, such that xt+1 = yt,1. The forecast error subsequently is εt,1 = yt+1 − yt,1 = ut+1.

Then, the researcher can re-sample εt,1 and xt+1 as follows: ε∗t,1,j ∼ N(0, σ̂2
e,0), where σ̂2

e,0 is

estimated using êt+h with d = 0, and x∗t+1,j = ψ(x∗t,1,j + ε∗t−1,1,j), and x∗0,j ∼ N(0, ψ2

1−ψ2 σ̂2
e,0).

4 Monte Carlo simulation results

This section provides Monte Carlo evidence on the finite sample size and power of the unbiased-

ness and efficiency tests. In all instances, the estimation of the Markov switching model is based

on the EM algorithm (Hamilton, 1990).

4.1 Monte Carlo results — unbiasedness

The DGP is the following in this section:

yt = ψyt−1 + ut, (7)

where |ψ| < 1 and ut ∼ N(0, 1). We then consider three different forecasting situations that lead

to three different cases of forecast errors.

Case 1: Forecasting one-step-ahead with an AR(1)

yt,1 = ψyt and εt,1 = ut+1, (8)

where we model the forecast error as εt,1 = µ + St+1µs + et+1 and set ψ = 0.5.

Case 2: Forecasting one-step-ahead with a constant

yt,1 = c, εt,1 = ψyt + ut+1, (9)

where we model the forecast error as εt,1 = µ + St+1µs + φ1εt−1,1 + et+1, set c = 0, and set ψ = 0.5

.
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Case 3: Forecasting multi-step-ahead

When forecasting two-periods-ahead with an AR(1) model, the errors will have a MA(1) dynamic

in population:

yt,2 = ψ2yt, εt,2 = (1 + ψL)ut+2, (10)

where we set ψ = 0.25.

In the application of our AFE-H and AFE-BS tests, we approximate the MA(1) error dynamics

with a Markov switching AR(1) process: εt,2 = µ + St+1µs + φ1εt−1,2 + et+2.

In all cases, µ denotes the intercept and µs is the parameter that changes with the Markov

switching regime. St+1 is a stationary Markov chain and et ∼ N(0, σ2). Note that the Markov

switching specification correctly approximates the forecast error’s dynamics in Case 1 and Case

2, while the Markov switching model’s dynamics are misspecified in Case 3. This case intends

to emulate a realistic forecast situation where the researcher has a multiple-step-ahead forecast

at hand and controls for potential serial correlation in the forecast error via an autoregressive

specification, which is typically easier to estimate than a MA specification.

The null hypothesis of the AFE-H and AFE-BS tests imposes the restriction µ = µs = 0. Panel

A of Table 2 shows the size results for AFE-H and AFE-BS tests for a nominal size of 5%. Panel

B, instead, shows results for a nominal size of 10%. We also include results for the tests of West

and McCracken (1998) (labeled “WM”) and Rossi and Sekhposyan (2016) (labeled “Fluctuation”),

which test for constant unbiasedness and time-varying unbiasedness, respectively. As discussed

previously, Rossi and Sekhposyan (2016) capture time variation non-parametrically, based on a

rolling window estimation.8 Overall, the size results of the AFE-H and AFE-BS tests are good,

although AFE-BS performs better in small and medium-sized samples relative to the AFE-H. The

AFE-H test overrejects for small and medium-sized samples; however, the size distortions are of a

similar magnitude as in Hansen (1992). The mild misspecification in the forecast error dynamics

in Case 3 only leads to small size distortions for the AFE-H and AFE-BS tests.9

To study power, we consider first the alternative of a constant deviation from unbiasedness.

The DGP takes the form of

yt = µ̃ + ψyt−1 + ut, (11)

8Note that the size distortions in small samples for the Fluctuation test come from the fact that although the true
DGP is an AR(1), we use a HAC estimator of Newey and West (1987) with a bandwidth equal to T(1/4) to control for
the autocorrelation.

9Markov switching tests are generally not robust to misspecification under the null hypothesis. In unreported
results, we found that for a more severe misspecification, i.e. large values of the MA(1) coefficient in Case 3, both the
AFE-H and the AFE-BS show size distortions.
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Table 2: Size results - forecast unbiasedness test
Panel A. Nominal size 5%

Case 1 Case 2 Case 3
Test T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

WM 0.046 0.048 0.054 0.107 0.110 0.070 0.062 0.062 0.056
Fluct. 0.062 0.062 0.060 0.218 0.187 0.126 0.134 0.128 0.081
AFE-H 0.122 0.082 0.046 0.130 0.058 0.026 0.144 0.076 0.056
AFE-BS 0.048 0.047 0.058 0.045 0.043 0.045 0.046 0.026 0.032

Panel B. Nominal size 10%
Case 1 Case 2 Case 3

Test T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

WM 0.099 0.091 0.099 0.178 0.167 0.133 0.121 0.115 0.103
Fluct. 0.112 0.112 0.115 0.299 0.262 0.193 0.208 0.207 0.138
AFE-H 0.176 0.122 0.086 0.182 0.100 0.060 0.198 0.114 0.096
AFE-BS 0.097 0.109 0.110 0.093 0.097 0.088 0.077 0.068 0.064

