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ABSTRACT

Axions and axion-like pseudoscalar particles with dimension-5 couplings to photons ex-

hibit coherent Bragg-Primakoff scattering with ordered crystals at keV energy scales. This

provides for a natural detection technique in searches for axions produce in the Sun’s inte-

rior. I will motivate the utility of dark matter direct detection experiments in searching for

solar axions, emphasizing the role crystal-based detector technologies. I present an updated

theoretical treatment of the Bragg-Primakoff photoconversion process for keV pseudoscalars,

and address simultaneously the effects of absorption of final state photons in crystals on the

loss of coherence, which can lead to large suppressive corrections to the event rate sensitivity

for this detection technique. However, I also show that the Borrmann effect of anomalous

absorption significantly lifts the suppression. This phenomenon is studied in Ge, NaI, and

CsI crystal experiments and its impact on the the projected sensitivities of SuperCDMS,

LEGEND, and SABRE to the solar axion parameter space. Lastly, I investigate the future

reach of multi-ton scale crystal detectors and discuss strategies to maximize the discovery

potential of experimental efforts in this vein.
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1. INTRODUCTION

Axions and axion-like particles – potentially long-lived pseudoscalars with weak couplings

to the Standard Model (SM) that may have masses from the sub-eV to the GeV – are central

features in the landscape of solutions to the strong CP problem [7, 8], and to the dark matter

(DM) problem [9, 10], and otherwise appear ubiquitously in string theory [11–13] - the so-

called “axiverse” - and the ultraviolet (UV) spectra of many other puzzle-solving models. In

this work I will dive into some of the mechanisms behind the aforementioned axion and ALP

scenarios in order to motivate a broad target parameter space to search for ALPs.

While there has been a tremendous effort to probe high mass ALPs from the MeV to

GeV scales, there is a deep chasm of parameter space for ALPs below 1 keV in mass that

is neither constrained by laboratory probes nor astrophysics. In this region the ALP can

act as both a dark matter candidate and a solution to the strong CP problem, among other

roles in solutions to the current panorama of anomalies and puzzles. There are a number

of future and ongoing helioscope experiments that use resonant cavities or large magnetic

fields to search for DM or solar ALPs, but the reach of these experiments terminates around

masses ≳ 1 eV. Dark matter direct detection experiments, on the other hand, offer broadband

sensitivity in the axion mass and may be powerful enough at the tonne-scale to search for

ALPs where the astrophysical constraints and future helioscopes and haloscopes lose their

sensitivity. In particular, Bragg-Primakoff scattering – a form of ALP-to-photon conversion

that is coherent at the level of an ordered atomic lattice as well as coherent at the level of the

atomic charge distribution – can greatly enhance the event rates for ALPs with keV energies.

This makes for a natural detection technique in the search for solar ALPs, and by leveraging

crystal detectors we can get the reach we need from direct detection experiments at smaller

detector scales. In this work I will thoroughly construct the methodology for this detection

technique, building off the existing literature but repairing several stark inconsistencies along

1



the way, in the end showing the importance and power of crystallographic technologies to

search for axion-like particles with the aforementioned parameter space as a clear goal.

In Chapter 2 I discuss the theoretical motivations to search for axion-like particles, and in

Chapter 3 I will mark out the relevant amplitudes, cross sections, and form factors relevant for

Primakoff scattering, the key phenomenological probe to look for axion-like particles coupling

to photons. In Chapter 4 I give a detailed treatment of Bragg-Primakoff conversion in perfect

crystals, working through the subtleties and salient phenomenological impact of absorption

effects (and the Borrmann effect) on the event rate for Bragg-Primakoff conversion. In

Chapter 5 I apply the results of the previous two chapters to searches of axion-like particles

produced in the Sun, and to other potential discovery strategies to test QCD axion model

parameter space. Finally, in Chapter 6 I conclude and remark on future directions of work.
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2. THEORETICAL FOUNDATIONS FOR MOTIVATING THE

EXISTENCE OF AXION-LIKE PARTICLES

2.1 Axionic Solutions to the Smallness of Strong CP

We first begin with pseudoscalar particles that solve the strong CP problem, which I

will label simply as “axions” or “QCD axion” and I will call pseudoscalars which do not

necessarily solve strong CP, and span a much broader parameter space of SM couplings,

“axion-like particles” or ALPs. The Peccei-Quinn mechanism [7–10, 14–18], whereby a global

U(1)PQ symmetry is spontaneously broken, offers a dynamic mechanism to minimize the

QCD vacuum to a CP-conserving state.

The way this happens can be understood by looking at the properties of the QCD vacuum.

The QCD vacuum has two angles: θ, the angle that appears in front of the GG̃ topological

term, and θq = arg detMq, the phase of the quark mass matrix. These combine as a physical

parameter θ̄ = θ + θq which has the consequence of violating CP ;

L ⊃ g2

32π2
θ̄GG̃ (2.1)

Here I have used the abbreviated notation GG̃ = ϵαβµνG
αβ
a Gµν

a . The Vafa-Witten theorem

states that if one considers two different configurations of the QCD vacuum, one where θ = 0

and one where θ ≥ 0, the one set to zero will always have lower energy density. In a universe

where θ is a fixed parameter, nothing would protect the theory from having θ ≥ 0 and

violating CP; we would just have to throw up our hands and accept it. However, if θ̄ were

promoted to a dynamical field, then it would have the ability to roll down to the bottom of

its potential at θ = 0 where the Vafa-Witten theorem [19] tells us that is the energetically

favored configuration. This is precisely what the axion field does for us, giving a mechanical

explanation for why the observed CP violation is so small.

3



The next step in this line of thought is to construct a field a that couples to GG̃ and

promotes θ̄ to a dynamical object. In Fig. 2.1 the common benchmark QCD axion models are

shown schematically. Beginning with the Kim-Shifman-Vainshtein-Zakharov (KSVZ) [20, 21]

type models on the left, which feature a set of heavy color-charged fermions QL and QR that

are also charged under U(1)PQ, derive couplings to gluons and photons through the operators

aGG̃ and aF F̃ arising at loop level.

To see how this happens schematically, consider the PQ Yukawa terms like ΦQ̄LQR,

which in the physical basis after U(1)PQ is broken become

ΦQ̄LQR → (va + ρ(x))e−ia/vaQ̄LQR, (2.2)

giving Q a mass term and a coupling to the goldstone and radial modes of Φ in the broken

phase. We can rotate away the goldstone angle e−ia/va by performing a field redefinition,

QL,R → QL,Re
−iγ5a/2va (2.3)

This brings a derivative coupling of the pseudoscalar axion field a out of the Q kinetic pieces

after integrating by parts and throwing away the total derivative;

iQ̄L/∂QR → ∂µa

va
Q̄Lγ

µγ5QR (2.4)

The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type models [17, 22–24], shown on the

right, instead feature an extended Higgs sector which gives rise to tree-level fermion couplings

after a chiral rotation of the fields, while couplings to gluons and photons are kept at loop

level. Other variants exist, for example the sub-types DFSZ-I, DFSZ-II, IIa, IIb, etc. [25]

which categorize different schema for the Higgs sector structure.

These different scenarios strongly motivate the existence of couplings to SM fermions

and to the photon through the dimension-5 operator aF F̃ . The treatment of this parameter

4



KSVZ-type DFSZ-type

Heavy Quarks + Singlet: QL, QR,Φ 2HDM + Singlet: Hu, Hd,Φ

L ⊃ −mQQ̄LQRe
−ia/va

L ⊃ aGG̃, aF F̃ via Q loops

Lf=e,u,d ⊃ −mf f̄LfRe
−iχa/va

δLf=e,u,d =
caf
fa
(∂µa)f̄γ

µγ5f

L ⊃ aGG̃, aF F̃ via e, u, d loops

PQSB

f → fe−iχγ5a/2va

PQSB

Q→ Qe−iγ5a/2va

Figure 2.1: The KSVZ and DFSZ type QCD axion model mechanisms summarized graphi-
cally.

space can be expanded in a model-independent way by considering a simple effective field

theory of ALP interactions;

L ⊃ 1

2
(∂µa)(∂

µa)−m2
aa

2 − 1

4
gaγaFµνF̃

µν − 1

4
gagaTr[GµνG̃

µν ]− i
∑
f

gafaf̄γ
5f (2.5)

The QCD axion parameter space will then be a subset of the space covered by the axion

mass and its couplings, as seen in Fig. 2.2.

The correlations between the QCD axion mass and its effective couplings are given below,

taken from ref. [26]. I will reiterate those correlations here for convenience of the reader.

The relation between the Peccei-Quinn breaking scale fa and the axion mass is

fa =

(
5.691× 106eV

ma

)
GeV (2.6)

To find the correlations between the axion mass and its effective couplings to photons in the
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KSVZ benchmark model is then given by Eq. 2.7;

gaγ =
ma

GeV

(
0.203

E

N
− 0.39

)
(2.7)

I will then take a region of model parameter space defined by considering anomaly number

ratios from E/N = 44/3 to E/N = 2. This defines a band in the (ma, gaγ parameter space

of ALP couplings and masses.

For the DFSZ benchmark model, for which couplings to electrons would be dominant

relative to the photon couplings, I take

gae =
meCae(ma, tan β)

fa
(2.8)

where the coefficient Cae is dependent on the rotation angle β for the vacuum expectation

values of the extended Higgs sector in DFSZI and DFSZII models;

DFSZ(I): Cae = −1

3
sin2 β +

3α2

4π2

[
E

N
log(fa/ma)− 1.92 log(1/me)

]
,
E

N
= 8/3 (2.9)

DFSZ(II): Cae =
1

3
sin2 β +

3α2

4π2

[
E

N
log(fa/ma)− 1.92 log(1/me)

]
,
E

N
= 2/3 (2.10)

Here I allow tan β values between 0.25 and 120, allowing for a wide range of coupling values

for a particular axion mass [27].

As a brief aside on couplings to fermions: one can either have the Yukawa, or manifestly-

pseudoscalar operator;

LY uk ⊃ igaeaψ̄γ
5ψ (2.11)

or the gradient/derivative type operator associated with pNGBs with a shift symmetry;

LGrad ⊃
∂µa

fa
ψ̄γµγ5ψ (2.12)

These two operators can be transformed into each other since they are related by a total
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derivative, but only if one assumes that the fermion ψ satisfies its free equation of motion,

i.e. i/∂ψ = mψ. Therefore, in general the two operators do not give equivalent amplitudes

except when fermions can be approximated as on-shell.

While searches for QCD axions, that is, ALPs which solve the strong CP problem as part

of a Peccei-Quinn mechanism, are well motivated, it is important to also consider alternative

solutions. For example, left-right symmetric models have also been able to solve strong CP

without needing an explicit axion. This only offers more motivation to search for them,

since if a discovery is not made, and instead the viable parameter space for QCD axions is

ruled out by experiment, then it will give us the invaluable guidance to look elsewhere for

non-axionic solutions which we already know are possible.

Besides the scope of QCD axions mentioned here so far, there is a much broader landscape

of axion-like particle solutions to modern physics puzzles. String axiverse pseudoscalars arise

from string theory compactification scenarios, which may number in the tens to hundreds

from string theory compactification scenarios [12, 13]. More generally, light pseudoscalars

with weak couplings to the SM could arise as pNGBs from other broken symmetries such as

B−L or T3R, and may be introduced to address other important problems in the SM (e.g.

