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Abstract 

 

This paper introduces a definition of stochastic superiority.  One random variable is 

stochastically superior to another whenever it stochastically dominates the other after the risk in 

each random variable has been optimally reduced.  Stochastic superiority is implied by stochastic 

dominance, but the reverse is not true.  Stochastic superiority allows more pairs of random 

alternatives to be ranked, and efficient sets to be smaller.  A very strong sufficient condition for 

stochastic superiority is demonstrated to also be necessary when preferences are risk averse.  This 

condition provides a relatively easy way to conduct stochastic superiority tests.  As an alternative 

to “almost stochastic dominance”, stochastic superiority also provides a natural solution to the “left 

tail problem” that arises often when comparing random alternatives. 

 

Keywords: stochastic dominance; almost stochastic dominance; set dominance; left 

tail problem; self-protection 

JEL Classification: D81; G11 

 

 

Acknowledgements:  We would like to thank an anonymous referee, Yoichiro Fujii, Michael 

Hoy, Rachel Huang, Lu Li, Henri Louberge, Alex Muermann, Larry Tzeng, Kit Pong “Keith” 

Wong, Lin Zhao, and participants of the 2019 EGRIE seminar for helpful comments and 

suggestions.   

mailto:lliu@tamu.edu
mailto:jmeyer@msu.edu


1 

 

1. Introduction 
 

When choosing between risks a decision maker is often at the same time selecting an 

overall risk level.  Choosing between two risky mutual funds is combined with deciding how 

much wealth to invest in the selected mutual fund and how much to hold in an insured savings 

account instead.  Buying a car or house is combined with choosing how much auto or 

homeowner’s insurance to purchase. When selecting a television or washing machine, extending 

the manufacturer’s warranty is often an option.  These secondary decisions are made 

simultaneously with the primary decision and are ways that decision makers can use to reduce 

the riskiness of their initial selection. The point being made with these examples is that when a 

decision maker is choosing between two risky alternatives (the primary decision), the decision of 

how much of the chosen risk to bear and how much to transfer to others is often made 

simultaneously.  This secondary decision is relevant and important precisely because it is made 

concurrently with the primary decision.  The decision maker’s attitude toward risk affects both 

decisions, and this interaction can alter the choice between risky alternatives.1   

This paper explicitly models a simultaneous secondary decision in the stochastic 

dominance context.  Sets of decision makers are asked to rank or choose between two random 

variables x̃ and ỹ knowing that a portion of the risk they choose can be transferred to others.  The 

analysis extends the literature on stochastic dominance that was started more than fifty years ago 

by Hadar and Russell (1969) and Hanoch and Levy (1969).  The basic stochastic dominance 

question they pose is:  when is random variable x̃ preferred or indifferent to random variable ỹ 

                                                
1 Whereas the primary and secondary decisions are simultaneously made in real-world situations, the primary 

decision is typically made in isolation in a laboratory environment.  Therefore, it is not surprising that the risk 

attitudes elicited based on choices made in the lab consistently fail to predict choices in the field (e.g., Charness et 

al. 2020).   
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by all decision makers with a utility function in some set U?  This same question is addressed 

here with the additional feature that both x̃ and ỹ can be altered by choosing an optimal risk 

reducing change or transformation.  This additional decision is made simultaneously with 

choosing between x̃ and ỹ, and can lead to a different selection.  Because of this extra decision, 

individual decision makers may rank x̃ and ỹ differently than without it, and therefore the answer 

to the basic stochastic dominance question may also be different.2       

Because the answer to the basic stochastic dominance question can be different when x̃ 

and ỹ can be transformed, a new term is required to discuss the partial order that is generated.  

The term used is “stochastically superior” or “stochastic superiority”.  Random variable x̃ is said 

to be stochastically superior to ỹ for a set of decision makers U if every decision maker in U 

weakly prefers the optimally transformed x̃ to the optimally transformed ỹ.  The transformation 

applied to ỹ can be different from that applied to x̃, and these transformations can and likely do 

differ across decision makers.  Each decision maker in U optimally selects a risk reducing 

transformation for x̃ and for ỹ at the same time he or she is choosing between x̃ and ỹ.  All 

decisions are assumed to be made to maximize the decision maker’s expected utility.  

When decision makers can each optimally choose how to transform both x̃ and ỹ, the 

question of which of the two random variables is unanimously preferred to the other by sets of 

decision makers could well have fewer rather than more clear-cut answers; that is, there could be 

fewer rather than more unanimous rankings of x̃ and ỹ.  The additional complication of a 

simultaneous risk level decision could make it more difficult for sets of decision makers to agree 

                                                
2 The concept of stochastic superiority developed here is related to a very similar portfolio stochastic dominance 

concept defined by Levy and Kroll (1976 and 1978), but the analysis and findings here differ significantly from 

theirs. This is discussed more fully in the body of the paper. 
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as to whether x̃ or ỹ is best.  A main finding here, however, is that for the simultaneous risk level 

decision considered in this analysis, x̃ stochastically dominating ỹ implies, but is not implied by, 

x̃ being stochastically superior to ỹ.  That is, for sets of decision makers, the inclusion of this 

simultaneous risk level decision makes unanimity for the primary decision of ranking x̃ and ỹ 

more rather than less likely.  That stochastic superiority is implied by stochastic dominance is 

presented as Corollary 1 to Theorem 1 in the paper. 

Stochastic superiority allows random variables to be ranked when stochastic dominance 

does not, and therefore leads to smaller efficient sets.  As the title of the Hanoch and Levy (1969) 

paper indicates, reducing sets of random variables to efficient sets, ones containing only 

elements that at least one decision maker would choose, is one of the main goals of stochastic 

dominance analysis.  This is true not only for first- and second-degree stochastic dominance as 

defined by Hadar and Russell (1969) and Hanoch and Levy (1969), but also for general nth-

degree stochastic dominance and many other forms of stochastic dominance presented in the 

literature since then.  Each new definition refines a previously established form of stochastic 

dominance in a way that leads to additional rankings and smaller efficient sets.  

Leshno and Levy (2002), when defining almost stochastic dominance, are also concerned 

with obtaining additional rankings of random variables.  They define a procedure that can be 

applied to any of the established forms of stochastic dominance such as first-, second- or nth- 

degree stochastic dominance.  Almost stochastic dominance modifies an existing form of 

stochastic dominance by removing from the associated set of utility functions those utility 

functions that represent preferences that Leshno and Levy consider to be “extreme, pathological 
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or simply unrealistic”.3  By removing these extreme preferences and utility functions, unanimous 

rankings are obtained that these extreme preferences would otherwise prevent.4   

The almost stochastic dominance procedure follows a long-established pattern.  All 

stochastic dominance definitions, including those generated using almost stochastic dominance, 

propose a new form of stochastic dominance that allows more random variables to be ranked and 

accomplishes this by removing from consideration some of the utility functions previously 

allowed.  This pattern was established at the very beginning by Hadar and Russell and Hanoch 

and Levy when they defined second-degree stochastic dominance by removing from 

consideration all increasing utility functions that are not concave.  By removing these utility 

functions from consideration, second-degree stochastic dominance can rank more random 

variables and generate smaller efficient sets than first-degree stochastic dominance.   

