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ABSTRACT

Cavity Quantum Electrodynamics with Landau Quantized Graphene

Maxwell Throm1

Departments of Physics and Astronomy and Mathematics1

Texas A&M University

Research Faculty Advisor: Alexey Belyanin
Department of Physics and Astronomy

Texas A&M University

We attempt to see if strong coupling between a quantum electromagnetic field and Landau

quantized (LQ) graphene is achievable. LQ graphene acts as a collection of two-level quantum bits

(qubits). This coupling between field and qubits gives rise to Rabi oscillations between the two

energy levels of the qubits. The cavity we are using to confine the optical field is a photonic crystal

cavity with a 2D sheet of graphene sitting between two layers of hexagonal boron nitride (hBN)

with distributed Bragg reflectors (DBRs) on the outside acting as mirrors.

A better understanding would make it possible for devices to be constructed that implement

new principles of telecommunications and computing. For example, quantum computers utilize

qubits constructed of the superposition of quantum states instead of classical bits based on electric

charge. Quantum computing promises drastic increase in memory density and computation speed.

Communications based on the exchange of quantum states of light are inherently secure, because

any eavesdropping attempt will destroy the quantum state.
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NOMENCLATURE

|Ψ〉 The state vector representing a quantum system

Ĥ The Hamiltonian operator, the generator of time translations

E The electric field vector

Ê The quantized electric field operator

c, c† The annihilation and creation operators for the quantized electric field,
respectively

σ̂j, σ̂
†
j The dipole operators, respectively

p̂i = −ih̄ ∂
∂xi

The canonical momentum operator

Π̂i = p̂i + e
c
Ai The mechanical momentum operator

ih̄∂|Ψ
∂t

= Ĥ|Ψ〉 The time-dependent Schrodinger equation

Ĥ|Ψ〉 = E|Ψ〉 The time-independent Schrodinger equation
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1. INTRODUCTION

We want to mathematically describe light’s interaction with graphene in a photonic crystal

cavity within the rigorous quantum formalism. For every model with increasing complexity, we

must write down a Schrodinger equation and solve it for the time evolution of the system. This

is well-known but will become more difficult when we include coupling of a quantum system to

an external world and associated dissipation and noise, as in our model in [1]. Several ways of

doing this are explained in [2], such as Heisenberg-Langevin approach to adding damping and

noise to your equations. Noise and damping are difficult barriers to overcome physically because

these reduce the effectiveness of the coupling, hence the need for strong coupling between the

electromagnetic field of the light and the atoms in the material as is described in the [3].

Many of the applications of strongly coupled nanophotonic systems are discussed in [4].

For example, better waveguides for light can be created that are highly tunable. The photons of

incident light and the plasma of electrons in the material (such as a metal) become coupled and

can be guided through nanowires like current in the form of plasmon-polaritons. This gives rise

to applications in integrated photonics for optical computing and interconnects between computer

parts. Quantum light leads to quantum entanglement between individual plasmons and electron

states. Even though the energy of the electrons themselves can be difficult to change, the energy of

the coupled states is easy to change by varying the frequency of the incident light or the geometry

of the optical cavity [4].

In this paper we will use the standard convention that bolded characters such as E and p

stand for vector valued quantities and characters with a carrot or “hat" on top such as Ê and σ̂ are

linear operators unless otherwise stated.
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2. GRAPHENE

We begin with an examination of the properties of graphene. Graphene is a two-dimensional

hexagonal lattice of carbon atoms.

Figure 2.1: The red and blue atoms demonstrate the two triangular sublattices that compose the
graphene sheet [5].

Carbon atoms have four valence electrons. Three of these form σ bonds (not to be confused

with the dipole operators that will be introduced later which, regretably, are also denoted σ̂) with

the neighboring carbon atoms to form the hexagonal lattice like in Fig. 2.1. The fourth valence

electron is the conduction electron that can move through the graphene.