Majorons, Familons). We should keep this in mind when motivating tests of ALP parameter

space, having the understanding that the target space is often much larger and open ended

than that of the traditional QCD models.

2.2 Laboratory Probes

In Fig. 2.2 I show many of the existing limits that have been set on the gaγ − ma pa-

rameter space. Some of the most stringent constraints come from astrophysics, shown in

gray, like those from the axion-induced stellar cooling of horizontal branch (HB) stars [28],

supernova SN1987a energy loss [29–33] and decaying axion signals [33–35], and low energy

supernovae [31]. Pure laboratory constraints – that is, those from searches for axions that

would be produced and detected terrestrially – are shown with solid colors [36]. They include

collider searches like those from LEP [37], ATLAS [38] and CMS from pp collisions as well as

7



Figure 2.2: Existing ALP limits and constraints for ALPs coupling to photons through aF F̃ .
Laboratory-derived constraints are shaded in solid colors while astrophysical constraints ap-
pear in grayscale. Bands of constant decay length are highlighted, whose thicknesses indicate
a range of non-relativistic to relativistic ALPs. Traditional QCD axion model parameter
space is shaded in yellow, corresponding to the KSVZ and DFSZ benchmark models. Ad-
ditional constraints from cosmological considerations and assuming a dark matter ALP are
not shown.

Pb-Pb collisions [39], decaying particle lifetime measurements like those from PrimEx [40],

Belle II [41, 42], BESIII [43]. Beam dump experiments have also played a significant role

in testing parameter space of axions which decay on the scale of the experimental baseline,

namely E137 [41]. Myself and collaborators exploited the intense electromagnetic and bary-

onic particle cascades inside beam dump targets and reactor cores could be used in searches

that would be sensitive to high-mass ALPs in this parameter space [44–48].

To keep a reference of scale, I also show bands of constant decay length to photon pairs,

via the decay width

Γ(a→ γγ) =
g2aγm

3
a

64π
(2.13)
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The bands range from the size of the observable universe to nanometer scale, where the width

of each band sweeps from non-relativistic (β ∼ 0.01) to relativistic (β > 0.9) ALPs. The

model parameter space for traditional QCD axions (KSVZ, DFSZ) is shown by the yellow

band, however a much broader parameter space is motivated by non-traditional QCD axion

models or by non-QCD ALP models. For example, many non-traditional QCD axion models

are motivated to ensure that higher-order operators in the ultraviolet scales, which break

PQ symmetry, do not misalign the axion potential, spoiling the dynamical minimization of

CP violation in the QCD vacuum. This has been known as the axion quality problem [49–

53]. Many such models have been realized which can shift the axion mass parametrically

lighter [54] or heavier [55–57]. These are just some examples, and of course the model

parameter space of generic pNGBs or axiverse pseudoscalars is much larger. The richness of

possibilities makes the physics targets for searches of ALPs also a broad eneavor.

While the frontier for axion searches in the high mass regime is busy with activity, the

low mass regime is also very active but has its own challenges. Helioscope experiments,

like the International Axion Observatory (IAXO) [58], aim to probe sub-eV masses of ALPs

associated with solar axions as the next generation successor to CAST [59]. At the same

time, a multitude of resonant cavity haloscopes and other coherent electromagnetic-based

technologies search for axions that might make up the local dark matter halo. These exper-

iments cover a wide swath of parameter space for light axions below the eV scale. However,

there is still a critical region of interest just at the eV scale which hosts several theoretical

targets. Looking again at Fig. 2.2, we have (i) traditional QCD axion models, which are

unconstrained from HB stars just below ma = 1 eV, (ii) a number of anomalies in the cooling

and growth rates of stars, which can be explained by ALPs with photon couplings just below

gaγ ≲ 10−11 GeV−1 [60–62] (not pictured), and (iii) the lifetimes of ALPs in this same region

of parameter space have lifetimes beyond that of the age of the universe, making them ex-

cellent dark matter candidates. It is this unique region of parameter space that is the prime

target of this thesis, and in the following chapters, I will motivate the phenomenology of

9



crystal detector technology that leverages coherence to be sensitive to ALP detection in this

context.
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3. ELECTROMAGNETIC-AXION INTERACTIONS

In this section I will review the production and detection processes that are relevant

to laboratory searches, in particular the Primakoff and inverse Primakoff photoconversion

processes relevant for axions coupled to photons, in addition to a discussion on other processes

relevant for the production of axions in the Sun.

The form of the vertex operator for the dimension-5 photon coupling is interesting, as

the derivatives contained the electromagnetic field strength tensors give rise to momentum

dependence in the Feynman rules. Here I provide a quick derivation. The operator concerning

the aγγ vertex is

Laγ =
1

4
gaγaFµνF̃

µν (3.1)

where F̃ µν = ϵµναβFαβ. Expanding out the operator and moving to momentum space for the

vertex a(k) → γ(p)γ(q) yields

aFµνF̃
µν = ϵµναβa(k)

(
∂µAν(p)− ∂νAµ(p)

)(
∂αAβ(q)− ∂βAα(q)

)
= −ϵµναβa(k)

(
pµAν − pνAµ

)(
qαAβ − qβAα

)
= −a(k)

(
ϵµναβ(pµAνqαAβ − pµAνqβAα)− ϵµναβpνAµqαAβ + ϵµναβpνAµqβAα

)

Now relabel µ⇐⇒ ν and commute the Levi-Civita indices on the last two terms:

= −2ϵµναβa(k)pµAν

(
qαAβ − qβAα

)
= −4ϵµναβa(k)pµAν(p)qαAβ(q) (3.2)

To get the vertex function from here, we take

(−i)3δ3
δa(k)δAν(p)δAβ(q)

,
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This gives us the final expression (and after multiplying back in the factor of 1
4
gaγ), which is

igaγϵ
µναβqαpβ (3.3)

This is the vertex rule for the ALP-photon coupling, just as expected by analogy to the

π0γγ interaction. I will use this vertex rule to derive amplitudes for several key processes

involving the photon coupling in the next few sections.

First we discuss ALP decays a → γγ through the gaγ coupling (Fig. 3.1). The decay

a

γ

γ

Figure 3.1: ALP decays through a→ γγ via the gaγ coupling.

width is given by Eq. 2.13 which has a very strong cubic dependence on the ALP mass.

This decay is kinematically accessible at all masses, but becomes only relevant for masses

ma ≳ 10 keV, otherwise the lifetime will be greater than about the age of the universe and

becomes to rare to be observed easily.

3.1 Atomic Primakoff Scattering

The Primakoff scattering process has been made famous in the search for axions and

ALPs. Originally named after π0 → γ photoconversion process [63, 64], ALP Primakoff

scattering is identical at the operator level and was investigated in the context of a → γ

conversion through the coherent scattering with the strong atomic electric field of the nucleus

and the electron cloud [65]. The coherent scattering with the entire atomic and nuclear charge

density via a t-channel photon means that the cross section enjoys a proportionality to the
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aγ

ZZ

γa

ZZ

Figure 3.2: Primakoff scattering (left) and inverse-Primakoff scattering (right) from an atom
of atomic number Z.

square of the atomic number, ∝ Z2. But this is not the only form of coherence! Primakoff

conversion may also sometimes refer to the same process taking place in the presence of a

macroscopic electric or magnetic field, where in each case the coherency is still manifest but

on different length scales [66]. These make for the design principles behind resonant cavity

haloscopes and helioscopes look for axions in the dark matter halo or those that might be

free-streaming from the sun converting into electromagnetic signals on the Earth. In this

thesis, though, I will contrast these search methods with a focus on atomic coherence, and

later, Bragg or Laue coherence at the level of ordered crystals.

The matrix element for Primakoff scattering with a free, heavy fermion a(k)N(p) →

γ(k′)N(p′) with momentum transfer q = k − k′, can be written down using the Feynman

rules;

Mfree = ū(p′)(−ieγµ)u(p)
(−igµν

q2

)
(igaγϵ

νραβqαk
′
β)ε

∗
ρ(k

′) (3.4)

Squaring and evaluating the trace in terms of the usual Mandelstam variables t = −q2 and

s = (k + p)2, and averaging over initial state spins, yields

⟨|Mfree|2⟩ =
8παg2aγ
t2

[
m2

at
(
M2 + s

)
− t

((
s−M2

)2
+ st

)
−M2m4

a −
1

2
t
(
t−m2

a

)2 ] (3.5)

To apply this to a real atomic target, we can factorize the free matrix element and the atomic

form factor separately to compute the interaction with the nuclear and electron cloud charge

density in a straightforward way, as

⟨| M |2⟩ = ⟨| M |2⟩free × F 2(q) (3.6)
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For a hydrogenic potential, we use Tsai’s parameterization [65] of the atomic form factor

F 2(t),

F 2
A(q) =

Z2a4q4

(1 + a2q2)2
(3.7)

with a = 184.15e−1/2Z−1/3/me. For more context about how this form factor is constructed,

I’ve added some notes in Appendix A.

In the forward limit, for an axion of momentum ka, the inverse Primakoff cross section

is given by [67–69]

σ(ka) =
Z2αg2aγ

2

(
2r20k

2
a + 1

4r20k
2
a

ln
(
1 + 4r20k

2
a

)
− 1

)
(3.8)

Primakoff scattering is a very forward process; since the momentum transfer is very

small, the typical scattering angles of the outgoing photon or ALP relative to the incoming

momentum are typically small. This changes, however, as the ALP becomes non-relativistic,

as shown in Fig. 3.3.
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ma=10 keV

ma=1 MeV

ma=5 MeV

ma=8 MeV

0.5 1.0 1.5 2.0 2.5 3.0
θ [rad]

0.001

1

1000

dσ

dθ
[MeV-3 ]

Eγ=10 MeV

ma=10 keV

ma=1 MeV

ma=5 MeV

ma=8 MeV

10-7 10-5 0.001 0.100
θ [rad]

10-15

10-5

105

dσ

dθ
[MeV-3 ]

Eγ=10 MeV

Figure 3.3: Primakoff scattering (γA → aA) differential cross section dσ/dθ as a function
of the scattering angle θ with gaγ = 1 MeV−1 and Z = 1, on a log-linear graph (top) and
log-log (bottom).
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4. AXION-CRYSTAL INTERACTIONS

Axion-like particles in the keV to sub-eV mass range produced in the sun are well mo-

tivated [27, 28, 70]. Searches were carried out by several experimental collaborations by

looking for a → γ Primakoff conversion in solid crystal detectors, including DAMA [71]

(NaI), CUORE [72, 73] (TeO2), Edelweiss-II [74], SOLAX [75], COSME [76], CDMS [77],

and Majorana [78] (Ge). Other upcoming experiments like SuperCDMS [4], LEGEND [5],

and SABRE [6] are projected to greatly expand coverage over the axion parameter space

and test QCD axion solutions to the strong CP problem in the eV mass range. These ex-

periments aim to take advantage of coherency in the conversion rate when axions satisfy

the Bragg condition, enhancing the detection sensitivity by orders of magnitude relative to

incoherent scattering.