Like almost stochastic dominance, stochastic superiority is a modification procedure that 

can be applied to any established form of stochastic dominance and the goal is additional 

rankings and smaller efficient sets.  Stochastic superiority obtains these additional rankings, 

however, not by removing utility functions, but by allowing decision makers to modify the 

random variables that are being compared.  Stochastic superiority facilitates seemingly 

reasonable rankings not by discarding “extreme, pathological or simply unrealistic” preferences, 

but instead by allowing all decision makers, including those whose preferences seem to be 

extreme, to optimally reduce the risk associated with any random variable.  Allowing this 

                                                
3 Tzeng et al. (2013), Guo et al. (2013), Denuit et al. (2014), Tsetlin et al. (2015), Chang et al. (2019), Luo and Tan 

(2020), and Liu and Meyer (2021) further refine and extend the analysis of almost stochastic dominance. 

 
4 Meyer (1977a and 1977b) also does this for first- and second-degree stochastic dominance by placing an upper 

bound and/or a lower bound on decision makers’ Arrow-Pratt absolute risk aversion measure.  
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additional simultaneous risk reduction decision is often enough to cause the ranking of x̃ and ỹ 

by those with extreme preferences to be aligned with the ranking by decision makers whose 

preferences are not so extreme.  Stochastic superiority and almost stochastic dominance have the 

same goal, to rank more random variables and generate smaller efficient sets, but the way in 

which this goal is accomplished is very different.   

Consider the following example provided by Leshno and Levy (2002).  Assume that two 

random alternatives are available, x̃ which yields either $0 or $1,000,000 with probabilities 0.01 

and 0.99 respectively, and ỹ which is $1 with certainty.  Leshno and Levy point out that although 

neither x̃ nor ỹ dominates the other in the first degree,5 except for very extreme preferences, x̃ 

would be chosen over ỹ by those who prefer more to less.  They provide an example of such 

extreme risk preferences represented by the utility function u(x) = x for x  1 and u(x) = 1 for x > 

1.  Leshno and Levy argue that to ensure that x̃ is preferred to ỹ by all decision makers, utility 

functions as extreme as this u(x) must be excluded.  The almost stochastic dominance 

modification procedure excludes these utility functions and thereby ensures that all decision 

makers unanimously prefer x̃ to ỹ.  

To see how stochastic superiority deals with this same example, notice that random 

variable x̃ can be interpreted as asset whose value is $1,000,000 but subject to total loss with 

probability 0.01.  Expected loss is then $10,000.  Suppose coinsurance is available at a very high 

price of $100,000, which equals a loading factor of 9.  When the chosen share of loss that is 

                                                
5 Since x̃ has a positive probability mass to the left of the entire distribution of ỹ , x̃ does not stochastically dominate 

ỹ in any degree.  Of course, since E(x̃) > E( ỹ), ỹ  does not stochastically dominate x̃ in any degree either. 
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reimbursed is  in [0, 1], the required insurance premium would be $100,000 (), and random 

wealth x̃ becomes  

 $1,000,000 () – $100,000 (),  with probability 0.01 

 $1,000,000 – $100,000 (),   with probability 0.99 

This transformed x̃ stochastically dominates $1 in the first degree whenever 

($1,000,000 – $100,000) ()  $1 or   1/900,000. 

This example shows that every individual who prefers more to less, including the one 

whose utility function is u(x) given above, would prefer x̃ to ỹ when a coinsurance arrangement 

with a loading factor even as high as 9 is available.  After x̃ has been chosen, individual decision 

makers will choose a coinsurance rate  in [0, 1] to maximize their own expected utility.  Many 

would choose not to insure at all, but those with extreme preferences including the example u(x), 

would choose to coinsure at a rate greater than 1/900,000.  

The paper is organized as follows.  In the next section, the question of how to compare 

one set of random variables with another set for groups of decision makers, the set dominance 

issue, is discussed, and the notion of stochastic superiority is formally defined.  Set dominance is 

relevant for the definition of stochastic superiority because allowing a risk reducing secondary 

decision associates a set of random variables with each original one, and as a result ranking a 

pair of random variables is transformed into ranking two sets of random variables.  In Section 3, 

a simple and seemingly overly strong sufficient condition for stochastic superiority is presented.  

One important implication of this sufficient condition is that stochastic dominance implies 

stochastic superiority.  In the same section, this same sufficient condition is demonstrated to be 

necessary for convex sets of concave utility functions.  Corollaries are provided that state these 
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general results for the specific cases of first, second and nth-degree stochastic superiority.  The 

set of utility functions corresponding to each of these is a convex set of utility functions, and 

concavity of utility is assumed for all but first degree stochastic superiority.  An important 

extension to situations where the cost of risk reduction differs for different random variables is 

discussed in Section 4.  This material is particularly relevant when insurance is used to reduce 

risk since the cost of insurance is typically dependent on the expected loss associated with the 

indemnification contract.  Section 5 is the application section with three example applications.  

The first two show precisely how stochastic superiority can be used to obtain a ranking of x̃ over 

ỹ without removing extreme preferences from the set of utility functions under consideration.  

The final application is an extensive analysis of the decision to self-protect using stochastic 

superiority as an analysis tool.  A result is presented indicating when all risk averse decision 

makers choose a higher level of self-protection over a lower level.  As those who have examined 

the self-protection literature know, such a result is impossible to obtain in the standard model 

without a secondary risk reduction decision.  This last example adds significantly to the self-

protection literature.  Finally, the paper concludes and discusses extensions of this work in 

Section 6. 

 

2. Set Dominance and Stochastic Superiority  

How decision makers might rank sets of objects has been extensively studied.6  The 

discussion of set dominance presented here differs from this general literature in two important 

ways.  First, the objects in the sets to be ranked are random variables that are ranked using 

expected utility.  Second, in the tradition of stochastic dominance, the relative desirability of one 

                                                
6 For a survey of this literature, see Barbera et al. (2004).  
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set of random variables over another is based on the unanimous preference for the former over 

the latter by groups rather than individual decision makers. 

Let {x̃i} and {ỹj} denote two sets of random variables.  The supports of these random 

variables are assumed to lie in an interval [a, b].  The question under consideration is: when 

would all decision makers with utility functions u(x) in a set U rather be faced with the set {x̃i} 

than the set {ỹj}?  Throughout the paper, the utility functions in U are assumed to be 

continuously differentiable as many times as necessary.  Most often the set U will be one of the 

many sets of utility functions associated with the various degrees and forms of stochastic 

dominance, but sets containing only a small finite number of elements are also possible.  A 

general specification of U is used in the majority of the analysis.  The set dominance definition 

used in this analysis is given below. 

 

Definition 1:  The set {x̃i} is said to dominate or be preferred or indifferent to the set {ỹj} on U if 

for every u(x) in U the best element from {x̃i} is preferred or indifferent to the best element from 

{ỹj}. 