Note: T denotes the sample size. Cases 1, 2, and 3 refer to the various simulation designs described in Section 4.1.
Results are based on 1000 Monte Carlo replications, except for AFE-H: due to the computational time, these
Monte Carlo replications are limited to 500. The results for AFE-H test are based on a 4-tuple of 12 equally-spaced
grid points for (p, q) ∈ [0.05, 0.95] and 20 equally-spaced grid points for (µ, µs) ∈ [−1, 1]× [−2, 2]. Results for the
AFE-BS test are based on 200 bootstrap replications and (p, q) ∈ Λ(p,q). The window size m for the Fluctuation
test is set to m = T

2 .

with ψ = 0.5, where the forecasting model is yt,1 = ψyt, such that the forecast error becomes

εt,1 = µ̃ + ut+1. The different values for µ̃ are [0.20, 0.25, 0.30, 0.35, 0.375, 0.40, 0.45, 0.50].

Panel A of Table 3 shows size-adjusted power results for a sample size of T = 100 and

a nominal size of 5%. As expected, the WM test has the highest power against a constant

deviation from the null hypothesis of unbiasedness. However, the AFE-H and AFE-BS test

exhibits good power as well and the power increases rapidly with the magnitude of the deviation

from unbiasedness. The power of the Fluctuation test is comparable and only slightly worse than

that of the AFE-BS test against the constant alternative.

To test for power against the alternative of Markov switching, the DGP takes the form of

yt = µ̃ + Stµ̃s + ψyt−1 + ut, (12)

with ψ = 0.5, where the forecasting model is yt,1 = ψyt, such that the forecast error becomes

εt,1 = µ̃ + St+1µ̃s + ut+1.

We set the state-to-state transition probabilities of the Markov chain St to be (p, q) =

(0.9, 0.9) and impose µ̃ = −µ̃s/2. These parameter choices ensure that the unconditional

mean of the series is zero, i.e. E(εt+1|t) = 0, such that we can compute the power against
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Table 3: Power results - unbiasedness
Panel A. Constant bias

Values of µ̃
0.20 0.25 0.30 0.35 0.375 0.40 0.45 0.50

WM 0.49 0.71 0.82 0.92 0.97 0.98 0.99 0.99
Fluct 0.33 0.49 0.65 0.76 0.84 0.88 0.95 0.95

AFE-H 0.32 0.50 0.66 0.78 0.87 0.89 0.96 0.99
AFE-BS 0.28 0.47 0.63 0.78 0.88 0.90 0.96 0.98

Panel B. Markov switching bias
Values of µ̃s

0.80 1.00 1.20 1.40 1.50 1.60 1.80 2.00

WM 0.13 0.16 0.17 0.22 0.21 0.27 0.28 0.23
Fluct 0.20 0.27 0.32 0.37 0.39 0.42 0.48 0.44

AFE-H 0.14 0.24 0.33 0.53 0.58 0.67 0.80 0.88
AFE-BS 0.28 0.50 0.73 0.86 0.91 0.96 0.98 1.00

Note: The values denote the size-adjusted empirical rejection frequency based on 500 Monte Carlo
replications. The values for µ and µs are given in the first rows of Panel A and B respectively. The
nominal size is 5%. The results for AFE-H are based on a 4-tuple of 12 equally-spaced grid points
for (p, q) ∈ [0.05, 0.95] and 20 equally-spaced grid points for (µ, µs) ∈ [−1, 1]× [−2, 2]. Results for the
AFE-BS test are based on 200 bootstrap replications and (p, q) ∈ Λ(p,q).

the alternative of Markov switching only. The different values that we explore for µ̃s are

[0.80, 1.00, 1.20, 1.40, 1.50, 1.60, 1.80, 2.00].

Panel B of Table 3 displays the size-adjusted rejection frequencies at a nominal size of 5%. The

AFE-BS and AFE-H tests exhibit strong power against the alternative of Markov switching.

The rejection frequency of the WM test would theoretically be expected to remain at the

nominal level of 5%. However, in small samples, it is quite likely to sample one of the states more

often than the other, even if the unconditional state probabilities are 0.5, which shifts the sample

mean away from zero (this only occurs in small samples with a high regime persistence).

When looking at the Fluctuation test, we find that it does not have strong power against

Markov-switching type of time variation. This result is driven by the non-parametric approach of

the test, i.e. it has less power against parametric discrete switches. Note, however, that the power

results of the Fluctuation test depend to some extent on the window size — smaller windows

would likely improve the tests’ power under Markov switching. AFE-BS exhibits a lower power

than AFE-H; however, note that the grid size used for the test statistic of µ and µs could influence

the results (though it did not seem to be sensitive to the grid choice in our Monte Carlo exercises).
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4.2 Monte Carlo results — efficiency

We now turn to test forecast efficiency. Under the null, the DGP is the same as in eq. (7), i.e.

yt = ψyt−1 + ut, (13)

where we set ψ = 0.5 and ut ∼ N(0, σ2
e ). The forecasting model takes the form of yt,1 = ψyt such

that the forecast error becomes

εt,1 = ut+1. (14)

We use the following Markov switching specification

εt,1 = γyt,1 + St+1γsyt,1 + et+1. (15)

to test the null hypothesis: γ = γs = 0 in the following regression, where St+1 is a stationary

Markov chain and et+1 ∼ N(0, 1).