Searching for solar axions via their coherent conversion in perfect crystals was first treated

by Buchmuller & Hoogeveen [79] using the Darwin theory of classical x-ray diffraction under

the Bragg condition [80]. The authors also alluded to potential enhancements in the signal

yield when one considers the symmetrical Laue-case of diffraction for the incoming ALP

waves. Yamaji et al [81] treated this case thoroughly for the 220 plane of cubic crystals, also

using the classical theory, and included the effect of anomalous absorption, also known as

the Borrmann effect. It was shown by these authors that an enhancement to the signal yield

was possible, replacing the Bragg penetration depth (Lbragg ∼ 1 µm) with the Borrmann-

enhanced attenuation length (ranging from 10µm all the way to centimeter scales).

The effect of anomalous absorption of x-rays was first shown by Borrmann [82], theoret-

ically explained by Zachariasen [83, 84] and others later (Battermann [85, 86], Hirsch [87]).

A quantum mechanical treatment was offered by Biagini [88, 89] in which the Borrmann

effect was explained by means of a statistical treatment of the |α⟩ and |β⟩ Bloch waves and

their mutual interference at the occupation number level. More recently, another treatment
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of the Borrmann effect in the quantum limit was applied to study photon-photon dissipation

on Bragg-spaced arrays of superconduncting qubits [90].

Now, the calculation of the event rates expected for the Primakoff conversion of solar

axions coherently with a perfect crystal was treated in a more traditional, particle physics-

based approach in refs. [73, 91, 92] and it was applied to derive many of the constraints set

by crystal-based solar axion experiments including DAMA, CUORE, Edelweiss-II, SOLAX,

COSME, CDMS, and Majorana Demonstrator [71, 72, 74–78]. However, absorption effects

in Bragg and Laue case diffraction were not considered in refs. [73, 91, 92]; indeed, when

comparing the event rates between these references and those presented in light-shining-

through-wall (LSW) experiments, which used the classical Darwin theory approach (e.g.

ref. [79] and more recently ref. [81]), there is a clear inconsistency. While the event rates

in the LSW literature only consider the coherent volume of the crystal up to the relevant

attenuation length (λ ∼ 1 µm in the Bragg diffraction case or λ ≲ 100 µm in the Laue-case),

the solar axion searches have considered the whole volume of the crystal to exhibit coherency.

In this work, we show that such effects reduce the expected event rates potentially up to the

O(103) level depending on the assumed crystal size (and therefore, the assumed coherent

volume enhancement) and material. Although this may impact the existing sensitivities set

by solar axion searches in solid crystals, measures can be taken to optimize suppression of

the event rate due to absorption effects and recover some or potentially all of the coherent

volume.

In this section, I will re-derive the event rate formula for solar axion Primakoff scattering

under the Bragg condition with full volume coherence. I will then motivate the inclusion of

absorption effects and discuss the anomalous enhancement to the absorption length under

the Borrmann effect. I will then write down the event rates for a perfect crystal exposed

to the solar axion flux with and without the absorption effects and discuss the relevant

phenomenology to set up the subsequent chapter
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4.1 Crystal structure

For crystals with diamond structure (Ge, Si, C), we may have the diamond cubic, also

seen as the inter-penetrating face-centered cubic (FCC), as the unit cell; The primitive basis

  

Figure 4.1: Unit cell for a diamond cubic or interfaced-FCC lattice, where the Bravais basis
vectors a⃗i and primitive basis vectors α⃗j are shown. In the case of FCC lattices like those for
NaI or CsI crystals, the Na/Cs atoms are shown in blue and the I atoms shown in red, while
for diamond cubics like C, Ge, or Si, each scattering center is an identical atomic species.

vectors just describe the first two atoms on the bottom-left of Figure 4.1, left; these are

α⃗0 = (0, 0, 0)

α⃗1 =
a

4
(1, 1, 1) (4.1)
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while the basis vectors of the Bravais lattice are described by a⃗1, a⃗2, and a⃗3 in Figure 4.1,

right:

a⃗1 =
a

2
(0, 1, 1)

a⃗2 =
a

2
(1, 0, 1)

a⃗3 =
a

2
(1, 1, 0) (4.2)

we can translate anywhere on the lattice by stepping in integer multiples of these basis

vectors;

r⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3 (4.3)

We can then introduce the reciprocal lattice, which is like the Fourier transform of the real

space lattice basis vectors. They reciprocal lattice basis vectors b⃗i satisfy b⃗i · a⃗j = 2πδij. In

general the transformations give

b⃗1 = 2π
a⃗2 × a⃗3

|⃗a1 · (⃗a2 × a⃗3)|

b⃗2 = 2π
a⃗3 × a⃗1

|⃗a1 · (⃗a2 × a⃗3)|

b⃗3 = 2π
a⃗1 × a⃗2

|⃗a1 · (⃗a2 × a⃗3)|
(4.4)

for our diamond cubic, we have

b⃗1 =
2π

a
(−1, 1, 1)

b⃗2 =
2π

a
(1,−1, 1)

b⃗3 =
2π

a
(1, 1,−1) (4.5)

One can check again in the figure that in real space, the reciprocal basis vectors correspond

to momentum (Bragg condition) that point along the surface normals of the surfaces defined
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Material
Lattice Constant

a (Å)
Cell Volume
vcell (Å3) Primitive Basis Bravais Basis G⃗× a/2π

Ge (Diamond Cubic) 5.657 181.0 α⃗0 = (0, 0, 0)
α⃗1 = a

4 (1, 1, 1) a⃗1 = a
2 (1, 0, 1)

a⃗2 = a
2 (0, 1, 1)

a⃗3 = a
2 (1, 1, 0)

(m1 −m2 +m3,
−m1 +m2 +m3,
m1 +m2 −m3)

Si (Diamond Cubic) 5.429 160.0
CsI (FCC) 4.503 91.3 α⃗0 = (0, 0, 0)

α⃗1 = a
2 (1, 1, 1)NaI (FCC) 6.462 67.71

Table 4.1: Lattice information for typical crystal detector technologies, FCC and diamond
cubic.

by the lattice basis vectors; the reciprocal vectors are momenta that point normal to the

lattice planes. Now use these basis vectors to write any reciprocal lattice vector in terms of

Miller indices h, k, l ∈ Z;

G⃗ = h⃗b1 + k⃗b2 + l⃗b3 (4.6)

Sometimes the integers h, k, l are used instead, and in some contexts one can use this basis

to express G⃗ as

G⃗(hkl) =
2π

a
(h, k, l) (4.7)

The lattice constants, cell volumes, and basis vectors for a few examples (Ge, Si, CsI, and

NaI) are listed in Table 4.1.

4.2 Laue and Bragg Conditions

For a real space coordinate x⃗, the Laue condition for diffraction reads

exp(ix⃗ · G⃗) = 1 (4.8)

or that x⃗ · G⃗ = 2πN for N ∈ Z. This implies that q⃗ = G⃗.

The Laue Condition: q⃗ = G⃗ (4.9)
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hkl sin θ/λ |S(hkl)| 1/|G|2 (|S(hkl)|/|G⃗|)2
111 0.1530891645 5.7 0.2702037463 8.778919716
022 0.3535442814 8 0.05066320242 3.242444955
202 0.3535442814 8 0.05066320242 3.242444955
220 0.3535442814 8 0.05066320242 3.242444955
113 0.3852659487 5.7 0.04266374941 1.386145218
131 0.3852659487 5.7 0.04266374941 1.386145218
311 0.3852659487 5.7 0.04266374941 1.386145218
133 0.4592674936 5.7 0.03002263847 0.975435524
313 0.4592674936 5.7 0.03002263847 0.975435524
331 0.4592674936 5.7 0.03002263847 0.975435524
333 0.4592674936 5.7 0.03002263847 0.975435524
224 0.4999871177 8 0.02533160121 1.621222478
242 0.4999871177 8 0.02533160121 1.621222478
422 0.4999871177 8 0.02533160121 1.621222478
004 0.6123566581 8 0.01688773414 1.080814985
040 0.6123566581 8 0.01688773414 1.080814985
400 0.6123566581 8 0.01688773414 1.080814985
444 0.6123566581 8 0.01688773414 1.080814985
335 0.6312027955 5.7 0.01589433802 0.5164070421
353 0.6312027955 5.7 0.01589433802 0.5164070421
533 0.6312027955 5.7 0.01589433802 0.5164070421
115 0.6789062885 5.7 0.01373917354 0.4463857483
135 0.6789062885 5.7 0.01373917354 0.4463857483
151 0.6789062885 5.7 0.01373917354 0.4463857483
153 0.6789062885 5.7 0.01373917354 0.4463857483
315 0.6789062885 5.7 0.01373917354 0.4463857483
351 0.6789062885 5.7 0.01373917354 0.4463857483
511 0.6789062885 5.7 0.01373917354 0.4463857483
513 0.6789062885 5.7 0.01373917354 0.4463857483
531 0.6789062885 5.7 0.01373917354 0.4463857483
044 0.7070885628 8 0.01266580061 0.8106112388
404 0.7070885628 8 0.01266580061 0.8106112388
440 0.7070885628 8 0.01266580061 0.8106112388
355 0.723471166 5.7 0.01209867521 0.3930859574
535 0.723471166 5.7 0.01209867521 0.3930859574
553 0.723471166 5.7 0.01209867521 0.3930859574
555 0.7654458227 5.7 0.01080814985 0.3511567886

Table 4.2: Example values of sin θ/λ for a diamond cubic lattice (Ge) in terms of Miller
indices hkl and the structure factor that appears in the event rate.
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A special case of the Laue condition is the Bragg condition, and it comes from imposing the

elastic scattering condition. Rewrite Eq. 4.9 as follows;

G⃗ = q⃗ = k⃗f − k⃗i

k⃗i = k⃗f − G⃗

|⃗ki|2 = |⃗kf − G⃗|2

|⃗ki|2 = |⃗kf |2 + |G⃗|2 − 2k⃗f · G⃗ (4.10)

The Bragg condition is a statement that we are in the elastic scattering regime; |⃗ki| = |⃗kf |.

From Eq. 4.10 this implies

The Bragg Condition (Version I) 2k⃗f · G⃗ = |G⃗|2 (4.11)

This can be recast in its more familiar form, taking sin θ as the sine of the angle between G⃗

and k⃗f , |⃗kf | = 2π/λ, and |G⃗| = 2πn/d:

The Bragg Condition (Version II) 2d sin θ = nλ (4.12)

Lastly, there is one more way to represent the Bragg condition which has shown up in various

ALP-crystal scattering papers, and it follows easily from Eq. 4.11:

The Bragg Condition (Version III) Ei =
|G⃗|2
2û · G⃗

(4.13)

It should be noted that the Bragg and Laue conditions are different than Bragg-

case and Laue-case diffraction. The terms “Bragg-case" and “Laue-case" diffraction (or

conversion in the case of ALP-photon interactions) have to do with the orientation of the

crystal geometry with respect to the incident wave.
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Figure 4.2: Crystallographic planes cut by the hkl = 220 (left), 224 (middle), and 333 (right)
reciprocal lattice vectors in CsI.