 

In Definition 1, both the best element from a set and the relative desirability of the 

respective best elements are determined using expected utility.  There is no requirement in this 

definition that the decision makers agree as to which element of either set is best.  Using this 

definition to rank sets of random variables is consistent with assuming that after a set is selected, 

the decision maker then chooses and obtains the most preferred element from that set.  There is 

no requirement on U imposed by this definition.  U can contain a single element, a small finite 
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number of elements, or U can be any one of the various sets of utility functions employed in 

stochastic dominance analysis. 

Definition 1 is not the only set dominance definition that is possible or reasonable.  For 

game models it may be more accurate to assume that after a set is selected, someone else chooses 

the particular element from either {x̃i} or {ỹj}, possibly in a malevolent way, or more neutrally, 

to assume that nature chooses from these sets in a random way.  For our purpose of including a 

simultaneous risk reduction decision with a primary ranking decision, Definition 1 provides the 

desired concept of set dominance. 

Since the work here is similar in other ways to that presented by Levy and Kroll (1976 

and 1978) and Levy (2006, Chapter 4), it is important to point out that they do not use Definition 

1 as their definition of set dominance.7  Levy and Kroll indicate that the set {x̃i} LK-dominates 

the set {ỹj} on U if for every element of {ỹj} there exists an element of {x̃i} such that the latter 

element is preferred or indifferent to the former by all u(x) in U.  When set {x̃i} dominates set 

{ỹj} by the LK definition it also does so by Definition 1, but the reverse is not true.  LK-

dominance is more difficult to satisfy than is Definition 1.   

A restaurant analogy can be used to illustrate the differences between these two concepts 

of set dominance.  Consider two restaurants, each offering a menu of food items. The definition 

of set dominance used here indicates that one restaurant is preferred or indifferent to the other by 

a group of diners if every diner in the group (weakly) prefers her or his favorite item on the one 

restaurant’s menu to her or his favorite item at the other restaurant.  This definition of set 

                                                
7 In Levy and Kroll’s analysis, the sets {x̃i} and {ỹj} are the returns from portfolios that are composed of a risky 

asset x̃ or ỹ, and a riskless asset.  In this regard, their decision model is very similar to that presented here.   
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dominance is consistent with assuming that after choosing which restaurant to visit, each person 

in the group can order their own most preferred item on that restaurant’s menu.  In contrast, one 

restaurant LK-dominates the other if for every item on the latter restaurant’s menu, there exists 

an item on the former restaurant’s menu that is (weakly) preferred by all diners in the group.  For 

situations where all diners are required to order the same menu item, the LK definition can be 

useful.  For the purposes here, the LK-dominance relation is stronger than needed or desired.  It 

is because of this different set dominance definition that the work presented here differs from 

that of Levy and Kroll. 

As indicated in the introduction, the fundamental stochastic dominance question was 

answered by Hadar and Russell (1969) and Hanoch and Levy (1969) when the set U consists of 

all nondecreasing utility functions, denoted U1, or when the set U consists of all nondecreasing 

and weakly concave utility functions, denoted U2.  These are, of course, the well-known first-

degree stochastic dominance (FSD) and second-degree stochastic dominance (SSD) definitions, 

respectively.  In most of the literature since 1969, extending FSD and SSD involves specifying a 

different set of utility functions U which is a subset of U2.  For example, general nth-degree 

stochastic dominance considers sets of utility functions Un whose kth derivatives (k = 1, 2, …, n) 

alternate in sign, the first derivative being nonnegative.  The almost stochastic dominance (ASD) 

literature also follows this pattern of altering the set of utility functions and does so by excluding 

from U1, U2 or Un, decision makers whose preferences are considered to be extreme. 

 The stochastic superiority definition presented below extends the FSD and SSD findings 

but does so in a different manner.  Rather than considering subsets of U2, instead assumptions are 

made that allow each decision maker to choose to transform the pair of alternatives, x̃ and ỹ, that 
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are being compared.  The possible transformations lead to a pair of sets {x̃i} and {ỹj}, that are 

derived from x̃ and ỹ, respectively, which the decision makers must then rank or choose between.  

The ranking of x̃ and ỹ is determined by the ranking of sets {x̃i} and {ỹj}, and Definition 1 is 

used when determining this ranking.  This way of extending stochastic dominance is not the 

usual one and requires a new term.  The term used is stochastic superiority, and a general 

definition of stochastic superiority is provided next. 

 

Definition 2:  Random variable x̃ is stochastically superior to random variable ỹ on U if for every 

u(x) in U the most preferred element in set {x̃i} is preferred or indifferent to the most preferred 

element in set {ỹj}, where {x̃i} and {ỹj} are derived from x̃ and ỹ, respectively, by transforming x̃ 

and ỹ in a simultaneous secondary decision.   

 

Whether x̃ is stochastically superior to ỹ or not depends critically on two things, the set of 

utility functions under consideration, and the nature of the simultaneous secondary decision that 

gives rise to the sets {x̃i} and {ỹj}.  The sets of utility functions U considered in this analysis all 

are well known and have been extensively discussed in the literature.  Included in the analysis 

are U1, U2 and Un, the sets of utility functions that are associated with FSD, SSD and nth-degree 

stochastic dominance, respectively.  The focus here is not on new sets of utility functions.  

In contrast, the sets {x̃i} and {ỹj}, and the simultaneous secondary decision that generates 

these sets, are less well known in the stochastic dominance literature. While many simultaneous 

secondary decisions can be considered, the focus here is on a particularly simple one which is 

often available to the decision maker.  The secondary decision is that of choosing an overall risk 

level.  That is, in addition to choosing between x̃ and ỹ, the decision maker also decides how 
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much of the risk that results from choosing x̃ or ỹ to assume and how much of that risk to avoid 

or transfer to others.  In this analysis, when choosing between risky alternatives, decision makers 

are simultaneously deciding how much to reduce the risk they have selected using a risk 

reduction tool such as holding a riskless asset or purchasing insurance.  These risk reducing 

secondary decisions are represented by the set of linear transformations which are described 

next. 

When x̃ is transformed linearly, and the  in the linear transformation ·x̃ + (1 - ) is 

restricted to be in [0, 1], the new random variable has smaller variance and less risk using a 

variety of measures of riskiness.8  The transformed x̃ is also in the same location-scale family as 

x̃, and thus maintains many of its other general shape properties such as skewness or kurtosis.9  

Assuming changes to x̃ and ỹ are accomplished using such linear transformations is a simple 

assumption and one that maintains a focus on ranking x̃ relative to ỹ.  The assumption does not 

intentionally bias the choice between x̃ and ỹ in one direction or the other since each of these 

random variables can be transformed in the same way.  

When  in the linear transformation is chosen to be equal to the mean value of x̃, the 

transformation is a Rothschild and Stiglitz (1970) mean preserving reduction in risk.  While the 

analysis considers a range of values for , the focus is not on mean preserving risk reductions.  