Table 4 shows the size results for AFE-H and AFE-BS tests as well as the WM and the Fluctua-

tion tests. The size results of AFE-BS test are good, even in small samples; the AFE-H somewhat

underrejects for small and large samples. The reason for the distortions could be that the critical

values are taken from a bound instead of an exact distribution and, therefore, the test is more

conservative, or that the test is more sensitive to the choice of the grid for (γ, γs).

Table 4: Size results - efficiency
Test T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

Nominal size 5% Nominal size 10%

WM 0.059 0.067 0.053 0.114 0.120 0.107
Fluct. 0.050 0.049 0.046 0.094 0.092 0.095
AFE-H 0.020 0.014 0.012 0.036 0.030 0.028
AFE-BS 0.055 0.058 0.053 0.098 0.113 0.094

Note: T denotes the sample size. Results are based on 1000 Monte Carlo replications, except for
AFE-H: due to the computational time, these Monte Carlo replications are limited to 500. The results
for AFE-H test are based on a 4-tuple of 12 equally-spaced grid points for (p, q) ∈ [0.05, 0.95] and 20
equally-spaced grid points for (γ, γs) ∈ [−1, 1]× [−2, 2]. Results for the AFE-BS test are based on 200
bootstrap replications and (p, q) ∈ Λ(p,q). The window size m for the Fluctuation test is m = T

2 .
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Table 5: Power results - efficiency

Constant deviation Markov switching deviation
Values of γ̃ Values of γ̃s

0.15 0.20 0.25 0.30 0.35 0.30 0.40 0.50 0.60 0.70

WM 0.46 0.67 0.87 0.96 1.00 0.05 0.09 0.12 0.15 0.18
Fluct 0.44 0.58 0.74 0.88 0.98 0.08 0.12 0.15 0.20 0.27
AFE-H 0.38 0.58 0.80 0.94 1.00 0.06 0.15 0.32 0.59 0.82
AFE-BS 0.30 0.51 0.74 0.91 0.99 0.07 0.22 0.45 0.74 0.92

Note: The values denote the size-adjusted empirical rejection frequency based on 500 Monte Carlo
replications. The values for γ and γs are given in the first row of Panel A and B respectively. The
nominal size is 5%. The results for AFE-H test are based on a 4-tuple of 12 equally-spaced grid points
for (p, q) ∈ [0.05, 0.95] and 20 equally-spaced grid points for (γ, γs) ∈ [−1, 1]× [−2, 2]. Results for
the AFE-BS test are based on 200 bootstrap replications and (p, q) ∈ Λ(p,q).

To study power, we proceed as follows. Under the alternative of a constant, but non-zero

efficiency coefficient, the DGP takes the form

yt = (ψ + γ̃)yt−1 + ut, (16)

with the forecasting model being yt,1 = ψyt, such that the forecast error becomes εt,1 = γ̃yt + ut+1,

where we let γ̃ take the following values [0.15, 0.20, 0.25, 0.30, 0.35].

Panel A of Table 5 shows the size-adjusted power results for a sample size of T = 100 at a

nominal size of 5%. Again the MW test outperforms the other tests in terms of power. However,

the AFE-H and AFE-BS have good power against the null of a constant deviation as well.

To test for the alternative of Markov switching, the DGP takes the form

yt = (ψ + γ̃)yt−1 + Stγ̃syt−1 + ut, (17)

where the forecasting model is yt,1 = ψyt, such that the forecast error becomes εt,1 = ut+1 + γ̃yt +

St+1γ̃syt. We set the state-to-state transition probabilities to be (p, q) = (0.9, 0.9), set γ̃ = −γ̃s/2,

and let γ̃s take the following values [0.30, 0.50, 0.70, 0.90, 1.10].10

Results are shown in Panel B of Table 5. We find that the traditional WM and Fluctuation

tests have less power against the alternative of Markov switching efficiency than the AFE-H and

AFE-BS tests.
10Again, these parameter choices ensure that we can compute the power against the alternative of Markov switching

efficiency only.
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4.3 Discussion

Testing for Markov switching is challenging and both of the proposed tests have advantages and

disadvantages.

When using the AFE-H test, the researcher needs to carefully set the grid of parameters of

interest. When testing unbiasedness, we recommend plotting the forecast error to decide the grid

values. When testing efficiency, setting a grid around the full sample efficiency parameter could

be a natural starting point. In addition, the AFE-H has the drawback of being computationally

intensive and displaying size distortions in small samples, but the presence of an additional

control variable (beyond the autoregressive lags) does not require the researcher to specify a law

of motion for this variable.