6



Figure 2.2: (a) shows the lattice stucture of graphene and (b) shows the stucture of the lattice in
inverse space [6].

One can define nearest neighbor vectors δ1,2,3 as well as the inverse lattice vectors for

graphene b1,2 given in [6]:

δ1,2 =
a

2
(1,±

√
3), δ3 = a(−1, 0) (Eq. 1)

and

b1,2 =
2π

3a
(1,±

√
3). (Eq. 2)

One can think of the inverse lattice as taking place in momentum space (up to units of h̄), the

Fourier transform of real space. The inverse space has points of high symmetry that we call K and

K ′ given in [6] by

K′ =
2π

3a

(
1,

1√
3

)
, K =

2π

3a

(
1,

1√
3

)
. (Eq. 3)

Fig. 2.2 shows the real space lattice, inverse lattice, and K and K ′ points. The points K and K ′

are called Dirac points.

7



Figure 2.3: This figure shows the band structure of graphene. The band crossing at K comes from
the these “free" electrons. The three electrons that take place in the σ bonds form the bands that
do not have these self-intersections [6].

In this paper, we focus on the band structure around these Dirac points. Around these points

the energy as a function of momentum is approximately linear. This can be seen at the intersections

of the bands at K in Fig. 2.3. The approximate Hamiltonian for the electrons around the K point

is given in [7] and is

Ĥ = vF σ̂ · p̂ = vF

 0 p̂x − ip̂y

p̂x + ip̂y 0

 , (Eq. 4)

where vF = 106 m/s is the Fermi velocity, p̂i = −ih̄ ∂
∂xi

is the momentum operator, and σ̂ =

σ̂xx̂ + σ̂yŷ is the vector composed of the three Pauli matrices (again not to be confused with

the dipole moment operators). Eq. 4 and σ̂ don’t include a z−component because the electrons

are constrained to move on the two dimensional surface and we choose coordinates such that the

z−axis is perpendicular to the sheet of graphene.
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3. LANDAU QUANTIZED GRAPHENE

We now apply a constant magnetic field B = Bẑ along the z−axis perpendicular to the

sheet of graphene. To change our equations of motion, we make the replacement in the Hamiltonian

in Eq. 4

p̂ 7→ Π̂ = p̂ +
e

c
A, (Eq. 1)

where A is the magnetic vector potential, implicitly defined by the equation ∇ × A = B [7].

We further follow the convention of [7] and choose the gauge such that A = (0, Bx, 0). Then

Π̂x = p̂x = −ih̄ ∂
∂x

and Π̂y = p̂y + e
c
Bx = −ih̄ ∂

∂y
+ e

c
Bx.

One can solve for the energy eigenvalues E and eigenspinors ψ = (ψa, ψb)
T of this system

by using the time-independent Schrodinger equation Ĥψ = Eψ, or

 0 p̂x − i(p̂y + e
c
Bx)

p̂x + i(p̂y + e
c
Bx) 0


ψa
ψb

 = E

ψa
ψb

 . (Eq. 2)

The solution to this system of equations gives E = ±h̄ωc
√
|n| for n ∈ Z, where ωc =

√
2vF
lc

is the

cyclotron frequency and lc =
√

ch̄
eB

is the magnetic length [7].

9



Figure 3.1: The cone represents the dispersion of the electrons in graphene near a Dirac point of
the graphene. The horizontal Landau levels represent the possible energy levels for the electrons
once the magnetic field B is applied [8].

We will place the Fermi-level of our system EF between the n = 0 and n = 1 states of

our system, see Fig. 3.1. This means that all of the energy levels less than EF (that is, n = 0 and

below) are fully occupied and the states n = 1 and above are unoccupied.