Instead,  is always assumed to be less than the mean of x̃.  This is done to incorporate costly 

risk reduction into the simultaneous secondary risk reduction decision.  The decision maker has 

                                                
8 Sandmo (1971) uses these linear transformations in his analysis of the firm under price uncertainty. If  > 1, the 

transformation would not be risk reducing; if  < 0, the risk-reducing transformation would go too far to preserve 
any risk structure of the original random prospect.  

 
9 For discussion of decision making over location-scale families of random alternatives, see, for example, Meyer 

(1987) and Wong and Ma (2008). 
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the opportunity to transform x̃ in a risk reducing manner but must give up a higher expected 

return in order to obtain this risk reduction.  When diversifying using a riskless asset, this means 

the riskless return is assumed to be smaller than the expected returns to risky assets.  When 

insuring, this implies that the price of insurance is assumed to be actuarially unfair; that is, the 

loading factor is positive.  It is important to point out that the smaller the value for , the more 

costly is risk reduction.   

In summary, the sets {x̃i} and {ỹj} are formed from x̃ and ỹ by selecting a value for i or 

j in [0, 1] so that x̃i = i·x̃ + (1 - i)· and ỹj = j·ỹ + (1 - j)·, respectively.  These chosen 

values for  and  represent how much of the risk of x̃ and ỹ is retained, and can range from no 

risk at all,  = 0 or  = 0, to accepting all of the risk associated with x̃ and ỹ,  = 1 or  = 1.  The 

general stochastic superiority definition can now be restated in a more specific way using these 

linear risk reducing transformations to generate the sets {x̃i} and {ỹj}.   

 

Definition 3:  Random variable x̃ is stochastically superior to random variable ỹ on U for a given 

 if for every u(x) in U, the most preferred element in set {·x̃ + (1 - )} ϵ [0, 1]  is preferred or 

indifferent to the most preferred element in set {·ỹ + (1 - )} ϵ [0, 1]. 

 

To avoid trivial comparisons and repeated qualifications, the value of  is assumed to be 

such that at least one of x̃ and ỹ does not stochastically dominate  on U and  < max {E(x̃), 

E(ỹ)}.  This is because when both x̃ and ỹ dominate , risk reduction in either x̃ or ỹ is never 

expected utility increasing, and if  is greater than or equal to the mean of both x̃ and ỹ, risk 

reduction is free and maximum risk reduction is chosen by all risk averse decision makers. 
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3. A Sufficient and A Necessary Condition for Stochastic Superiority 

At first glance, finding a necessary and sufficient condition for stochastic superiority 

appears to be a difficult task.  The most preferred element in {x̃i} must be compared with the 

most preferred element in {ỹj} for each utility function in set U.  A sufficient and a necessary 

condition for stochastic superiority are provided in this section.  An important first step in 

proving sufficiency is the following lemma.  The lemma holds for an arbitrary set of utility 

functions U, and for more general linear transformations than the risk reducing ones employed in 

Definition 3. 

 

Lemma 1:   x̃ stochastically dominates ỹ for all u(x) in U implies ·x̃ +  stochastically 

dominates ·ỹ +  for all u(x) in U, where  and  are any constants with    0.  

 

Lemma 1 is quite obvious, easy to demonstrate, and is stated here because it is used when 

proving Theorem 1.10  The set U in Lemma 1 can contain a single element, a small finite number 

of elements, or any one of the various sets of utility functions employed in standard stochastic 

dominance analysis. 

 

Theorem 1:   If for some  in [0, 1] and a fixed , ·x̃ + (1 - )·  stochastically dominates ỹ for 

all u(x) in U, then x̃ is stochastically superior to ỹ for all u(x) in U for the given . 

Proof: See the appendix. 

 

Theorem 1 provides a sufficient test condition for stochastic superiority.  One only need 

find any element of the set {·x̃ + (1 - )·} that stochastically dominates the untransformed ỹ 

                                                
10 For a comprehensive collection of the results on stochastic dominance including Lemma 1, see Denuit et al. 

(2005) and Shaked and Shanthikumar (2007).  



15 

 

and stochastic superiority of x̃ over ỹ holds.  It is not necessary to find the most preferred 

element in {·x̃ + (1 - )·} nor to compare elements from this set with any element other than 

the untransformed element in the set {·ỹ +(1 - )·}.   

To relate stochastic superiority to stochastic dominance, observe that the special case 

where  = 1 indicates that stochastic dominance of x̃ over ỹ implies stochastic superiority of x̃ 

over ỹ.  This is formally stated as the following corollary. 

 

Corollary 1: Stochastic dominance of x̃ over ỹ on U implies stochastic superiority of x̃ over ỹ on 

U for all .   

 

The sufficient condition in Theorem 1 appears to be overly strong.  As with Lemma 1, 

Theorem 1 holds for an arbitrary set U which can contain only one or a small number of 

elements as well as any one of the sets of utility functions that are associated with the various 

conventional forms of stochastic dominance.  In the search for weaker sufficient conditions, to 

our surprise, it was determined that the condition in Theorem 1 is not only sufficient, but also 

necessary for virtually all forms of stochastic dominance.  The necessity result, Theorem 2, 

requires more of the set U and as a result it is stated and demonstrated as a separate theorem.  

 

Theorem 2:  Suppose x̃ is stochastically superior to ỹ for a given  on some convex set of 

concave utility functions U.  Then there exists an 0 in [0, 1] such that 0·x̃ + (1 - 0)· 

stochastically dominates ỹ on U.   

Proof: See the appendix.   
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For the sets of {x̃i} and {ỹj} generated using linear transformations, it is straightforward 

to see that the condition in Theorem 1 is both sufficient and necessary for set {x̃i} to LK-

dominate set {ỹj}.  So it is quite natural that this condition is also sufficient for stochastic 

superiority which is based on the weaker notion of set dominance given in Definition 1.  It is 

important to mention again that Theorem 1 holds for arbitrary sets of utility functions.   

The sufficient condition in Theorem 1 is demonstrated to be necessary in Theorem 2 

when the set of utility functions is a convex set of concave utility functions.  Recall that the sets 

of utility functions for all conventional forms of stochastic dominance other than first degree 

satisfy this requirement.  The proof of Theorem 2 relies on the convexity of the set U and also on 

the concavity of the individual u(x).  It is these restrictions on U that imply that the weak set 

dominance condition provided in Definition 1 is equivalent to the seemingly much stronger set 

dominance notion provided by Levy and Kroll (1976, 1978).11  In summary, from the very 

beginning stochastic dominance has most often required unanimous preference by utility 

functions that come from a convex set of concave utility functions.  Theorem 2 demonstrates the 

powerful nature of this assumption and uses it to provide a relatively simple and useful test 

condition for stochastic superiority.   

To relate these sufficient and necessary conditions, which are stated quite generally, to 

more familiar sets of utility functions Un, where n  1, the following two corollaries are 

provided.  Note that Un is a convex set of concave utility functions for all n  2. 

 

                                                
11 Fishburn (1974) exploits this same thing when demonstrating convex stochastic dominance theorems. 
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Corollary 2:  If for some  in [0, 1] and a fixed , ·x̃ + (1 - )·  stochastically dominates ỹ on 

Un (or in the nth degree), where n  1, then x̃ is stochastically superior to ỹ on Un (or in the nth 

degree) for the given . 