While the parametric bootstrap procedure requires the researcher to make this additional

assumption, which might be difficult in some situations, such as when testing for forecast

efficiency of survey forecasts, it addresses many of the technical issues associated with testing for

Markov switching. In addition, it has good small sample properties and the researcher only has

to search over a grid for the state-to-state transition probabilities.

So far, we have let the variance of et be constant; however, that can be relaxed. For instance,

the variance can follow a Markov switching process itself. If the variance shares the same regime

dynamics as the rationality coefficients, then it can help identify the regime. However, in this

case, a rejection of a null hypothesis would not indicate whether the rejection is due to violations

of rationality or switches in the variance. Instead, if the variance has its own Markov switching

dynamics, then it should be modeled separately. Though testing for switches in the variance

might not be of first-order interest in the context of our proposed rationality tests, our framework

allows for it nonetheless.

In general, Markov switching models are mixture models and, therefore, the misspecification

of the likelihood can lead to size distortions when using likelihood-based tests. Misspecification

is less prevalent in the context of rationality tests than when comparing forecasts since forecast

error distributions are often reasonably well approximated by a Normal distribution.

5 A Markov switching bias in the Federal Funds Rate forecasts

This section investigates the forecast unbiasedness of the Blue Chip Financial Forecasts (BCFF)

survey’s predictions for the FFR. Significant deviations from forecast unbiasedness by survey

participants are important since a state-dependent bias in the interest rate expectations implies
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that it might be possible to improve prediction in specific periods in time and policymakers such

as the central banks can help in the process by improving the communication strategies.

Previous work that found state dependence in forecast errors includes Joutz and Stekler (2000),

Sinclair et al. (2010), and Granziera et al. (2021) for various forecasts of the Federal Reserve and

the ECB. Studies of forecast rationality of private-sector survey predictions include Croushore

(2012) and Rossi and Sekhposyan (2016), who investigate the forecast rationality of U.S. Survey

of Professional Forecasters’ predictions; the latter find that forecast rationality is time-varying

and depends on the sub-sample considered. Dahlhaus and Sekhposyan (2020) consider the BCFF

predictions of the FFR, and test forecast rationality in sub-samples, conditional on whether the

economy is in a monetary easing or tightening regime; in their work, the regime is observable

and measured by lagged interest rate decreases and increases. Our empirical analysis contributes

to this literature by revealing state dependence in the BCFF, without having to restrict our

consideration to a specific state variable ex-ante. Additionally, we show that the state-dependent

bias extends to the forecasts implied by the Federal Funds Futures (FFF) markets, i.e. it is not an

idiosyncratic feature of the BCFF survey.

The BCFF is conducted monthly and consists of approximately fifty participants in the private

financial sector. We focus on the consensus forecast, which is the cross-sectional average of all

participants. The predictions are fixed-event forecasts, and we follow Dahlhaus and Sekhposyan

(2020) (see also Chun, 2011) to convert the survey predictions to fixed-horizon forecasts.

In total, the survey data ranges from 1983:M4, the start of the survey, to 2018:M2. In the

analysis, we focus on the period starting in 1990:M1 for two reasons. First, the data in the 1980s

is quite volatile and contains several outliers. Second, an increase in the Fed’s transparency in

monetary policy communication at the beginning of the 1990s (Woodford, 2005) gives rise to

potentially confounding structural changes in the forecast error dynamics relative to the earlier

period. Lastly, the effective sample size depends on the forecasting horizon.

Let FFRt+h denote the average of the effective Federal Funds Rate in month t + h, and let

BCFFt,h denote the h-step prediction of the FFR provided by the Blue Chip Financial Forecasts at

time t. Then, the forecast error is given by εt,h = FFRt+h − BCFFt,h, i.e. it is the difference of the

realization and the forecast. To test for unbiasedness, we specify the following model:

εt,h = µ + St+hµs +
d

∑
i=1

φiεt−i,h + et+h, (18)

where St ∈ {0, 1} is a stationary first-order Markov chain, and et ∼ N(0, σ2). In the following, we
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denote the case of St = 0 as regime one and the case of St = 1 as regime two.

In our baseline specification, we focus on the three-month-ahead forecast error, i.e. h = 3.

Results for the six-month-ahead are very similar and are reported in the Online Appendix.

Table 6 and Table 7 display the results of the AFE-BS and AFE-H test for unbiasedness, i.e.

µ = µs = 0 in eq. (18), for d = 0, 1, 2, 3.11 For the AFE-BS test we let (p, q) ∈ Λ(p,q) as defined in

Section 3.2. For the AFE-H test, we used a 4-tuple of 12 equally-spaced grid points for (p, q) ∈

[0.04, 0.96]× [0.04, 0.96], and 20 equally-spaced grid points for (µ, µs) ∈ [−1, 0.2]× [−2, 0.4].For

all lag lengths, the AFE-BS and AFE-H test reject the null hypothesis of an unbiased forecast at a

significance value below 0.01.