When we introduce an optical electromagnetic field with photons that have an energy of

approximately h̄ωc, the interaction will excite some of the n = 0 states to n = 1 states. These

transitions between n = 0 and n = 1 are our qubits. The number of qubits is given by the

degeneracy of the 0th Landau level. For n > 0 the degeneracy is given by the equation N =

gA/(2πl2c), where g = 2 · 2 = 4 is the spin-valley degeneracy and A is the area of the sheet of

graphene [9]. For n = 0, the degeneracy is half this number [10]. Thus, the number of qubits is

N =
A

πl2c
=
AeB

πch̄
. (Eq. 3)

Note that the number of qubits is proportional to the magnetic field.
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4. QUBITS IN AN OPTICAL FIELD

We will move on to an abstract discussion of a single qubit in an electromagnetic field. In

this section, we will often refer to our qubit as a two-state atom, but it is ultimately the qubits in

the Landau quantized graphene.

We are working with a quantized optical field so that the vector E is promoted to a vector

operator Ê = Eĉ+ E∗ĉ†. The operators ĉ and ĉ† are the respective annihilation and creation opera-

tors for modes of the electric field, i.e., photons. In general, you would have separate creation and

annihilation operators for each mode (or operators that are functions of the frequency depending on

how you like to think about it) but as we have one mode, we just have the one set of operators. In

this case these operators create modes of frequency ω since we have just one field. These operators

act on the Fock space of photons in the following manner:

c|n〉 =
√
n|n− 1〉, c†|n〉 =

√
n+ 1|n+ 1〉. (Eq. 1)

This normalization is often chosen so that the operator c†c acts on the state |n〉 to give n|n〉. For

this reason, c†c is often called the number operator. Since photons are bosons, the creation and

annihilation operators obey the commutation relation

[c, c†] := cc† − c†c = 1, (Eq. 2)

where 1 is the identity operator on the Fock space.

The state vector for the system |Ψ〉 can be expanded in basis states

|Ψ〉 = C00|0〉
N∏
j=1

|0j〉+ C10|1〉
N∏
j=1

|0j〉+
N∑
j=1

C0j|0〉|1j〉
N∏
m6=j

|0m〉. (Eq. 3)

Here the leftmost ket in each term represents the Fock states of the optical field. We only consider

states of zero or one photons. The product
∏N

j=1 |0j〉 is the state of all N qubits being in the
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unexcited state and |1j〉
∏N

m 6=j |0m〉 is the state where the jth qubit is excited and the rest are

unexcited.

Since the field is a quantized object, we must include a term in the (quantum) Hamiltonian

for the electric field. As shown in [2] this can be written,

Hem = h̄ω
(
c†c+

1

2

)
. (Eq. 4)

This makes sense intuitively because c†c represents the number of photons making up the field and

each photon has an energy of h̄ω.

We need a term in the Hamiltonian for the qubit itself. That is, the valence electron can

either be in a ground state |0〉 or an excited state |1〉. Since the zero of the energy is arbitrary, we

might as well set the ground state to be the zero energy state of the electron and let the excited

state have energy W . This W is the energy difference h̄ωc in the case of our Landau qunatized

graphene. The "free" Hamiltonian for the qubits without the field interaction is then simply

Ĥa =
N∑
j=1

W |1j〉〈1j|, (Eq. 5)

where the subscript a is for "atom" and the sum on j is for the N qubits [11].

We must also write the interaction Hamiltonian in terms of the field operator. We have the

dipole moment operator d̂ =
∑N

j=1 d|1j〉〈0j|+ d∗|0j〉〈1j|. If we define the operator σ̂j := |0j〉〈1j|

then the dipole moment operator can be written

d̂ =
N∑
j=1

dσ̂†j + d∗σ̂j. (Eq. 6)

It is worthwhile for calculations to note some properties of the operators σ̂ and σ̂†. We list them

below:

• σ̂†j |0j〉 = |1j〉, σ̂†j |1j〉 = 0

12



• σ̂j|1j〉 = |0j〉, σ̂j|0j〉 = 0

• σ̂2
j = (σ̂†j)

2 = 0

• {σ̂j, σ̂†j} := σ̂jσ̂
†
j + σ̂†j σ̂j = 1.