 

Corollary 3:  Suppose that n  2.  If x̃ is stochastically superior to ỹ in the nth degree for a given 

, then there exists an 0 in [0, 1] such that 0·x̃ +(1 - 0)· stochastically dominates ỹ in the nth 

degree.  

Two additional properties of stochastic superiority on Un are worth mentioning and 

follow directly from Definition 3.  First, if x̃ is nth-degree stochastically superior to ỹ for a given 

, then for any n' > n, x̃ is also n'th-degree stochastically superior to ỹ for that .  Second, if x̃ is 

nth-degree stochastically superior to ỹ for a given , then E(x̃)  E(ỹ).  This is because that the 

risk neutral linear utility function is in Un for all n  1.  

   The parameter  in the linear risk reducing transformation is inversely related to the 

cost of risk reduction to the decision maker.  Lower values for  imply a higher cost of reducing 

risk.  While it is not obvious from Definition 3 whether a larger  would make stochastic 

superiority more likely, the following theorem gives an affirmative answer.  

 

Theorem 3:   If x̃ is stochastically superior to ỹ on some convex set of concave utility functions 

U for a given , then x̃ is stochastically superior to ỹ on U for all ' such that '  .  

Proof: See the appendix.   

 

 

Theorem 3 indicates that when stochastic superiority of x̃ over ỹ holds for a given cost of 

risk reduction, then it also holds for all lower costs of risk reduction.  
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4. An Extension: Stochastic Superiority of (x̃, x) over (ỹ, y) 

All analysis to this point assumes that the same value for  is used when transforming 

both x̃ and ỹ.  Recall that  indicates the cost of risk reduction, and that smaller values for  

indicate a larger cost of risk reduction. This section generalizes the definition of stochastic 

superiority to the situation where the cost of risk reduction is different for x̃ than for ỹ.  First, 

Definition 3 is simply restated for different costs of risk reduction for x̃ and ỹ.  

 

Definition 4:  (x̃, x) is stochastically superior to (ỹ, y) on U if for every u(x) in U, the most 

preferred element in set {·x̃ + (1 - )x} ϵ [0, 1]   is preferred or indifferent to the most preferred 

element in set {·ỹ + (1 - )y} ϵ [0, 1]. 

 

By definition, if (x̃, x) is stochastically superior to (ỹ, y) on U, then for all x'  x and  

y'  y, (x̃, x') is stochastically superior to (ỹ, y') on U.  The following property is less obvious 

and is derived from the sufficient and necessary conditions established in Theorems 1 and 2.   

 

Theorem 4.  Suppose that U is a convex set of concave utility functions.  (x̃, x) is stochastically 

superior to (ỹ, y) on U for any y such that x  y if and only if (x̃, x) is stochastically superior 

to (ỹ, x) on U.   

 

Proof: See the appendix.   

 

 

To illustrate situations where the cost of risk reduction is likely to differ across risky 

alternatives and at the same time to demonstrate that insurance is a method of risk reduction that 

is included in this analysis, consider the following general example.  Suppose there are two 
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different risky assets:  x̃ = w1 - L̃1 and ỹ = w2 - L̃2, where wi, i = 1 or 2, is the nonrandom initial 

wealth and L̃1  0 and L̃2  0 are two different random losses.12  x̃ and ỹ could represent the 

uninsured value of two houses.  In this example, each house has a different value, and each house 

is subject to a different random loss. These differences can occur because of different locations 

and the likelihood of earthquakes or hurricanes at each, or various other house characteristics.  

Traditional stochastic dominance analysis compares the two random variables representing the 

uninsured houses.  Stochastic superiority adds to this comparison the assumption that when 

choosing between the two houses, the decision maker knows that he or she will purchase 

insurance to partially indemnify losses and may choose to insure each house differently.     

With co-insurance, x̃ can be transformed into any random final wealth in the set  

{w1 - L̃1 +  (L̃1 - m1)} ϵ [0, 1]  = {(1 - )·x̃ + (w1 - m1)} ϵ [0, 1] , where  in [0, 1] is the share of 

loss that is reimbursed, and m1 = (1 + )E(L̃1) is the insurance premium for full coverage when 

the loading factor is  > 0.  Similarly, ỹ can be transformed into any random final wealth in the 

set {w2 - L̃2 +  (L̃2 - m2)} ϵ [0, 1]  = {(1 - )·ỹ + (w2 - m2)} ϵ [0, 1] , where m2 = (1 + )E(L̃2).  

Each of these sets are exactly in the form of the general linear transformation used when 

stochastic superiority is defined (Definitions 3 or 4).  

It is important to recognize, however, that the price of risk reduction is likely to differ 

across these two assets due to differences in the loss variables.  For these x̃ and ỹ, the cost of risk 

reduction for x̃ is x = w1 – m1 and for ỹ is y = w2 – m2 and these values may be different.  In 

the specific situation of coinsurance, the cost of risk reduction is partially determined by the 

                                                
12 Note that with the additional requirement that the minimum value of L̃i (i = 1 or 2) with a positive probability 

(density) be zero, the decomposition of  x̃ = w1 - L̃1 and ỹ = w2 - L̃2 must each be unique. 
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loading factor.   Theorems 3 and 4 can be used together to establish the following theorem 

indicating how the likelihood of stochastic superiority changes with changes in the loading 

factor.  

 

Corollary 4: Suppose that U is a convex set of concave utility functions. If x̃ is stochastically 

superior to ỹ on U under a common loading factor 1 > 0, then x̃ is stochastically superior to ỹ on 

U under any common loading factor 2 such that 1 > 2  0. 

 

5. Applications 

Three examples are used to illustrate how stochastic superiority provides additional 

rankings of random variables.  All three examples involve the so-called “left tail problem” where 

x̃ is better than ỹ for many or most decision makers, but stochastic dominance (of any degree) of 

x̃ over ỹ does not hold because x̃ has more probability mass than ỹ in the extreme left tail.  

The first example is provided in Levy (2006).13  Two alternatives are available, x̃ which 

yields either $1 or $1,000,000 with probabilities 0.1 and 0.9 respectively, and ỹ which is either 

$2 or $3 with those same probabilities.  As Levy points out, neither x̃ nor ỹ dominates the other 

in the first degree, yet x̃ appears to be clearly better than ỹ.  Almost stochastic dominance 

remedies this and allows x̃ to be unanimously ranked higher than ỹ by eliminating those decision 

makers exhibiting extreme risk aversion from consideration.  Stochastic superiority, on the other 

hand, indicates that x̃ is unanimously chosen over ỹ by all decision makers, including those with 

extreme risk aversion, when all decision makers are permitted to transfer some of the risk in x̃ 

and ỹ to others.   