4.3 Event Rates for Coherent Bragg-Primakoff Scattering from Solar Axions

Let f(k⃗, k⃗′) be the Primakoff scattering matrix element for a single atomic target, for an

incoming ALP 3-momentum k⃗ and outgoing γ 3-momentum k⃗′;

f = ⟨Mfree⟩FA(q) (4.14)

where FA is the atomic form factor given in Eq. 3.7 and Mfree is the single-atomic scattering

amplitude, Eq. 3.5 taken in the relativistic limit

⟨Mfree⟩ =
4e2g2aγ
t2

E2
γm

2
Nk

2 sin2 θ (4.15)

Similar to the approach illustrated by Bednyakov and Naumov to get the total coherent

amplitude [93] for neutrinos scattering over N scattering centers in a nucleus, we sum over

the N scattering centers in a crystal;

M(k⃗, k⃗′) =
N∑
j=1

fj(k⃗, k⃗
′)ei(k⃗

′−k⃗)·r⃗j (4.16)

where ei(k⃗′−k⃗)·r⃗j is a phase factor that comes from assuming plane wave solutions for the

in and out states. The position vector r⃗j can be expressed in terms of the Bravais lattice

basis vectors and the primitive basis vectors for each unit cell of the crystal. For germanium

crystal with lattice constant a, we have primitive basis vectors αj while the Bravais lattice
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vectors are described by a⃗1, a⃗2, and a⃗3. We can then represent any scattering site as a linear

combination of the a’s and either the first or second primitive;

r⃗i,0 = R⃗i + α⃗0 = n1a⃗1 + n2a⃗2 + n3a⃗3 + α⃗0 (4.17)

r⃗i,1 = R⃗i + α⃗1 = n1a⃗1 + n2a⃗2 + n3a⃗3 + α⃗1 (4.18)

where the index i maps to a unique combination (n1, n2, n3). If we square this, we get

| M(k⃗, k⃗′) |2=
N∑
i=1

| fi |2 +
N∑
j ̸=i

N∑
i=1

f †
j fie

−iq⃗·(r⃗i−r⃗j) (4.19)

taking q⃗ ≡ k⃗ − k⃗′. Rewriting in terms of a sum over Nc cells and the cell primitives, the

coherent part (second term) is

| M(k⃗, k⃗′) |2=
Nc∑
j ̸=i

Nc∑
i=1

1∑
µ=0

1∑
ν=0

f †
j fie

−iq⃗·(R⃗i−R⃗j+α⃗µ−α⃗ν) (4.20)

When the Laue condition is met, we have q⃗ = G⃗ and G⃗ · R⃗i is a 2π integer multiple;

|M|2 ≡
Nc∑
j ̸=i

Nc∑
i=1

1∑
µ,ν=0

f †
j fie

−iG⃗·(α⃗µ−α⃗ν) (4.21)

Now we can factorize the sum over primitives, and since we are considering a monoatomic

crystal we can also take the fi = fj, simplifying things;

|M|2 = N2
c f

†f
1∑

µ,ν=0

e−iG⃗·(α⃗µ−α⃗ν) (4.22)

Now the structure function is nothing but the sum over primtives;

S(G⃗) =
∑
µ

eiG⃗·αµ (4.23)
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and we have no need for a species index j on Sj(G⃗) since we only have one atomic species,

but it is trivial to extend this derivation to include it - we just need to add another index

to the primitive basis vectors and sum over it. With this identification and also taking

f †f = |Mfree|2F 2
A(G⃗), we have

|M|2 = N2
c |Mfree|2|FA(G⃗)S(G⃗)|2 (4.24)

Now let’s write down the cross section. From the Lorentz-invariant phase space element

we have

dσ =
1

4EamNva
|M|2 d3k′

(2π)32Eγ

d3p′

(2π)32Ep′
(2π)4δ4(k + p− k′ − p′) (4.25)

Taking the ALP velocity va = 1, momentum transfer minimal such that Ep′ = mN , and

integrating out the δ3 we get

dσ =
1

64π2EaEγm2
N

|M|2d3k′δ(Ea − Eγ) (4.26)

Performing a change of variables to d3k′ → d3q (since q = k − k′ and k is fixed), we would

integrate this over q⃗. Since we have q⃗ = G⃗ at this stage, we should replace the integral with

a sum; ∫
d3q → (2π)3

V

∑
G⃗

(4.27)

The event rate formula is constructed from a convolution of the detector response (taken

as a gaussian smearing function between true energy Eγ and electron-equivalent energy Eee,

with width ∆ ∼ O(1) keV), axion flux Φa, and cross section;

R =

∫ E2

E1

dEee

∫ ∞

0

dEa
(2π)3

V

∑
G⃗

dΦa

dEa

1

64π2EaEγm2
N

|M|2δ(Ea−Eγ)·
(

1

∆
√
2π
e−(Eee−Eγ)2/2∆2

)
(4.28)

Putting in the definition of |M|2 that we worked out and substituting the free Primakoff

cross section in the relativistic limit (Eq. 4.15), integrating over the energy delta function
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(and identifying Ea = Eγ = k for simplicity), and integrating over dEee we arrive finally at

the solar axion event rate formula under full volume coherence,

R =
(2π)3e2g2aγ

8π2

V

v2c

∑
G⃗

dΦa

dE

k2 sin2(2θ)

|G⃗|4
|FA(G⃗)S(G⃗)|2W(E1, E2, E) (4.29)

The event rate in Eq. 4.29 encodes the effect of detector energy resolution ∆ within the

function W resulting from the dEee integral;

W(Ea, E1, E2,∆) =
1

2

(
erf

(
Ea − E1√

2∆

)
− erf

(
Ea − E2√

2∆

))
(4.30)

One can see the tabulated values of the structure factor and corresponding miller indices

h, k, l in Table 4.2, as well as the decreasing values of (S(h, k, l)/|G⃗|)2 as they appear in the

G⃗ sum, shown there for a Ge diamond cubic lattice for reference.

Eq. 4.29 is almost identical to the rate in ref. [91], which uses a different definition of

the atomic form factor up to a factor of q2

ek2
. After some algebra, the event rate in Eq. 4.29

is still different than that given in ref. [91] up to a factor of 4 sin2(θ) ∼ O(1), although the

event rate formula derived here is consistent with the calculation performed in refs. [72, 73].

However, the most important aspect that has been neglected up until now is the atten-

uation of the final state photon in dielectric that will alter and suppress the coherence that

we have relied on so far. In this next section I will address this issue.

4.4 Coherence and Absorption

Let f(k⃗, k⃗′) be the Primakoff scattering matrix element for a single atomic target, for

an incoming ALP 3-momentum k⃗ and outgoing γ 3-momentum k⃗′. Similar to the approach

illustrated by Bednyakov and Naumov to get the total coherent amplitude [93] for neutrinos

scattering over N scattering centers in a nucleus, we sum over the N scattering centers in a

crystal;

M(k⃗, k⃗′) =
N∑
j=1

fj(k⃗, k⃗
′)ei(k⃗

′−k⃗)·r⃗j (4.31)
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where ei(k⃗′−k⃗)·r⃗j is a phase factor that comes from assuming plane wave solutions for the in

and out states. If we square this, we get

| M(k⃗, k⃗′) |2=
N∑
i=1

| fi |2 +
N∑
j ̸=i

N∑
i=1

f †
j fje

−iq⃗·(r⃗i−r⃗j) (4.32)

taking q⃗ ≡ k⃗ − k⃗′. Demanding the Laue diffraction condition, q⃗ · (r⃗i − r⃗j) = 2πn for n ∈ Z,

then the phase factor in the exponential goes to one. In this limit, the diagonal (first) term

is subdominant and the final matrix element squared tends to M2 → N2f 2.

Now consider interactions of the final state γ with the crystal lattice, including the

absorption and scattering effects. Pragmatically, we modify the plane wave solutions of the

final state photon to that of one in a dielectric medium,

k⃗′ → n̄k⃗′, n̄ = n− iκ, (4.33)

where n̄ is the complex index of refraction. Making this modification, we have

ein̄k⃗
′·(r⃗i−r⃗j) → eink⃗

′·(r⃗i−r⃗j)e−
µ
2
|k̂′·(r⃗j−r⃗i)| (4.34)

In the last line above, the absorption factor µ ≡ 2κ|⃗k| makes its appearance. Equivalently, we

can write the standard absorption coefficient as the product of the total photon absorption

cross section multiplied by number density of the material in transport, µ = nσ, and relates

to the mean free path of the photon λ ≡ 1/µ. Conceptually, this factor encodes the effect of a

reduced coherent interference amplitude between any two scattering centers, since a photon

plane wave originated at one scattering center will have been attenuated after reaching

another scattering center.

We note that Eq. 4.33 is a heuristic choice, since the attenuated plane wave solution

is not a true eigenstate of the interaction Hamiltonian, but rather a simple ansatz made to

capture the phenomenology of absorption. For further convenience we use zij ≡| k̂′ ·(r⃗i− r⃗j) |
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and λ = 1/µ, taking the real part of the index of refraction ≃ 1. We then have

| M(k⃗, k⃗′) |2=
N∑
i=1

| fi |2 +
N∑
j ̸=i

N∑
i=1

f †
j fje

−iq⃗·(r⃗i−r⃗j)e−zij/(2λ) (4.35)

At this stage evaluating the sum is tricky, so I will first give a rough estimation for the

suppression factor of the modified coherent sum. Again, if we apply the Laue diffraction

condition q⃗ · (r⃗i − r⃗j) = 2πn and if the scattering centers are all identical (fj = fi), then

| M(k⃗, k⃗′) |2 ≃ f †f
N∑
j ̸=i

N∑
i=1

e−zij/(2λ)

= f †f
N∑
j ̸=i

∫
Crystal

d3r e−zj/(2λ)

N∑
i=1

δ3(r⃗ − r⃗i) (4.36)

Then going to the continuum limit, we have

| M(k⃗, k⃗′) |2 ≃ f †f
N∑
j ̸=i

N

V

∫
d3r e−zj/(2λ)

≃ f †f
N∑
j ̸=i

N

V

∫ Lx

0

∫ Ly

0

∫ Lz

0

dxdydz e−|z−ẑ·r⃗j |/(2λ)

≃ f †f
LxLyN

V

N∑
j ̸=i

∫ Lz

0

dz e−|z−ẑ·r⃗j |/(2λ) (4.37)

Above, we used the fact that for Primakoff forward scattering, k̂ ≃ k̂′, so zij ≃| ẑ · (r⃗i− r⃗j) |,

choosing the direction of the incoming ALP momentum k̂ = ẑ without loss of generality.

Let us use the definition z0 ≡ ẑ · r⃗j, then we see

∫ Lz

0

e−|z−ẑ·r⃗j |/(2λ)dz =

∫ Lz

0

e−|z−z0|/(2λ) (4.38)

=

∫ z0

0

e(z−z0)/(2λ)dz +

∫ Lz

z0

e−(z−z0)/(2λ)dz (4.39)

= λ− λ

2

(
e−z0/(2λ) + e−(Lz−z0)/(2λ)

)
(4.40)
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For Lz ≫ λ, this result varies from λ at z0 = 0 to a max of 2λ at z0 = Lz/2, and back

to λ at z0 = Lz. Taking the sum
∑N

j ̸=i to the continuum limit, one finds that the term in

parentheses in Eq. 4.40 is O(λ2) << Lz. Therefore, we have

| M(k⃗, k⃗′) |2 ≳ f †f
N∑
j ̸=i

λLxLyN

V

≳ f †fN2 λ

Lz

(4.41)

Comparing Eq. 4.37 to the usual result ∝ N2, we see that the coherent volume is V × λ/Lz,

and the total scattering rate is suppressed by a factor λ/Lz.