The coefficients p and q, displayed in Table 6 and Table 7, show the state-to-state transition

probabilities of regime one and two respectively. Across different lag length specifications, regime

one is persistent, with a state-to-state transition probability of 96% to 97%, and the forecasts

appear to be unbiased as µ ≈ 0; a subsequent t-test on µ does not reject the null hypothesis

of µ = 0. However, in the second regime, which is considerably less persistent (in Table 6)

when controlling for lags of the forecast error, the forecasters overestimate the future FFR, as the

coefficient µ + µs is large, negative, and significantly different from zero. The forecast bias in

absolute terms, i.e. |µ + µs|, is estimated to be around 18 to 50 basis points. Note that while the

results are not identical across Table 6 and Table 7, they have the same implications.12

Figure 2 plots the smoothed regime probabilities (solid lines) of the MS-AR(3) model of

Table 6 against the forecast error and the FFR. The left y-axis denotes the scale of the regime

probability, whereas the right y-axis denotes the scale of the forecast error and the FFR. The

dashed line displays the forecast error (rescaled by a factor of two to increase the legibility of

the plot). The dotted line displays the FFR, while grey shaded areas display NBER recession

periods. An increase of the probability of regime two is associated with monetary easing, but

is not limited to recessionary periods. In particular, in the early 1990s, around 1998, and before

the Great Recession in 2007-2009, the probability co-moves with changes in the FFR although the

economy was not in a recession according to the NBER. Overall, the regimes appear to be well

identified, in the sense that most regime probabilities are close to zero or one.

Figure 3 plots the forecast error, εt,3, against the time-varying unconditional mean of the

MS-AR(3) model of Table 6, given by µ̂(1− φ̂1 − φ̂2 − φ̂3)−1 + Ŝt+3µ̂s(1− φ̂1 − φ̂2 − φ̂3)−1, using

11A rational forecast would exhibit maximum serial correlation length of h-1, i.e. in this case two. We show results
for a maximum of three lags to be robust against rejections of the null hypothesis due to other type of misspecifications.

12Remember that AFE-H is estimated over a finite grid for both (p, q) and µ, µs, which may lead to a slightly different
maximum than the estimation that is not based on a finite grid.
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Table 6: AFE-BS test results — three-month-ahead forecast error

Model p̂ q̂ µ̂ µ̂ + µ̂s φ̂1 φ̂2 φ̂3 LR-value pvalue
AR(0) 0.98 0.83 0.01 -0.78 - - - 146.06 < 0.01

(0.01) (0.06) (0.01) (0.02)
AR(1) 0.97 0.62 0.01 -0.53 0.67 - - 77.17 < 0.01

(0.01) (0.11) (0.01) (0.02) (0.01)
AR(2) 0.97 0.60 0.00 -0.50 0.84 -0.17 - 63.55 < 0.01

(0.01) (0.12) (0.01) (0.02) (0.03) (0.03)
AR(3) 0.97 0.60 0.00 -0.50 0.81 -0.09 -0.07 64.87 < 0.01

(0.01) (0.11) (0.01) (0.02) (0.03) (0.04) (0.03)

Note: The sample size is T = 338. maximum obtained under the alternative, using the restriction that (p, q) ∈ Λ(p,q).
The column labelled ‘LR-value’ denotes the value of the likelihood ratio. Numbers in parentheses denote robust
standard errors. The column ‘pvalue’ denotes the p-value obtained using the approximated asymptotic distribution
based on 200 bootstrap replications. p denotes the state-to-state transition probability for regime one and q denotes
the state-to-state transition probability for regime two.

Figure 2: Regime probabilities

(a) Regime One

(b) Regime Two

Note: The left y-axis denotes the regime probability. The right y-axis denotes the value of the forecast error and the
FFR. The solid line displays the smoothed regime probabilities of the Markov switching model with three lags, defined
in eq. (18). The dashed line displays the forecast error. We rescaled the forecast error by a factor of two, to increase the
legibility of the plot. The dashed-dotted line displays the FFR and grey shaded areas display NBER recession periods.

the smoothed state probabilities for St+3. The figure shows that the switches in the unconditional

mean alone can account for much of the recurring negative realizations of the forecast error.

In comparison to eq. (18), West and McCracken’s (1998) full-sample test for unbiasedness

considers the null hypothesis H0: µ = 0 in the model εt,h = µ + et+h, where et is a zero mean
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Table 7: AFE-H test results — three-month-ahead forecast error

Model p̂ q̂ µ̂ µ̂ + µ̂s φ̂1 φ̂2 φ̂3 AFE-H pvalue
AR(0) 0.96 0.92 -0.94 0.20 - - - 11.31 < 0.01