                                                
13 Chapter 13, pages 331-332. 
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Specifically, suppose  = 2.5, a value such that it is larger than the smallest values of both 

x̃ and ỹ (so neither x̃ nor ỹ stochastically dominates ), and is also smaller than the means of both 

x̃ and ỹ (implying that risk reduction is costly for both x̃ and ỹ).  It can be readily seen that the 

transformation (0.1)·x̃ + (0.9)(2.5) yields a random variable which stochastically dominates ỹ in 

the first degree.  Thus, by Theorem 1, x̃ is stochastically superior to ỹ in the first degree for  = 

2.5.  This risk reducing transformation of x̃ eliminates the left tail issue that would lead some 

with extreme preferences to choose ỹ over x̃.  This is an extreme transformation since it gives up 

90% of the gain associated with the outcome $1,000,000, but those with extreme enough 

preferences would choose to do this. Those with extreme preferences are willing to transfers risk 

to others even when the cost of such a transfer is very high.  Of course, many decision makers 

would forego this risk reducing action because their preferences are less extreme.  When this risk 

transfer is available, the ranking of x̃ and ỹ by those with extreme preferences are aligned with 

the majority.   

The next example does not come from the almost stochastic dominance literature.  In 

fact, the almost stochastic dominance modification procedure is unlikely to lead to a ranking of 

the two alternatives.  Suppose one must choose between two goods that can either fail 

immediately or not fail at all.  The first good fails with probability 0.3, and the second good fails 

with a higher probability 0.5.   Assume that the value provided by each good is $1000 in the case 

on no failure and $0 in the case of failure.  For risk averse buyers, these goods must sell for less 

than expected value.  Assume the selling price of the first good is $500, and that of the second is 

$400.  Which good does a risk averse decision maker choose?   
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When there is no refund and no warranty against failure, the first good generates a 

random outcome, denoted x̃, that yields a net loss of $500 with probability 0.3 and a net gain of 

$500 with probability 0.7.  Similarly, the second good generates a random outcome, denoted ỹ, 

that yields a net loss of $400 or a net gain of $600 but with equal probability.  Many risk averse 

decision makers would choose the first good over the second both because of the smaller 

probability of failure and the larger expected value, but many others would choose the second 

over the first because of the smaller net loss when failure occurs.  It does not require extreme risk 

preferences to choose the second good over the first, making it difficult to know which 

preferences to eliminate in the almost stochastic dominance procedure.   

It can be demonstrated that the first good is stochastically superior to the second in the 

second degree even though it does not stochastically dominate in the second degree.  

Specifically, suppose that the cost of risk transfer is high,  = 0.  Even with this high cost of 

transferring risk to others, it can be readily seen that for  = 0 and  = 0.8, the transformed x̃ 

(i.e., 0.8x̃) stochastically dominates ỹ in the second degree and therefore by Theorem 1, x̃ is 

stochastically superior to ỹ in the second degree for  = 0.  This risk reducing transfer occurs by 

finding someone to take a 20% share in both outcomes associated with the purchase of the good.  

Many risk averse decision makers prefer the original x̃ to this transformed one, but this particular 

transformation of x̃ would be preferred to both the original x̃ and to ỹ by those with preferences 

putting significant weight on outcomes in the left tail.  Even though x̃ does not stochastically 

dominant ỹ in the second degree, x̃ is preferred or indifferent to ỹ by all risk averse decision 

makers when the decision makers are allowed to transform x̃ (and ỹ) in this risk reducing way.    
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These two examples illustrate the way in which stochastic superiority can help remedy 

the left tail problem and allow the ranking of more pairs of random variables.  In general, when 

random variable x̃ has a lowest outcome that is smaller than the lowest outcome for ỹ, denoted  

ax < ay, one can choose an  in [0, 1] so that ·ax + (1 - )·  ay as long as  > ay.  This latter 

condition is one often met since the riskless return is above the lowest outcome for all risky 

choices.   

The above two examples have been constructed to illustrate a particular weakness in 

traditional stochastic dominance analysis referred to as the left tail problem.  The final 

application is not a constructed example but instead an application to a model that is prominently 

discussed in the literature.  In this application, stochastic superiority is shown to add a significant 

finding to the very large literature on self-protection.   

The left tail problem arises in the model of self-protection introduced by Ehrlich and 

Becker (1972) and is the most prominent characteristic of that decision model.  As Ehrlich and 

Becker point out, it is the case that choosing more self-protection always leads to a smaller 

lowest outcome than when less self-protection is selected.  This fact implies that those decision 

makers who are extremely risk averse would always prefer lower levels of self-protection to 

higher levels no matter how effective self-protection is in reducing the probability of loss and 

increasing the expected value of the random outcome.  As a result, without modifying the basic 

model of Ehrlich and Becker, it is impossible to establish any theorems which indicate that 

increased self-protection would make all risk averse decision makers better off.   

This seemingly perverse feature of the self-protection model can be eliminated if the 

decision maker can both self-protect and also transfer some of the risk that is assumed to others.  
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Including such a risk transfer possibility is enough to present a positive result in which 

conditions are provided indicating when all risk averse decision makers would choose a higher 

level of self-protection over a lower level.  These conditions depend on the parameter values in 

the self-protection model but are reasonable and are satisfied in many instances.  The model of 

the decision to self-protect used here is that presented by Ehrlich and Becker (1972) and the 

notation used is that found in Eeckhoudt and Gollier (2005).   

Eeckhoudt and Gollier assume that a decision maker begins with certain wealth w and 

that this wealth is subject to loss L > 0.  This loss occurs with probability p(e), where e 

represents the level of self-protection investment/cost chosen by the decision maker and p(e) is 

decreasing in e.  Let W denote final wealth, which can take on one of two values, either  

(w - L - e) or (w - e), with probabilities p(e) and 1 - p(e), respectively.   

Assume that there are two different levels of self-protection e1  0 and e2 > e1.  Also, to 

simplify notation, let p(e1) = p1 and p(e2) = p2 < p1.  Let x̃ denote the random wealth with the 

larger amount of self-protection, and ỹ the random wealth with the smaller amount of self-

protection. Therefore, x̃ yields either (w - L - e2) or (w - e2), with probabilities p2 and (1 - p2) 

respectively, and ỹ yields either (w - L – e1) or (w – e1), with probabilities p1 and (1 - p1) 

respectively.  The mean of x̃ is larger than the mean of ỹ if and only if  

  (p1 – p2)L  > e2 – e1.       (1) 

The term “effective” is used to describe the added level of self-protection when (1) holds.  Later 

on a cost-benefit ratio proves useful, so the following definition is suggested.   
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Definition 5:  Self-protection level e2 is said to be an effective increase over e1 whenever (1) 

holds.  In addition, 
(e2 - e1)

L(p1 - p2)
 is said to be the cost-benefit ratio for the added level of self-

protection.  

 

The cost-benefit ratio indicates how much additional effort must be expended per unit 

reduction in the mean loss.  Obviously, an increase in self-protection effort from e1 to e2 is 

effective if and only if the associated cost-benefit ratio is less than one.  When this ratio is less 

than one, neither x̃ nor ỹ stochastically dominates the other in the second (or any) degree.14  

           Suppose that coinsurance is available to insure the self-protected asset at a loading factor 

   0, and the individual can decide on a share of loss, denoted (1 - ), that is reimbursed.15 

Then x̃ = w - e2 - L̃x, where L̃x yields either L or 0 with probabilities p2 and (1- p2) respectively.  