This inequality above is strictly a lower limit because, as we will show in § 4.5, the

suppression to the coherent sum by the absorptive sum, which we label as I,

I ≡
N∑
j ̸=i

N∑
i=1

e−zij/(2λ), (4.42)

may be mitigated under certain conditions. Therefore, the suppression factor λ/Lz serves

as a pessimistic guiding estimate, but in principle we should compute the sum in Eq. 4.42

explicitly. After rederiving the coherent sum using the replacements in Eqns. 4.33, the event

rate becomes

dN

dt
=

(2π)3e2g2aγ
8π2

V

v2cell

∑
G⃗

I(k⃗, G⃗)
dΦa

dE

k2 sin2(2θ)

|G⃗|4
|FA(G⃗)S(G⃗)|2W(E1, E2, E) (4.43)

4.5 The Borrmann Effect

Yamaji et. al. [81] has found that for the Laue-case conversion of ALPs, the attenuation

length is modified as

Latt → Lα/β ≡ 2Latt,α/β

(
1− exp

(
− L

2Latt,α/β

))
(4.44)
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where Latt,α/β =
Latt

1∓ ϵ
and ϵ is a ratio involving the imaginary parts of the scattering form

factor:

ϵ ≡ Im{F (G⃗)}
Im{F (⃗0)}

(4.45)

These modifications come from the anomalous dispersion or anomalous absorption effect, or

the Borrmann effect. It is an effect that occurs for so-called “Bloch waves" α and β that

form in the crystal. The notes below will attempt to explain this further.

The total scattering form factor can be decomposed into the real and imaginary parts [94];

f = f 0 +∆f ′ + i∆f ′′ (4.46)

where f 0 is the atomic form factor, usually given as the Fourier transform of the charge

density;

f 0(q) ≡
∫
d3x⃗ρ(x⃗)eiq⃗·x⃗ (4.47)

The second term in the real part of the form factor is the anomalous form factor ∆f ′, and

∆f ′′ is the imaginary part of the form factor associated with absorption. There is a useful

relationship between the imaginary part and the photoelectric absorption cross section;

∆f ′′(E) =
EσPE(E)

2ℏcre
(4.48)

The anomalous absorption due to the Borrmann effect modifies the absorption coefficient

µ0 = 1/λ as
1

λeff
= µeff = µ0

[
1− F ′′(hkl)

F ′′(000)

]
(4.49)

Here F ′′(hkl) is the combination of structure function and imaginary form factor, F ′′(hkl) =
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S(hkl)∆f ′′ [85, 86]. The ratio in the second term of the expression is usually denoted as ϵ1

ϵ ≡ F ′′(hkl)

F ′′(000)

=
e−M

∑
j Zjηjf

0
j (hkl)∑

j Zjηj
· S(h, k, l)
S(0, 0, 0)

=
e−M∆f ′′(hkl)∑

j Zjηj
· S(h, k, l)
S(0, 0, 0)

(4.50)

The exponential e−M is a Debye-Waller factor to account for thermal effects and is usually

close to 1.

Alternatively, we can calculate the imaginary form factor using the relation in Wagen-

field’s paper. Wagenfield’s form factor for the anomalous dispersion of X-rays with incoming

and outgoing momenta and polarizations k, ε0, k′, ε′0 is [95]

∆f ′′ =
πℏ2

me

(∫
ψ∗
f (r)ε0 ·∇eik·rψi(r)d

3r

)(∫
ψf (r)ε

′
0 ·∇e−ik′·rψ∗

i (r)d
3r

)
(4.51)

Applying the gradient and expanding, we get some terms proportional to ε0 ·k which vanish,

leaving us with

∆f ′′ =
πℏ2

me

(
ε0 ·

∫
ψ∗
f (r)e

ik·r∇ψi(r)d
3r

)(
ε′0 ·

∫
ψf (r)e

−ik′·r∇ψ∗
i (r)d

3r

)
(4.52)

Referring to Catena et al [96], we can then apply the definition of the vectorial form factor

(eq B18, but with some changes made to keep the notation more consistent),

f 1→2(q) =

∫
d3rψ∗

f (r)e
iq·r i∇

me

ψi(r). (4.53)

Here the final state and initial state wave functions have quantum numbers i = n, ℓ,m and

f = p′, ℓ′,m′ where p′ is the final state electron momentum, and {n, ℓ,m}, {ℓ′,m′} are the
1In Yamaji et al [81], they use κ.
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initial and final quantum numbers, respectively. Applying this definition, we have

∆f ′′ =
πℏ2

me

(
ε0 · (−ime)f 1→2(k)

)(
ε′0 · (ime)f

∗
1→2(k

′)

)
= πℏ2me

(
ε0 · f 1→2(k)

)(
ε′0 · f ∗

1→2(k
′)

)
(4.54)

We can rewrite this expression with vector indices i, j and take an average over polarization

vectors using
∑
ϵiϵj = δij;

∆f ′′ = πℏ2me(ε0)i(f 1→2(k))i(ε
′
0)j(f

∗
1→2(k

′))j

= πℏ2mef 1→2(k) · f ∗
1→2(k

′) (4.55)

Then, in the Bragg limit |⃗k| = |⃗k′| and for spherically symmetric wavefunctions we may take

∆f ′′(k) = πℏ2me|f 1→2(k)|2 (4.56)

The incoherent form factors were also calculated and reported by Freeman [97].

Now we can express the Borrmann parameter with the quadrupole component of the

imaginary form factor [95, 98, 99];

ϵ ≡ D

(
1− 2 sin2 θB

∆f ′′
Q

∆f ′′

) |S(h, k, l)|
|S(0, 0, 0)| (4.57)

where D is the Debye-Waller factor accounting for thermal vibrations in anomalous ab-

sorption, D = e−Bs2 where s = sin θ/λ and B is a temperature-dependent constant. The

Debye-Waller factors for cryogenic temperatures can be found in ref. [100] as well as fits to

∆f ′′ for several pure materials of interest.

The absorptive part of the coherent sum that remains after the Laue condition is met is

I(k⃗, G⃗, λ) ≡
N∑
j ̸=i

N∑
i=1

e
− (k⃗−G⃗)

|k⃗−G⃗|
·(r⃗i−r⃗j))/(2λ) (4.58)
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Figure 4.3: The absorption factor I(k⃗, G⃗, λ) as a function of the mean free path λ = 1/µ for
a crystal of cubic volume with side length 5 cm.

Taking the Ge lattice as an example, with lattice constant d = 5.657 Å, we evaluate I(k⃗, G⃗, λ)

numerically by constructing a lattice of N Ge atoms. Since computing the full sum for a

real crystal of centimeter length scale would require a huge number of evaluations (∝ N2),

we take a sparse sampling of N atoms across the physical crystal volume such that the sum

is computationally feasible. The sum can then be evaluated in increments of increasing N to

test for convergence. We find that a lattice of around N ≃ 104 atoms in a cubic geoometry

is enough to obtain a convergent error of around 5%. Some evaluations of I(k⃗, G⃗, λ) as a

function of varying mean free path λ are shown in Fig. 4.3 for several choices of scattering

planes G⃗ and incoming wavevectors k⃗.

One interesting phenomenon that can be seen in Fig. 4.3 is that there are certain choices

of k⃗′ = k⃗−G⃗ such that k⃗′ ·(r⃗i− r⃗j) = 0. In this special circumstance, while many of the terms

in the coherent sum will tend to zero with decreasing λ, the terms where this dot product

is zero will survive. What this means physically is that the plane in which r⃗i − r⃗j lies will

avoid the decoherence from absorption as long as it remains orthogonal to k⃗′. This relation
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Figure 4.4: Borrmann parameter ϵ as a function of the momentum transfer sin θ/λ = |G⃗|/4π
for several crystal materials.

can be made more apparent by considering the dot product under the Bragg condition;

k̂′ · (r⃗i − r⃗j) =

(
G⃗

2k⃗ · Ĝ
− G⃗

k

)
· (r⃗i − r⃗j) = 0 (4.59)

where we take k̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), solving this equation for θ in the hkl = 400

case gives

θ = cot−1

(
nx cos(ϕ)− ny sin(ϕ)

nz

)
+ πc1 (4.60)

for nx, ny, nz, c1 ∈ Z. This defines a family of lattice points that remain in the absorption sum

I even in the limit λ → 0, resulting a lower bound on I as shown for some example choices

of k̂ in Fig. 4.3. This effect is similar in nature to the Laue-case diffraction enhancements

where the photoconversion occurs down the scattering planes, minimizing the absorption, as

studied in ref. [81].

We employ a numerical cutoff on the sum over reciprocal lattice planes G⃗(hkl) atmax(h, k, l) =

6, where a test for convergence of the event rate shows that the corrections beyond add cor-

rections less than 5% (see Fig. 4.5). Additionally, the values of the structure factor for a
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Figure 4.5: Left: convergence rate for the sum over G⃗ in the event rate R as a function of the
cutoff max(h, k, l). Right: convergence of the event rate with the absorption sum I(k⃗, G⃗)
for a given simulated lattice size.

Ge diamond cubic lattice are tabulated in Table 4.2, ordered by decreasing |S(hkl)|2/|G⃗|2

as they appear in the event rate sum.

In Fig. 4.6 the absorption factor I is shown for the plane G⃗(1, 1, 1) as a function of

azimuthal and polar angles of the incoming axion momentum θ, ϕ under the Bragg condition.

This fixes k = Eγ for a given (θ, ϕ), and therefore the attenuation length λ given by Eq. 4.49.

We see a two prominent features of mitigated absorption in the S-shaped band (tracing out

a great circle on the 2-sphere), where (i) I → 1 as these (θ, ϕ) combinations correspond to

larger energies where the photon absorption cross section falls off as we move further into

the S, and (ii) there is a jump discontinuity in the S-band due to an absorption edge in the

photoelectric cross section for germanium at around 11 keV.
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Figure 4.6: The absorption factor I(k⃗, G⃗) for the hkl = 111 plane as a function of the
incoming ALP direction k̂(θ, ϕ) when the bragg condition is satisfied and the mean free path
is given by the Borrmann anomalous absorption coefficient. Here the we take a crystal of
cubic volume with side length 5 cm. The solid white lines trace sample paths of the daily
solar angle in January (solid), March (dashed), June (dash-dotted), and September (dotted)
at the latitude and longitude of the Gran Sasso site.
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5. LABORATORY SEARCHES FOR SOLAR AXIONS AT

DIRECT DETECTION EXPERIMENTS∗

5.1 Dark Matter Direct Detection Experiments

Dark matter direct detection experiments, initially designed to search for WIMP-like dark

matter, have been adapted more broadly as detectors of Beyond Standard Model (BSM)

physics. Notable among the wide class of BSM physics searches at direct detection facilities

is the extraordinary sensitivity to possible axion or axion-like particles coupling to Standard

Model particles (SM) [101–107]. By examining electronic recoils produced by a solar axion

flux through the detector, these searches have probed a variety of a-SM couplings including

axion-electron, axion-photon, and axion-nucleon interactions.

In ref. [1], we investigated inverse Primakoff scattering as a new detection channel at

liquid xenon based direct detection experiments. We showed that sole use of the coupling

gaγ can fit the recent XENON1T excess of electron recoils in their low energy (1-30 keV)

data, with a rise above the background-only model occurring below 7 keV [108]. Although

a null result was later found with 1.16 tonne-years of exposure [109], we found at the time

that the fitting of the excess is free of the leading helioscope CAST constraint for ma ≳ 0.03

eV. However, even then the tension associated with the astrophysical constraints, HB star

cooling from R parameter measurements, was still 8σ [110].