(0.04) (0.02) (0.02) (0.03)
AR(1) 0.96 0.88 -0.31 0.14 0.74 - - 8.49 < 0.01

(0.04) (0.02) (0.01) (0.03) (0.03)
AR(2) 0.96 0.88 0.01 -0.18 1.03 -0.31 - 7.74 < 0.01

(0.08) (0.02) (0.03) (0.01) (0.04) (0.04)
AR(3) 0.96 0.88 0.01 -0.18 1.02 -0.26 -0.05 8.25 < 0.01

(0.08) (0.02) (0.03) (0.01) (0.04) (0.05) (0.03)

Note: The sample size is T = 338. The displayed coefficients correspond to the coefficients obtained when
maximizing the likelihood over the finite grid of (p, q, µ, µs) of the AFE-H statistic. Numbers in parentheses
denote robust standard errors. ‘AFE-H’ denotes the value of the test statistic. The column ‘pvalue’ denotes the
p-value obtained from the simulated asymptotic distribution. The results for AFE-H are based on a 4-tuple of 12
equally-spaced grid points for (p, q) ∈ [0.04, 0.96] and 20 equally-spaced grid points for µ, µs ∈ [−1, 0.2]× [−2, 0.4].
p denotes the state-to-state transition probability for regime one and q denotes the state-to-state transition
probability for regime two.

Figure 3: Time-varying mean

Note: The solid line (left hand side y-axis) displays the forecast error. The dashed line (left hand side y-axis) displays
the time-varying unconditional mean of the MS-AR(3) model of Table 6, i.e. µ̂(1− φ̂1 − φ̂2 − φ̂3)

−1 + Ŝt+3µ̂s(1− φ̂1 −
φ̂2 − φ̂3)

−1, using the smoothed state probabilities for Ŝt+3. The dashed line (right hand side y-axis) shows the FFR
level and grey shaded areas display NBER recession periods.

error term. Applying West and McCracken (1998) to the three-month-ahead forecast error does

not reject the null of µ = 0; the p-value is around 0.6.13

The non-parametric Fluctuation test by Rossi and Sekhposyan (2016) rejects the null hypothesis

of unbiasedness at the 5% level with the rolling window size m chosen to be at the 1
3 of the total

out-of-sample period. However, Markov switching model results can identify the potential states

driving the bias, making our results more useful when trying to bias-correct forecasts or make

13These results hold when additionally controlling for lags of the forecast error and using HAC standard errors of
Newey and West (1987) with a bandwidth T(1/4).

23



policy decisions in particular states of the world.

Our empirical results are closely related to Dahlhaus and Sekhposyan (2020). The authors

evaluate forecast unbiasedness of FFR forecast errors of the BCFF and find that the bias seems to

be mainly present in periods of monetary easing. However, since there is no common definition

of “periods of monetary easing”, the authors first have to define a state variable to identify their

subsamples. In contrast, although the Markov switching approach proposed here finds similar

periods of a negative forecast bias, it does so without having to define the state variable ex-ante.

Instead, the periods are identified via the latent state of the regime-switching model.

Regime switching bias in market-based forecast errors: So far, our analysis focused on the

BCFF forecasts, which are collected from prominent forecasters working in the financial sector. If

their forecasts are indeed representative of what major financial institutions expect, then their

forecasts could be correlated with the futures market’s expectation of the FFR. Thus, we might

expect similar regime switches and deviations for forecast unbiasedness in FFF as well.

To investigate whether this is the case, we constructed three- and six-month-ahead monthly

forecast errors using prices of FFF for the period of January 1995 to February 2018.14 FFF settle

on the average effective FFR of the respective h-step-ahead target month and, therefore, provide a

benchmark market-based measure of FFR expectations. We compute the h-step-ahead forecast

error as the average effective FFR in month t + h minus the FFF settlement price of the last trading

day of month t. For instance, the March 31, 2006, settlement price of the three-month-ahead FFF

is evaluated against the average effective FFR of June 2006.15 Figure A.1 plots the forecast error

based on the BCFF prediction (labeled FE-BCFF) against the forecast error based on the FFF prices

(labeled FE-FFF) for the three-month-ahead periods. Note that the forecast errors of the BCFF

and the FFF are very similar, suggesting that the information set of the BCFF panelists and the

financial agents in futures market are indeed very similar. In the Online Appendix, we show that

this is also the case for the six-month-ahead forecast errors.

Table A.1 and Table A.2 in the Appendix show the results for testing for a Markov switching

bias in the FFF implied forecast error. Results are very similar to the BCFF results displayed in

Table 6 and Table 7, respectively. In fact, Figure A.2 shows that the respective regime probabilities

estimated on the three-month-ahead forecast error produced by the FFF (solid line, RP-FFF) and

by the BCFF (dashed line, RP-BCFF) are very similar.

14We start our sample in 1995 due to data availability.
15Prices on non-trading days are substituted by the respective price of the most recent previous trading day (Swanson,

2006).
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Regime switches and forecast disagreement: We also investigate whether the bias is related

to the panelists’ disagreement about the future FFR. In fact, if the forecast error biases are

systematically correlated with disagreement, then point forecasts may reflect a shift in the

marginal forecaster between “hawks", who always over-predict the interest rate, and “doves",

who always under-predict the interest rate. To that end, we computed the difference between

the top-10-average and bottom-10-average forecasts of the panelists as in Andrade et al. (2016)

and Dahlhaus and Sekhposyan (2020). Figure 4 shows plots the disagreement of the forecasters

(dashed line, right y-axis) against the regime probabilities (solid line, left y-axis). The figure

suggests that while sometimes the disagreement and the regime probabilities co-move, there is

no systematic correlation between disagreement and point forecast errors.