With coinsurance, x̃ can be transformed into any element of the form:  

{x̃ + (1 - )x} ϵ [0, 1]   

where x = w – e2 – (1 + )E(L̃x) = w – e2 – (1 + ) p2L .   

Similarly, ỹ = w – e1 - L̃y, where L̃y yields either L or 0 with probabilities p1 and (1 - p1) 

respectively, can be transformed into any element of the form:  

{ỹ + (1 - )y} ϵ [0, 1]   

where y = w – e1 – (1+ )E(L̃y) = w – e1 – (1+ ) p1L .   

                                                
14 x̃ does not stochastically dominate ỹ in any degree because x̃ has a positive probability mass to the left of the 

entire distribution of ỹ.  ỹ does not stochastically dominate x̃ in any degree because  E(x̃) > E( ỹ). 

 
15 This means that an -portion of the loss is retained by the individual and the remaining (1 - )-portion of the loss 
is transferred to the insurer.  
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The following theorem states that an effective increase in self-protection is stochastically 

superior to the status quo in the second degree, as long as the loading factor is below a certain 

critical level that is determined by the parameters of the self-protection model.    

 

Theorem 5:  Suppose that an increase in the level of self-protection from e1 to e2 is effective, and 

that coinsurance is available to insure the self-protected asset at a loading factor    0.  Then all 

risk averse decision makers choose the larger level of self-protection over the smaller level if and 

only if the loading factor  satisfies 

  
(1 - p2)

p2

[1 - 
(e2 - e1)

L(p1 - p2)
].        (2)  

Proof: See the appendix.   

 

Note that the ratio in the brackets is the cost-benefit ratio for the increase in self-

protection.  It can be readily seen that (2) can be satisfied with  > 0 whenever the additional 

self-protection is effective (i.e., the cost-benefit ratio is less than one).  

Theorem 5 indicates that when self-protection is effective, and the loading factor is small 

enough, all risk averse persons choose more self-protection.  To see how this condition can be 

used, consider the following simple but reasonable parameter values.  Let p1 = 0.2, p2 = 0.1,  

L = 100, e1 = 5 and e2 = M.  If M < 15, self-protection is effective since the probability change 

decreases mean loss by 10.  When M = 10, the cost-benefit ratio is 0.5, and loading factors   

4.5 are small enough that all risk averse decision makers choose the larger level of self-

protection.  When the added self-protection costs more, say e2 = 14, the cost-benefit ratio 

increases to 9/10 and the right hand side of (2) becomes 0.9.  Even so, loading factors less than 
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0.9 satisfy Theorem 5.  Finally, as the cost of the added self-protection further increases so that 

e2 = 15, the cost-benefit ratio increases to 1, and no positive loading factor would make every 

risk averse individual better off at the higher level of self-protection.   

 

6.  Conclusion 

Including the opportunity to simultaneously reduce risk when making the primary 

decision of choosing between a pair of random alternatives can have an impact on that primary 

decision.  This paper extends the notion of stochastic dominance to the notion of stochastic 

superiority by introducing such a risk reducing secondary decision.  Stochastic superiority allows 

more pairs of random alternatives to be ranked than stochastic dominance.  Both a sufficient and 

a necessary condition for stochastic superiority are established.  These two conditions are 

identical when the relevant set of utility functions is a convex set of concave utility functions.  

One very important application of stochastic superiority is to provide an alternative to almost 

stochastic dominance when seeking to resolve the “left tail problem”. 

The analysis, theorems and proofs in this paper all assume decisions are made on the 

basis of expected utility (EU).  Examples where violations of the EU axioms occur abound, 

including the well-known Allais paradox.  As a result, many non-EU models of decision making 

under risk have been suggested.16  This fact raises the question of the usefulness of stochastic 

superiority when the axioms of EU do not hold.  Much like first or second degree stochastic 

dominance, first or second degree stochastic superiority can play a role in non-EU decision 

models.  For instance, it is now common to define first degree stochastic dominance of F(x) over 

                                                
16 A prominent example is the prospect theory (e.g., Tversky and Kahneman 1992, Viscusi 1989, Neilson and Stowe 

2002).  See Quiggin (2014) for a survey of the non-EU models, and Bayrak and Hey (2020) for a comparison of 

alternative models. 
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G(x) using the necessary and sufficient condition derived in an EU decision model; that is, when 

F(x)  G(x) for all x.  Even though this condition on random variables was interpreted within an 

EU decision model, it has since been extensively used as the definition of first degree stochastic 

dominance in non-EU decision models.  In fact, proposed non-EU decision models are often 

judged in part by how the decision model performs when such a first degree stochastic dominant 

change occurs.  

Similar uses for stochastic superiority in non-EU decision models are possible.  First 

degree stochastic superiority of x̃ over ỹ for fixed  can be defined as occurring when for some  

in [0, 1] and a fixed , ·x̃ + (1 - )·  stochastically dominates ỹ in the first degree.  Such a 

definition does not assume EU even though it was formulated and interpreted assuming EU.  

Non-EU decision models can then be judged by how the model performs when such a first 

degree stochastically superior change occurs.  Thus, even though all results in the paper are 

derived assuming an EU decision model, applications to non-EU decision models are possible.  

Exploring stochastic superiority in the various non-EU decision models would be too large an 

addition to this paper, but can be a valuable avenue for future research. 

There are also at least two other major directions in which this work can be extended or 

used.  First, the assumption of linear risk reducing transformations adopted in this paper could be 

changed.  A more lengthy title for this paper could involve the words “stochastic superiority with 

respect to linear transformations” to make this obvious.  Of course a random prospect’s risk can 

also be reduced through nonlinear transformations reflecting such things as deductible insurance 

or options rather than coinsurance or diversification using a riskless asset.  The framework here 
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allows such an extension, and using a concave or convex transformation would result in a 

different form of stochastic superiority.   

The second direction of extension involves an application to a different literature.  The 

work here is presented as part of decision making under risk.  If the distributions describing 

random variables are instead assumed to represent distributions of income or wealth, then the 

findings in this paper can be applied to the literature that ranks income or wealth distributions 

and specifically the inequality literature.  In that literature, the transformations of x̃ and ỹ have 

the very natural interpretation of using taxes, subsidies or other policies to redistribute income or 

wealth.  Since linear or non-linear transformation alter both tails of a distribution, the effect on 

both the right and left tail can be discussed.  For decision making under risk, the effect on left tail 

is the primary concern, but for income inequality the effect on each tail is important.  
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Appendix 

Proof of Theorem 1  

Assume ·x̃ + (1 - )·  stochastically dominates ỹ for all u(x) in U.  Then from Lemma 

1, for any  in [0, 1] and  = (1 - ),  [·x̃ + (1 - )·] + (1 - ) = ··x̃ + (1 - ·)· 

stochastically dominates ·ỹ + (1 - ) for all u(x) in U.  Put differently, for every element in the 

set {·ỹ + (1 - )·}, there is an element in the set {··x̃ +(1 - ·)·} that dominates the 

former for all u(x) in U.  This is of course sufficient for the optimal choice from the set  

{·x̃ +(1 - )·} to be preferred or indifferent to the optimal choice from the set {·ỹ +(1 - )·} 

for every utility function in the set U.  Therefore, x̃ is stochastically superior to ỹ for all u(x) in U 

for the given .                       Q.E.D.  