The more interesting prospect that emerged out of this analysis was that next-generation

xenon experiments were projected to overcome the HB stars limit, and for gae = 10−13, the

2.4σ hint region of stellar cooling can be probed within 1σ; see Fig. 5.3. In addition, these

future bounds would be applicable for masses ma < 1 keV, covering complementary regions

of parameter space (including that of KSVZ axions) for which future helioscopes, such as

IAXO, start to lose sensitivity near ma ≳ 0.01 eV. A similar region of the gaγ−ma space will

* Parts of this chapter are adapted from ref. [1] with permission from Adrian Thompson and co-authors.
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also be investigated at LZ [111] and SuperCDMS SNOLAB [112], where the reach for gaγ

needs to be scaled for the new detector type roughly by
√
MDZ2

D/MXeZ2
Xe (where MD is the

detector mass and ZD is the atomic number of the detector nucleus) for the same exposure.

There are three prominant sources of solar axion flux that we considered with keV-scale

energy spectra, each with a dependence on a different axion coupling parameter. First is

the the “ABC" flux, driving axion production from Atomic de-excitation and recombination,

Bremmstrahlung, and Compton scattering processes [113], dependent on the gae coupling.

Next, the Primakoff production process, γZ → aZ, occurs via the gaγ coupling through

the t-channel exchange of a virtual photon scattering with electrons or ions in the solar

interior [114, 115]. Finally, de-excitation of 57Fe in the sun can produce a monoenergetic

axion population at 14.4 keV [116–118]. This flux would arise from an effective axion-nucleon

coupling geffan = −1.19g0an + g3an, where g0(3)an are the isoscalar (isovector) coupling constants

for the nucleons [118, 119]. Each of these flux components are shown in Fig. 5.1.

We considered inverse Primakoff scattering in addition to the axioelectric absorption

process outlined in the analysis performed by XENON1T (see also [118, 120–122]). Also,

it is possible that axions undergo inverse Compton scattering off electrons at rest in LXe,

ae− → γe− [67], but this is a subdominant process (∝ Z) in comparison to axioelectric

scattering (∝ Z5). If both axion-photon and axion-electron couplings are present, there are

interference terms present in the total matrix element of the combined processes, which are

also subdominant, but we included them as a matter of completeness.

To predict the event spectra from axions produced through ABC, Primakoff, and 57Fe,

we convolved the fluxes in each case with the total cross sections, for inverse Primakoff

scattering or axioelectric absorption, and multiply by the detector efficiency [108]. In ad-

dition, we approximated the detector response for the energy resolution by convolving the

simulated differential event distribution with an energy-dependent Gaussian smearing func-

tion [108, 123, 124]. The event distribution for Primakoff-produced axions that undergo

inverse Primakoff scattering in the LXe fiducial volume over a tonne-year exposure is shown
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Figure 5.1: Solar axion fluxes at the Earth’s surface are shown for the ABC, Primakoff, and
57Fe components. The bulk shape of the ABC component is due to axion-bremsstrahlung
and Compton scattering, e−I → e−I a and e−γ → e−a, while the numerous peaks are due
to atomic transitions in I∗ → Ia and e−I → I−a. The Primakoff flux exhibits a smooth
thermal distribution from the coherent conversion of photons into axions, while the 57Fe
flux is monoenergetic and is expected to broaden out from detector energy response effects.
Reprinted from ref. [1] with permission from Adrian Thompson and co-authors.

in Figure 5.2.

In Fig. 5.3 (bottom), I show the next-generation xenon (G3 Xe) constraint (with a 1

kilotonne-year exposure [125]) where we found that the 95% CL can overcome even the HB

stars constraint and start exploring the mild hint (2.4σ) region of stellar cooling within 1σ.

Interestingly, this is only possible with the inclusion of the inverse Primakoff channel since

without this channel the constraint could be worse by a few orders of magnitude. We also

found that our projected sensitivity for a 1 kton·year exposure at a G3 LXe experiment is

competitive with future helioscope experiments. The proposed DARWIN detector would

achieve a 200 tonme-year exposure [126], thereby covering the current HB Stars constraint.

Comparing the 1 kt·year projection against the projected sensitivities for IAXO+ with masses

ma > 0.1 eV, one can see where the sensitivity begins to diminish for larger masses [58] and

the direct detection experiments play an important role as a broadband search over ALP
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Figure 5.2: The event rate distributions for inverse Primakoff scattering in LXe for a
tonne-year exposure from Primakoff-produced, ABC-produced, and 57Fe-produced axions
are shown for select choices of axion couplings, and added to the “B0" background model.
Reprinted from ref. [1] with permission from Adrian Thompson and co-authors.

masses. Additionally, future direct detection experiments with directional sensitivity would

be able to use the directional information to reduce backgrounds and further increase their

sensitivity to solar axions. This is especially useful in the Primakoff channel, where the

axion’s incoming direction is approximately preserved due to the low momentum transfer /

forward scattering by the photon in the relativistic limit.

5.2 Pushing the Sensitivity Envelope with Bragg-Primakoff Conversion

Using the event rate formula for Bragg-Primakoff coherent scattering with a perfect

crystal worked out in § 4, the event rate in an energy window [E1, E2] is

dN

dt
= πg2aγ(ℏc)3

V

v2cell

∑
G⃗

I(k⃗, G⃗)

[
dΦa

dEa

|Fj(G⃗)Sj(G⃗)|2
4(Ĝ · k̂)2(1− (Ĝ · k̂)2)

|G⃗|2
W

]
(5.1)

where Sj is the crystal structure factor (see Ch. 4), Fj is the atomic form factor for species

j, and dΦa/dEa is the solar axion flux from Primakoff scattering and photon coalescence in

the sun [28, 127, 128]. The sum over the reciprocal lattice vectors G⃗ effectively counts the
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eV. Reprinted from ref. [1] with permission from Adrian Thompson and co-authors.
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contributions to the coherent scattering from each set of lattice planes, illustrated in Fig. 4.2.

For this analysis we may be also interested in axion masses that are heavier, around

∼1-10 keV. For this we use the parameterization appearing in ref. [128] for massive axion

production in the sun; the flux parameterizations are repeated here for convenience

dΦγ→a

dEa

=
4.20 · 1010

cm−2s−1keV−1

(
gaγ

10−10GeV−1

)2
Eap

2
a

eEa/1.1 − 0.7
(1 + 0.02ma) (5.2)

dΦγγ→a

dEa

=
1.68 · 109

cm−2s−1keV−1

(
gaγ

10−10GeV−1

)2

m4
apa

(
1 + 0.0006E3

a +
10

E2
a + 0.2

)
e−Ea (5.3)

where Φγ→a is the Primakoff solar flux and Φγγ→a is the flux resulting from resonant photon

coalescence, both in units of cm−2s−1keV−1, given for axion energy and momentum Ea and

pa in keV, and for the coupling gaγ in GeV−1. The solar axion flux from photon coalescence

and Primakoff conversion is shown in Fig. 5.4.

The time dependence is encoded in the solar position, which we can express through

k̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) for θ = θ(t) and ϕ = ϕ(t). For the solar angle as a function

of time and geolocation, we use the NREL solar position algorithm [129].
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The corresponding event rates for various energy windows are shown in Fig. 5.5 for Ge

crystal, where we compare the relative enhancements with and without the Borrmann effect

to the case of full-volume coherency and to the case of incoherent scattering on an amorphous

lattice1. The fluctuating features in the event rate are the result of the sum over G⃗ which

contributes to the Bragg peaks. Here we have assumed a volume of 260 cm3 (corresponding

roughly to the volumetric size of a SuperCDMS germanium module), and so the relative

suppression for each G⃗ lattice plane goes like V 1/3/λ(k⃗, G⃗), giving a suppression on the order

of 102 compared to the full-volume coherency assumption.
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Figure 5.5: Solar ALP scattering rates in a 250 cm3 Ge crystal, comparing the rates with full
volume coherency to ours with anomalous absorption effects included through the absorption
factor I(k⃗, G⃗). Here we fix the coupling gaγ = 10−8 GeV−1, energy resolution to be ∆ = 1.0
keV (for Eee < 6 keV) and ∆ = 1.5 keV (for Eee > 6 keV).

1Atomic Primakoff scattering is still coherent here; only the coherency at the level of the lattice is lost
for the sake of comparison with scattering on amorphous materials.
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The time-dependence can be visualized further by viewing the event rates as a function of

incident angles integrated across the whole solar axion energy window, as shown in Fig. 5.6

(left). Depending on the time of year, different sets of Bragg peaks will be traced over

during the day, inducing a annual modulation in addition to the intra-day modulation of the

signal. Since the time of day fixes the solar zenith and azimuth (θ, ϕ), we can finally show

the spectrum of the Primakoff signal as a function of energy deposition and time of day; see

Fig. 5.6 (right).

Figure 5.6: Right: Event rates in germanium as a function of incident angles θ, ϕ for
the integrated energy range (1, 10) keV and for reciprocal lattice planes (h, k, l) up to
max{h, k, l} = 5. The solid white lines trace sample paths of the daily solar angle in
January (solid), March (dashed), June (dash-dotted), and September (dotted) at the lati-
tude and longitude of the Gran Sasso site. Left: Differential energy-time event rate with
energy resolution ∆ = 2.5 keV. The time of year was taken to be January at the latitude
and longitude of the Gran Sasso site.

We forecast the event rates for SuperCDMS [4], LEGEND-200, LEGEND-1000, SABRE,

in addition to envisioned multi-ton setups, with detector specifications listed in Table 5.1.

For the background-free limits, we look for the Poisson 90% CL corresponding to ≃ 3 events

observed for a given exposure. The limits on the (gaγ − ma) parameter space are shown

in Fig. 5.7, where we show projections assuming full volume coherency without absorption
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effects (top) as well as with absorption effects (bottom). In the case where we assume

full volume coherency, we forecast the multi-kg-scale SuperCDMS setup to set the first

laboratory based limits for ma > 1 eV beyond the bounds set by XENONnT [130]. Ton-

scale setups like LEGEND-200 and LEGEND-1000 can reach further, probing couplings

up to the existing bounds fom HB Stars [60, 62] and CAST [59] for masses ma ≲ 10 keV,

losing sensitivity for higher masses where the axion production rates from photon coalescence

and Primakoff scattering diminish (see also Fig. 5.4). These reach more than an order of

magnitude lower in the coupling than previous Bragg-Primakoff solar axion searches, also

shown here for DAMA [71], CUORE [72], Edelweiss-II [74], SOLAX [75], COSME [76],

CDMS [77], and Majorana [78]. The QCD axion parameter space is shown here for the Kim-

Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type

benchmark models, where the range is defined by taking the anomaly ratios of E/N = 44/3

to E/N = 2 [26], although the space of heavier masses is also possible in high-quality axion

models and other scenarios, e.g. refs. [56, 131]. To probe this model parameter space beyond

the existing bounds from CAST and HB stars, multi-ton scale experiments are needed.