Figure 4: Three-month-ahead forecast error: regime probabilities vs disagreement

(a) Regime one vs disagreement

(b) Regime two vs disagreement

Note: The left y-axis shows the scale of the smoothed regime probability, estimated using the model defined in eq. (18),
with three lags, on the BCFF FFR forecast error. The right y-axis shows the disagreement between BCFF panelists.
Grey shaded areas display NBER recession periods.

Regime switches and monetary policy uncertainty: Moreover, we analyze whether the bias

of BCFF panelists’ FFR forecast is more generally related to uncertainty about monetary policy.

Our measure of monetary policy uncertainty is the “MPU” index of Baker et al. (2016), which

is constructed using newspaper articles of the 10 major U.S. newspapers. Figure 5 plots the

estimated regime probabilities (solid line, left y-axis) against the MPU index (dashed line, right
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Figure 5: Three-month-ahead forecast error: regime probabilities vs MPU

(a) Regime one vs MPU

(b) Regime two vs MPU

Note: The left y-axis shows the scale of the smoothed regime probability, estimated using the model defined in eq. (18),
with three lags, on the BCFF FFR forecast error. The right y-axis shows the MPU index. Grey shaded areas display
NBER recession periods.

y-axis). Spikes in the MPU index before the zero lower bound (ZLB) period tend to coincide with

an increase in the probability of the second regime, notably around the two U.S. recessions in our

sample as well as in 1998 around the Fed intervention triggered by the collapse of Long Term

Capital Management.

Forecast errors of real GDP and GDP deflator growth rates: The BCFF panelists also provide

forecasts for U.S. real GDP and the GDP deflator growth (from hereon referred to as inflation). To

investigate whether the bias in the FFR forecast is associated with a bias in the corresponding

macroeconomic forecasts, we computed the average forecast error of real GDP growth and

inflation conditional on the regimes estimated on the BCFF FFR forecast errors, denoted by ŜFFR
t+h .

Then, we estimate the following regression for the forecast error of real GDP growth and inflation:

εt,h = µ + µsŜFFR
t+h +

3

∑
i=1

φiεt−i,h + et+h, (19)

where et+h ∼ N(0, σ2
e ). Results are reported in Table 8, which shows the estimated coefficients, µ̂

and µ̂ + µ̂s, and the p-value of a t-test of µ = 0 and an F-test on µ + µs = 0. The point estimates
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of µ̂ + µ̂s are negative for both the real GDP growth and inflation forecast errors, i.e. periods

of overestimation of the FFR coincide with periods of overestimation of real GDP growth and

inflation. Note, however, that we cannot reject the null hypothesis of µ + µs = 0 at conventional

significance levels and that part of these results are driven by the large negative forecast error

during the Great Recession of 2008 to 2009. For the GDP deflator we find that µ̂ is also negative

and significantly different from zero, pointing to a potential constant bias in the forecast error.

Table 8: Results for output growth and inflation
GDP growth Inflation

µ̂ µ̂ + µ̂s µ̂ µ̂ + µ̂s
Parameter values 0.030 -0.426 -0.112 -0.375

(0.316) (0.117) (0.002) (0.122)

Note: The sample size is T = 338. Values in parenthesis denote p-values based
on the HAC variance estimator of Newey and West (1987) with a bandwidth
of T1/4. Inflation measures the growth rate of the GDP deflator.

Additional robustness analyses: In the Online Appendix, we show that our results are

robust to both the exclusion of the ZLB period after the Great Recession and the use of the

six-month-ahead (instead of the three-month-ahead) forecast errors.

Besides addressing the question of what causes the bias, the results also have potential

implications for monetary policy communication. While prior to the 1990s many in the Fed

believed that policy effectiveness depended on surprising the market (Poole, 2005), the current

consensus is rather along the opposite lines: it is a central bank’s job to transparently manage

expectations (see Woodford, 2005 for a discussion). In the words of Goodfriend (1991): “By making

itself more predictable to the markets, the central bank makes market reactions to monetary

policy more predictable to itself. And that makes it possible to do a better job of managing the

economy.” From that perspective, a systematic overprediction of the policy rate during monetary

easings suggests that there is room for improvements in the Fed’s communication strategy.

6 Conclusion

Despite ample evidence on state dependence in prediction errors, existing forecast rationality tests

either rely on non-parametric techniques to account for the time-variation or treat the states as

observable when thinking of forecast optimality. We propose a framework for forecast evaluation

that is able to detect state-dependent deviations from forecast rationality where the states are

unknown a priori. Overall, our tests exhibit good size and power properties in Monte Carlo
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simulations, although they somewhat underreject when testing forecast efficiency. We show that,

in the presence of Markov switching, the new tests outperform available alternatives, which in

general have weak power when the time-variation takes the form of regime-switching.