 

Proof of Theorem 2 

Let U() = Eu(·x̃ + (1 - )·) for  in [0, 1] and a given .  What must be shown is that 

if for any u(x) in U there exists an  such that U()  Eu(ỹ), then there exists an 0 in [0, 1] such 

that U(0)  Eu(ỹ) for all u(x) in U.  Define Au to be the set of all  in [0, 1] such that  

U()  Eu(ỹ).  For concave utility functions, Au is a closed line segment in [0, 1].  Let A* denote 

the intersection of these line segments.  If A* is not empty, then any 0 in A* is such that U(0)  

Eu(ỹ) for all u(x) in U and we are done.   

Assume instead that A* is empty.  We must show that this is not possible when x̃ is 

stochastically superior to ỹ.  Let u denote the maximum value for  such that U()  Eu(ỹ) for 

utility function u(x).  That is, u is the right end point of the line segment Au.  Denote this set of 

real numbers, one for each utility function, as {u}.  Let L denote the infimum or greatest lower 
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bound of this set {u}.  L exists because {u}is a bounded set of real numbers.  Similarly, let 

u
* denote the minimum value for  such that U()  Eu(ỹ).  u

* is the left end point of the line 

segment which is Au.  Denote this set of real numbers {u
*}.  Let R denote the supremum or 

least upper bound of this set {u
*}.  

If L > R, then for all  in [R, L], U()  Eu(ỹ) for all u(x) in U and hence A* is not 

empty.  When L = R, and L is in {u} and R is in {u
*}, the same thing is true; that is  

U(L)  Eu(ỹ) for all u(x) in U.  Thus, the hypothesis A* empty rules this out. 

If L < R, for any 0 in [L, R], there exists a utility function u1(x) such that U1(0) < 

Eu(ỹ) and the * which maximizes U1() occurs at a point * < 0 (because L < 0).  Similarly, 

there also exists a utility function u2(x) such that U2(0) < Eu(ỹ) and the * which maximizes 

U2() occurs at a point * > 0 (because 0 < R). This same thing is true when  

L = R, and L is not in {u} and R is not in {u
*}.  Either of these two cases allows 

construction of a utility function of the form u(x) = ·u1(x) + (1 - )·u2(x) which satisfies  

U(0) < Eu(ỹ) and the maximum * for this utility function occurs at 0.  Hence stochastic 

superiority is violated so this case is also not possible. 

The final two cases to discuss are when L = R, and L is in {u} and R is not in {u
*}, 

or vice versa.  The discussion is for the first of these cases and the second is resolved in a similar 

fashion.  When L = R, and L is in {u} and R is not in {u
*}, there exists a utility function 

u1(x) such that U1(L) = Eu(ỹ) and the * which maximizes U1() occurs at a point * < L.  

There also exists a utility function u2(x) such that U2(L) < Eu(ỹ) and the * which maximizes 

U2() occurs at a point * > L. This allows construction of a utility function of the form u(x) = 
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·u1(x) + (1 - )·u2(x) which satisfies U(L) < Eu(ỹ) and the maximum * for this utility 

function occurs at L.  Thus, this case is not possible either and it can be concluded that A* is not 

empty when stochastic superiority of x̃ over ỹ holds.      Q.E.D. 

 

Proof of Theorem 3 

Suppose that x̃ is stochastically superior to ỹ on some convex set of concave utility 

functions U for a given .  Then, from Theorem 2, there exists an 0 in [0, 1] such that  

0·x̃ + (1 - 0)· stochastically dominates ỹ on U.  Since for  '  , 0·x̃ + (1 - 0)·'  

stochastically dominates 0·x̃ + (1 - 0)· , by transitivity it also stochastically dominates ỹ on 

U.  Therefore, according to Theorem 1, x̃ is stochastically superior to ỹ on U for '. Q.E.D. 

 

Proof of Theorem 4 

Sufficiency is obvious.  To show necessity, suppose that (x̃, x) is stochastically superior 

to (ỹ, y) on U for some y such that x  y.  Then for every u(x) in U there exists an  ϵ [0, 1] 

such that ·x̃ + (1 - )·x is preferred or indifferent to ỹ.  According to Theorem 2, there exists 

an 0 ϵ [0, 1] such that 0·x̃ + (1 - 0)·x  stochastically dominates ỹ on U.  From Theorem 1, 

this implies that (x̃, x) is stochastically superior to (ỹ, x) on U.    Q.E.D. 

 

Proof of Theorem 5 

 (1) implies that x > y, and therefore according to Theorems 1, 2 and 4, (x̃, x) is 

stochastically superior to (ỹ, y) in the second degree if and only if there is an  in [0, 1] such 

that x̃ + (1-)x stochastically dominates ỹ in the second degree, where x = w – e2 – (1+ )p2L.   
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To establish the condition under which there exists an  in [0,1] such that x̃ + (1-)x 

stochastically dominates ỹ in the second degree, note that x̃ + (1-)x is a binary distribution 

yielding a low outcome  (w – e2 – L) + (1 - )(w – e2 – (1 + )p2L) and a high outcome (w – 

e2 ) + (1 - )(w – e2 – (1 + )p2L) with probabilities p2 and (1 - p2) respectively.  Similarly, ỹ is a 

binary distribution yielding a low outcome w – e1 – L and a high outcome w – e1 with 

probabilities p1 and (1 - p1) respectively.  Because p2 < p1, x̃ + (1 - )x stochastically 

dominates ỹ in the second degree if and only if the low outcome of the former is no less than the 

low outcome of the latter, and the mean of the former is no less than the mean of the latter.  

These conditions are expressed as (3) and (4) given below: 

 (w – e2 – L)+ (1 - )(w – e2 – (1 + )p2L)  w – e1 – L    (3)  

and                             

(w – e2 ) –  p2L + (1-)(w – e2 – (1 + )p2L)  w – e1 – p1L.   (4) 

  

Now (3) and (4) can be equivalently expressed as:  

 

    1 - 
e2 - e1

[1 - (1 + )p2]L
       (5) 

          

and     1 - 
(p1 - p2)L - (e2 - 𝑒1)

p2L
        (6) 

respectively. 

There exists such an  that satisfies both (5) and (6) if and only if  

 

  
(p1 - p2)L - (e2 - 𝑒1)

p2L
  

e2 - e1

[1 - (1 + )p2]L
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or equivalently 

    
(1 - p2)

p2

[1 - 
(e2 - e1)

L(p1 - p2)
].   

Q.E.D.      