However, with the effects of absorption included (Fig. 5.7, bottom), the suppression of the

event rate brings our projections for LEGEND, SuperCDMS and SABRE to test parameter

space already excluded by HB stars constraints. However, the LEGEND-1000 background-

free scenario is projected to have the leading laboratory-based sensitivity beyond the existing

limits from CAST and XENONnT, but multi-ton CsI and NaI setups would extend this

to nearly cover the HB stars exclusion. The existing bounds from Edelweiss-II, COSME,

SOLAX, CDMS, DAMA, and Majorana are not shown here, but their exclusions would

necessarily shift to larger coupling values to account for absorption effects in the Bragg-

Primakoff rates, depending on the volume and detector material. For the future projections,

note that the relative reach between NaI and CsI crystals is relatively suppressed when

absorption is included here, due to the behavior of the imaginary form factor for CsI giving

only modest Borrmann enhancements at the lower reciprocal lattice planes; see Fig. 4.4. In
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order to push the sensitivity envelope beyond the current bounds by CAST and HB stars,

even with multi-ton setups, the absorption effects need to be mitigated in order to recover

the event rate sensitivity in full-volume coherence. Some possibilities are discussed in the

following section.

Experiment
Module Mass
×no. Modules Total Mass

Energy
Resolution Threshold Exposure (tonne-years)

SuperCDMS (Ge) 1.4 kg × 18 25.2 kg 2.5 keV 1 keV 0.1
SuperCDMS (Si) 0.6 kg × 6 3.6 kg 2.5 keV 1 keV 0.0144
LEGEND-200 (Ge) 2.6 kg × 75 195 kg 2.5 keV 1 keV 0.78
LEGEND-1000 (Ge) 2.6 kg × 400 1 ton 2.5 keV 1 keV 4.16
SABRE (NaI) 2 kg × 25 50 kg 1 keV 1 keV 0.15
Ton-scale NaI 2 kg × 2500 5 ton 1 keV 1 keV 50
Ton-scale CsI 2 kg × 2500 5 ton 1 keV 1 keV 50

Table 5.1: Assumed detector parameters for the SuperCDMS [4], LEGEND [5], and
SABRE [6] configurations, as well as those taken for the NaI and CsI multi-tonne bench-
marks. Exposures are based on 4-5 years of active run time.

We forecast the event rates for SuperCDMS [4], LEGEND-200, LEGEND-1000, SABRE,

in addition to envisioned multi-tonne setups, with detector specifications listed in Table 5.1.

For the background-free limits, we look for the Poisson 90% CL corresponding to ≃ 3 events

observed for a given exposure. The projected reach over the (gaγ − ma) parameter space

for these detector benchmarks is shown in Fig. 5.7, where we show projections including the

effects of absorption and the Borrmann enhancement to the absorption length, in addition

to the projected limits assuming full volume coherence (FVC), i.e. I(k⃗, G⃗) → 1, indicated

by the arrows and dotted lines.

The QCD axion parameter space is shown (yellow band) for the Kim-Shifman-Vainshtein-

Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type benchmark models,

where the range is defined by taking the anomaly ratios of E/N = 44/3 to E/N = 2 [26],

although the space of heavier masses is also possible in high-quality axion models and other
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scenarios, e.g. refs. [56, 131]. To probe this model parameter space beyond the existing

bounds from CAST and HB stars, when full volume coherence is maintained, multi-tonne

scale experiments are needed.

With the effects of absorption included, we project SuperCDMS, LEGEND, and SABRE

to test parameter space unexplored by laboratory-based probes beyond the CAST and

XENONnT constraints for ma ≳ 1 eV, but already excluded by HB stars constraints. How-

ever, multi-tonne CsI and NaI setups would extend this to nearly cover the HB stars exclu-

sion. Similar reach could in principle be found when considering the joint parameter space of

multiple ALP couplings to photons, electrons, and nucleons [1]. For instance, by considering

the 57Fe solar axion flux, one could look for 14.4 keV energy signatures and their Bragg-

Primakoff peaks, although the sensitivity would likely contend with astrophysics constraints

as well [132].

The existing bounds from DAMA [71], CUORE [72], Edelweiss-II [74], SOLAX [75],

COSME [76], CDMS [77], and Majorana [78] are not shown here, but their exclusions would

necessarily shift to larger coupling values to account for absorption effects in the Bragg-

Primakoff rates, depending on the detector volume and material. Please see appendix C for

the projected sensitivity and existing constraints assuming full volume coherence. In fig. 5.7,

note that the relative reach between NaI and CsI crystals is relatively suppressed when

absorption is included here, due to the behavior of the imaginary form factor for CsI giving

more modest Borrmann enhancements at the lower reciprocal lattice planes; see Fig. 4.4. In

order to push the sensitivity envelope beyond the current bounds by CAST and HB stars,

even with multi-tonne setups, the absorption effects need to be mitigated. Some possibilities

are discussed in the next section.

There may be ways to recover the sensitivity initially projected in the case of full-volume

coherence by mitigating the loss of coherence due to absorption. These are of course specu-

lative routes. Some of these routes for future work are enumerated below;

1. Since the attenuation of the coherent volume is direction-dependent, as shown in
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Figure 5.7: Sensitivity projections using the exposures listed in Table 5.1 for SuperCDMS,
LEGEND-200, LEGEND-1000, SABRE, and multi-tonne setups with absorption effects. The
extension of these sensitivities to full volume coherency are indicated with the arrows.

Fig. 4.6, one could imagine optimizing a detector geometry such that the size and

orientation relative to the incoming flux of axions is ideal, maximizing use of the Laue-

type scattering and Borrmann effect to minimize the absorption. This would require

precise knowledge of the crystal purity and plane orientation obtained from X-ray

measurements.

2. Along a similar vein, since the effects of absorption are minimized when the detector

scale V 1/3 becomes comparable to the photon mean free path λ, one could instead

prefer to use smaller detector volumes but with a large total mass partitioned into

many individual modules. As long as each module is optically insulated from the

others, the loss of coherence due to absorption will be contained within each module

and the suppression to the event rate can be mitigated.
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3. It might be possible to apply the principles in this work to radioisotope experiments

like those proposed in ref. [133], where a keV-scale nuclear transition line (e.g. the

14.4 keV line of 57Fe) could source ALPs through a coupling to nucleons. Subsequent

detection by an array of crystals encasing the radioactive source searching for transition

photons of known energy Primakoff-converting in the crystal would leave a missing

energy signature in the detector. By looking for disappearing keV-scale transitions the

signal rate would enjoy the coherent enhancement relative to the incoherent scattering

considered in ref. [133].

4. A dedicated keV photon source that would impinge on a crystal detector could fire at

a fixed angle of incidence such that the event rate enhancement from the Borrmann

effect and Laue effects are optimized and full volume coherence is restored as best

as possible. One might achieve this with a keV laser [134] or synchrotron sources in

a similar fashion to LSW experiments [135–138]. By performing a similar “missing”

photon search as the one discussed above, the event rate for the detection of missing

energy will be proportional to g2aγ, rather than g4aγ as in solar axion searches, greatly

enhancing the sensitivity.

In the case where we assume full volume coherence, shown in Fig. 5.7, dotted lines, ton-

scale setups like LEGEND-200 and LEGEND-1000 can reach significantly smaller couplings,

probing values of gaγ beyond the existing bounds fom HB Stars [60, 62] and CAST [59] for

masses ma ≲ 10 keV, losing sensitivity for higher masses for which the axion production rates

from photon coalescence and Primakoff scattering are diminished (see also Fig. 5.4). These

reach more than an order of magnitude lower in the coupling than previous Bragg-Primakoff

solar axion searches.

Lastly, I will make some comments about extending this work to other important phe-

nomenological probes. First, one can additionally consider non-relativistic ALPs, which may

come from the dark matter halo, or from stellar basins like those considered in ref. [139, 140].
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In these cases one can think about a modified Bragg-Primakoff condition, or instead a

photoionization-like process which can actually dominate the detection channels in the non-

relativistic regime [141]. For this second option, we investigated this possibility in an alterna-

tive method to ref. [141] that again makes use of the DarkARC code to compute the ionization

amplitudes in inverse Primakoff photoionization; see appendix B. Secondly, the anomalies

observed in white dwarf (WD), red giant (RG), and horizontal branch (HB) cooling data,

known as the WD stellar cooling hints, have shown to be explained by ALP-assisted stellar

cooling that would correspond to parameter space near the gaγ ≲ 10−11 GeV−1 level and

below, and for non-vanishing gae ≃ 10−13 [60–62]. These are also shown in Fig. 5.7 by the

gray band for the RG and HB cooling hints explained at the 1σ level in gaγ, which extends

down at the 2σ level to vanishing photon coupling, but can be explained at the 2σ level by a

non-vanishing electron coupling. Testing the ALP explanation is a further motivator of prob-

ing this parameter space, and an analysis that combines both electron and photon couplings

in this context for future crystal detectors would be able to directly test this anomaly.
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6. CONCLUSION

In this work, we have taken into account a more proper estimate of the effects of anoma-

lous absorption into the event rate, i.e. via the Borrmann effect on the coherency condition

of Bragg-Primakoff photoconversion of solar axions. The sensitivity of crystal technologies

used in the SuperCDMS, LEGEND, and SABRE setups has been demonstrated, and we

find that the inclusion of absorption effects even with Borrmann-enhanced signal rates still

would require multi-ton scale detectors to surpass the existing astrophysical constraints in

sensitivity to ALPs. However, a dedicated study with a thorough and careful treatment of

the absorption suppression and Borrmann effects is definitely needed to better understand

its impact on experiments that utilize Bragg-Primakoff conversion. In particular, the evalua-

tion of the imaginary form factors to determine the anomalous absorption effect in materials

other than Ge is of particular interest for future work.

Crystal detector technologies are also necessary tools to discriminate axion-like particle

signals from other types of BSM and neutrino signatures, with high sensitivity to time mod-

ulation from the directional sensitivity of Bragg-Primakoff scattering. This is a powerful tool

for background rejection as well, and ideally a joint analysis of multiple detectors situated at

different latitudes and longitudes would benefit greatly from leveraging the time modulation

of the signal. They are also complimentary to future helioscope experiments like IAXO;

while the projected reach for IAXO over the axion-photon coupling parameter space is vast,

the sensitivity to solar axions with masses ma ≳ 1 eV becomes weaker to coherent Primakoff

conversion in magnetic field helioscopes. It was shown in ref. [1] that future liquid noble gas

detectors for dark matter direct detection at kilotonne-year scales could begin to probe cou-

plings beyond the astrophysics constraints for axion-like particles, while in this work we find

that equivalent reach is possible at tonne-year exposures with crystal detector technology, if

utilized to its fullest potential. The presence of complimentary searches at these mass scales
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is essential for a complete test of the QCD axion parameter space and the parameter space

for heavier axion-like particle models.
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APPENDIX A

COHERENT ATOMIC FORM FACTOR

The atomic form factor, in the original sense, is given by the Fourier transform of the

spatial parts of the initial and final state atomic wave functions;

F (q) =

∫
ψ∗
f ψie

iq⃗·r⃗d3r (A.1)

This term can usually factor out of the entire matrix element, as long as there are no

spin-dependent pieces in the spatial wave functions, such that the matrix element can be

factorized as (Lorentz structures) × (Form Factor). The exception to this rule is seen in

nucleon scattering which has separate form factors for the electric and magnetic dipole

moments, due to the different spin rules for each interaction.