While we focus on a two-state Markov switching structure, we expect our results to generalize

to n-states. We leave this analysis to future work due to the fact that, in practice, Markov switching

models are most commonly estimated in a two-state environment and that the computational

costs make implementation in the presence of more than two states difficult in practice .

In an empirical investigation of the forecast unbiasedness of the Blue Chip Financial Forecasts

survey, for the sample period from 1990 to 2018, our results show that the predictions exhibit

a Markov switching bias when forecasting the three- and six-month-ahead Federal Funds Rate.

While we find no evidence in favor of a constant deviation from unbiasedness in the full sample,

we do provide evidence that participants tend to systematically overestimate the Federal Funds

Rate in monetary easing episodes. We show that a similar state-dependent bias is also present in

market-based forecasts of interest rates, but not in the forecasts of real GDP growth and GDP

deflator-based inflation.
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A Empirical results using Federal Funds Futures

Table A.1: AFE-BS test results — three-month-ahead forecast error by federal funds futures

Model p̂ q̂ µ̂ µ̂ + µ̂s φ̂1 φ̂2 φ̂3 LR-value pvalue
AR(0) 0.98 0.98 -0.75 0.01 - - - 112.54 < 0.01

(0.01) (0.01) (0.02) (0.01)
AR(1) 0.98 0.51 0.01 -0.63 0.59 - - 80.51 < 0.01

(0.01) (0.17) (0.01) (0.02) (0.01)
AR(2) 0.97 0.51 0.00 -0.59 0.73 -0.16 - 73.69 < 0.01

(0.01) (0.16) (0.01) (0.02) (0.03) (0.03)
AR(3) 0.97 0.52 0.00 -0.59 0.71 -0.12 -0.04 72.80 < 0.01

(0.01) (0.15) (0.01) (0.02) (0.03) (0.04) (0.03)

Note: The sample size is T = 277. The displayed coefficients correspond to the maximimum obtained under
the alternative, using the restriction that (p, q) ∈ Λ(p,q). The column labelled ‘LR-value’ denotes the value of
the likelihood ratio. Numbers in parentheses denote robust standard errors. The column ‘pvalue’ denotes the
p-value obtained using the approximated asymptotic distribution based on 200 bootstrap replications. p denotes the
state-to-state transition probability for regime one and q denotes the state-to-state transition probability for regime
two.

Table A.2: AFE-H test results — three-month-ahead forecast error by federal funds futures

Model p̂ q̂ µ̂ µ̂ + µ̂s φ̂1 φ̂2 φ̂3 AFE-H pvalue
AR(0) 0.92 0.88 -0.05 0.01 - - - 11.01 < 0.01

(0.96) (0.75) (0.21) (0.10)
AR(1) 0.96 0.88 -0.31 -0.49 0.54 - - 9.11 < 0.01

(1.61) (0.82) (0.80) (0.25) (0.27)
AR(2) 0.96 0.88 -0.05 0.01 1.03 -0.33 - 9.10 < 0.01

(0.40) (0.28) (0.13) (0.09) (0.06) (0.04)
AR(3) 0.96 0.88 0.01 -0.68 0.66 -0.09 -0.04 9.22 < 0.01

(0.07) (0.02) (0.02) (0.01) (0.03) (0.05) (0.03)

Note: The sample size is T = 277. The displayed coefficients correspond to the coefficients obtained when
maximizing the likelihood over the finite grid of (p, q, µ, µs) of the AFE-H statistic. Numbers in parentheses
denote robust standard errors. ‘AFE-H’ denotes the value of the test statistic. The column ‘pvalue’ denotes the
p-value obtained from the simulated asymptotic distribution. The results for AFE-H are based on a 4-tuple of 12
equally-spaced grid points for (p, q) ∈ [0.04, 0.96] and 20 equally-spaced grid points for µ, µs ∈ [−1, 0.2]× [−2, 0.4].
p denotes the state-to-state transition probability for regime one and q denotes the state-to-state transition
probability for regime two.
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Figure A.1: Three-month-ahead forecast error based on federal funds futures and BCFF predictions

Note: The solid line displays the forecast error implied by the FFF, denoted by ‘FE-FFF’, whereas the dashed line
displays the forecast error when using the BCFF survey forecasts, denoted by ‘FE-BCFF’. Grey shaded areas display
NBER recession periods.

Figure A.2: Three-month-ahead forecast error by federal funds futures: regime probabilities

(a) Regime One

(b) Regime Two

Note :The solid lines display the smoothed probabilities of the regimes estimated on the forecast errors implied by the
FFF, denoted by ‘RP-FFF’, whereas the dashed lines display the regimes estimated on the forecast errors of the BCFF
survey forecasts. In both cases we obtained the smoothed regime probabilities from the Markov switching model,
defined in eq. (18), with three lags. Grey shaded areas display NBER recession periods.
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