For atomic scattering, typically one considers transitions from the ground state wave

function ψ0 to an excited state ψE, or more simply, in the case that there is no change to

the spatial in- and out-states, only a momentum transfer to the whole target. In that case,

we can take

F (q) =

∫
|ψ|2eiq⃗·r⃗d3r

∝
∫
ρ(r⃗)eiq⃗·r⃗d3r (A.2)

where ρ is the mass or charge distribution that is proportional to the wave function amplitude.

There are two form factors used in ref. [81] which I will discuss later;

fγ(q⃗) ≡
1

e

∫
d3r⃗ρ(r⃗)eiq⃗·r⃗ (A.3)

fa(q⃗) ≡ k2a

∫
d3r⃗ϕ(r⃗)eiq⃗·r⃗ (A.4)
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The atomic form factor has the property

fγ(0) = Z (A.5)

which normalizes ρ(r) to the total atomic charge, eZ. The axion form factor, on the other

hand, should be treated carefully. We can derive an analog of the Mott-Bethe relation, which

ordinarily relates the X-ray and electron scattering form factors, to relate the X-ray and axion

form factors fγ and fa, respectively. I use Bethe’s approach of inserting the Laplacian acting

on e−q⃗·r⃗ equation and integrating by parts;

fa(q⃗) = k2a

∫
d3r⃗ϕ(r⃗)eiq⃗·r⃗ (A.6)

= − 1

q2
k2a

∫
d3r⃗ϕ(r⃗)∇2eiq⃗·r⃗ (A.7)

= − 1

q2
k2a

∫
d3r⃗∇2ϕ(r⃗)eiq⃗·r⃗ (A.8)

=
k2a
q2

∫
d3r⃗

[
eZδ(r)− ρ(r)]

]
eiq⃗·r⃗ (A.9)

=
ek2a
q2

[
Z − fγ(q⃗)

]
(A.10)

where I have used Poisson’s equation ∇2ϕ(r⃗) = −(eZδ(r)− ρ(r)) in natural units, which in-

cludes the nucleus charge density eZδ(r) and the electron charge distribution with
∫
ρ(r⃗)d3r⃗ =

eZ. The final expression in Eq. A.10 agrees with [79].

Next, it was pointed out by [142] that while fγ(0) = Z, fa does not approach zero in the

q = 0 limit, as the Yamaji paper suggests. This is because after expanding fγ(q) in powers

of q, an even series develops whose leading term is Z, cancelling the other Z in the bracket,

and subleading term is ∝ q2 which gets cancelled by the q2 in the denominator of Eq. A.10.
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See below;

fγ(q⃗) =
1

e

∫
d3r⃗ρ(r⃗)eiq⃗·r⃗ (A.11)

=
1

e

∫
ρ(r⃗)

sin(qr)

qr
r2dr (A.12)

=
1

e

∫
ρ(r⃗)

(
1− (qr)2

3!
+

(qr)4

5!
− . . .

)
r2dr (A.13)

= Z
(
1− q2

3!
⟨r2⟩+ q4

5!
⟨r4⟩ − . . .

)
(A.14)

Therefore, inserting this expansion into Eq. A.10, we have

fa(q) = eZk2a

( 1

3!
⟨r2⟩ − q2

5!
⟨r4⟩+ . . .

)
(A.15)
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APPENDIX B

PHOTOELECTRIC PRIMAKOFF IONIZATION

Consider the scattering of an ALP and an atomic system such that the energy transfer of

the incoming ALP ionizes the atom, ejecting one of the outer shell electrons into a continuum

final state. For the ALP-photon coupling aF F̃ , this can happen through a Primakoff-like

process,

a+ A→ γ + A+ + e− (B.1)

for initial and final 4-momenta ka, pe, kγ, p′e of the ALP, initial state electron, final state

photon, and final state electron, respectively (see also Fig. B.1). Consider Primakoff

γa

A+A
e−

Figure B.1: Tree-level ALP ionization through an inverse Primakoff-like scattering with an
atomic system.

scattering, but instead of an atomic coherence, we work in the incoherent regime in which a

target atom at rest is ionized by the exchange photon. Define the free particle 4-momenta

as follows.

kµa → (Ea, k⃗a) (B.2)

pµe → (Ee, p⃗e)

kµγ → (Eγ, k⃗γ)

p′e
µ → (E ′

e, p⃗
′
e)
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We start with the 2 → 2 differential cross section element and follow the guidance of refs. [96,

143] for the following calculation.

dσ =
1

4EaEeva

d3p⃗′e
(2π)3

1

2E ′
e

d3k⃗γ
(2π)3

1

2Eγ

|M|2(2π)4δ4(ka + pe − p′e − kγ) (B.3)

The matrix element can be broken up as the point-wise matrix element combined with the

atomic electron matrix element. The electronic part will describe the transition of an electron

in the (n, l) shell to a continuum state with momentum p′e and final state quantum numbers

(n′, l′);

|M|2 =
∫

d3pe
(2π)3

⟨e⃗2|p⃗′e⟩ ⟨|Mfree(ka, pe, kγ, p
′
e)|2⟩ ⟨p⃗e|e⃗1⟩ (B.4)

Here, ⟨|M|2⟩ is the matrix element for point-wise Primakoff scattering:

⟨|M|2⟩ = e2g2aγ
2t2

[m2
at(m

2
e + s)−m4

am
2
e − t((s−m2

e)
2 + st)− t(t−m2

a)/2], (B.5)

Next, we can remove the spatial part of the delta function by absorbing it with the d3p′e

integration, making use of the momentum transfer q⃗ = p⃗e − p⃗′e;

dσ =
V

4EaEeva
(2π)δ(Ef − Ei)

1

2E ′
e

d3k⃗γ
(2π)3

1

2Eγ

∫
d3pe
(2π)3

⟨e⃗2|q⃗ + k⃗⟩ ⟨|Mfree|2⟩ ⟨p⃗e|e⃗1⟩ (B.6)

=
V δ(Ef − Ei)

16EaEγEeE ′
eva

d3k⃗γ
(2π)2

∫
d3pe
(2π)3

⟨e⃗2|q⃗ + k⃗⟩ ⟨|Mfree|2⟩ ⟨p⃗e|e⃗1⟩

Now we make a change of variables d3kγ → d3q and express d3q = 2πq2dqd(cos θ), where

cos θ is the cosine angle between the momentum transfer and the ALP direction. Although

the integration over d3p′e was already performed, we need to put back the phase space of the

asymptotic free electron final state by acting on dσ with the integral operator;

V

2

∑
states

∫
p′e

3dTe
(2π)3Te

(B.7)
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where Te = E ′
e −me ≈ p′e

2

2me
. At this stage we can also safely write EeE

′
e ≈ m2

e. This gives

dσ =
δ(Ef − Ei)

128EaEγm2
eva

2πq2dqd(cos θ)

(2π)2
dTe
Te

⟨|Mfree|2⟩ |fnl
ion(p

′
e, q)|2 (B.8)

taking a familiar definition for the ionization form factor [96, 143];

|fnl
ion(p

′
e, q)|2 =

V 4p′e
3

(2π)3

∑
states

∣∣∣∣ ∫ d3xψ∗
p′e,l

′,m′(x⃗)ψn,l,m(x⃗)e
iq⃗·x⃗

∣∣∣∣2 (B.9)

This ionization form factor has been calculated using a number of schemes, and several

codes have been made available by other authors. For this work, we have used [NEEDS

CITATION]. We perform the integration over d(cos θ) by making use of the relation

∫
d(cos θ)δ(Ef − Ei) =

Eγ

kaq
(B.10)

after writing the energy delta function in terms of cos θ and using the identity δ(f(x)) =

|f ′(x = x0)|−1δ(x− x0) where f(x0) = 0. This reduces the cross section element to

dσ =
Eγ

ka

1

128EaEγm2
eva

2πqdq

(2π)2
dTe
Te

⟨|Mfree|2⟩ |fnl
ion(Te, q)|2 (B.11)

The energy prefactors can be written in a manifestly Lorentz-invariant way, since it can be

shown that
Eγ

ka

1

EγEam2
e

=
4

(s−m2
e −m2

a)(s−m2
e +m2

a)
(B.12)

and, therefore,

dσ =[(s−m2
e −m2

a)(s−m2
e +m2

a)]
−1 1

64πva
qdq

dTe
Te

⟨|Mfree|2⟩ |fnl
ion(Te, q)|2 (B.13)

I can connect this expression to the point-wise inverse Primakoff differential scattering
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cross section, which can be written as

(
dσ

dq2

)
point

=
1

16π(s− (me −ma)2)(s− (me +ma)2)
⟨|Mfree|2⟩ . (B.14)

Factoring out B.14 from B.13 gives us

dσ =
1

4va
qdq

dTe
Te

ξ(s,me,ma)

(
dσ

dq2

)
point

|fnl
ion(Te, q)|2 (B.15)

where we have defined

ξ(s,me,ma) ≡
(s− (me −ma)

2)(s− (me +ma)
2)

(s−m2
e −m2

a)(s−m2
e +m2

a)
. (B.16)

For m2
a << m2

e and va → 1, this simplifies to

∂2σ

∂Te∂q
=

q

4Te

(
dσ

dq2

)
point

|fnl
ion(Te, q)|2

=
1

8Te

(
dσ

dq

)
point

|fnl
ion(Te, q)|2 (B.17)

This process was investigated further using a different theoretical formalism in ref. [141].

Lastly, let’s compare the photoionization process to the coherent Primakoff process. I

show this comparison in Fig. B.2. We see that the usual process without ionization has the

dominant cross section in the relativistic / high energy limit, while below 1 keV, ionization

begins to dominate. Here I take ma ≪ 1 keV.
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Figure B.2: Right: Primakoff scattering cross sections for a variety of atomic form factors
(red) compared against the Primakoff photoionization cross section (blue). Left: coherent
Primakoff scattering compared with Primakoff photoionization plotted on a log scale to
visualize the behavior at low energies where photoionization becomes dominant.
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APPENDIX C

FURTHER ALP PARAMETER SPACE CONSTRAINTS

The existing bounds from DAMA [71], CUORE [72], Edelweiss-II [74], SOLAX [75],

COSME [76], CDMS [77], and Majorana [78] are shown in Fig. C.1 assuming full volume

coherence (FVC), as well as the projected limits for SuperCDMS, LEGEND-200, LEGEND-

1000, SABRE, and future CsI and NaI detectors with FVC. However, the assumption of

FVC in previous experiments and the forecasted limits shown is likely poor, and depending

on the module size and material assumed in each case, the attenuation factor I(k⃗, G⃗) will

give varying amounts of suppression to the event rate, changing the sensitivites and existing

exclusions shown here.
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Figure C.1: Sensitivity projections for germanium experiments SuperCDMS, LEGEND-200,
LEGEND-1000, and SABRE setups with with full volume coherency assumed.
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Next, in Fig. C.2 I show the projections with aborption effects and with FVC (arrows).

I additionally overlay the red giant and horizontal branch cooling hints (at 1σ for a pure gaγ

coupling) and the constraints from assuming ALPs make up the dark matter and constraints

from cosmological considerations.
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Figure C.2: Sensitivity projections for germanium experiments SuperCDMS, LEGEND-200,
LEGEND-1000, and SABRE setups with with the stellar cooling hints and constraints on
DM axions and from cosmology.
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