Note that σ̂j and σ̂†j obey an anti-commutation relation instead of a commutation relation like the

photon field operators. This allows us to write the atomic Hamiltonian in the form

Ĥa =
N∑
j=1

Wσ̂†j σ̂j. (Eq. 7)

Then the interaction Hamiltonian is simply Ĥ1 = −d̂ · Ê so that as in [11] the total Hamil-

tonian for the system is

Ĥ = Ĥa + Ĥem + Ĥ1 = h̄ω
(
c†c+

1

2

)
+

N∑
j=1

[
Wσ̂†j σ̂j − (dσ̂†j + d∗σ̂j) · (Eĉ+ E∗ĉ†)

]
. (Eq. 8)

We will now also employ the rotating wave approximation. That is, we assume the Rabi

frequency ΩR := d · E/h̄ as well as the difference |W − h̄ω| are both << h̄ω,W . This allows us

to ignore the terms that will show up in the equations as e±i(ω+W/h̄)t because they rotate with such

a high frequency that they average to zero over any significant amount of time. In practice, this

amounts to throwing away the terms in the Hamiltonian that include d∗ · E and d · E∗ so we have

Ĥ = h̄ω
(
c†c+

1

2

)
+

N∑
j=1

[
Wσ̂†j σ̂j − h̄ΩRσ̂

†
j ĉ− h̄Ω∗Rσ̂j ĉ

†
]
. (Eq. 9)

We substitute |Ψ〉 from Eq. 3 into the Schrodinger equation ih̄∂|Ψ〉
∂t

= Ĥ|Ψ〉 using the Hamiltonian

13



Eq. 9 to obtain the equations

Ċ00 =
1

i

ω

2
C00 (Eq. 10)

Ċ10 =
1

i

(3

2
ωC10 −

N∑
j=1

Ω∗RC0j

)
(Eq. 11)

Ċ0j =
1

i

(ω
2
C0j − ΩRC10 +

W

h̄
C0j

)
, (Eq. 12)

where the dot over a letter such as Ċ indicates a time derivative. The solution for C00 is simply

C00(t) = C00(0)e−iωt/2. Following the convention in [11], we define F :=
∑N

j=1C0j so that we

can obtain the equations

Ċ10 =
1

i

(3

2
ωC10 − Ω∗RF

)
(Eq. 13)

Ḟ = −i
(ω

2
F −NΩRC10 +

W

h̄
F
)
, (Eq. 14)

We now have coupled equations for C10 and F that are more straightforward to solve. One further

simplification we can make is by factoring out a phase e−i3ωt/2 by defining C10 = G10e
−i3ωt/2 and

F = GF e
−i3ωt/2 [11]. After defining ∆ := W

h̄
− ω and doing some slight rearranging we arrive at

the equation

G̈10 + i∆Ġ10 +N |ΩR|2G10 = 0 (Eq. 15)

which has solution

G10(t) = A1e
Γ1t + A2e

Γ2t, (Eq. 16)

where

Γ1,2 = −i
(

∆

2
±
√

∆2

4
+N |ΩR|2

)
. (Eq. 17)

Finally, this gives for C0j [11]

C0j(t) = iΩRe
−i( 3ω

2
+∆)t

∫ t

0

ei∆τG10(τ)dτ. (Eq. 18)
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5. THE PHOTONIC CRYSTAL CAVITY AND PUTTING IT ALL

TOGETHER

5.1 The cavity

The cavity we study to confine our electromagnetic field is a photonic crystal cavity con-

taining our Landau quantized graphene.

Figure 5.1: The photonic crystal cavity is designed using two DBR (distributed Bragg reflector)
mirrors to confine the electric field to the hexagonal Boron Nitride (hBN) cavity. In the middle of
the cavity is a 2D Landau quantized graphene sheet which contains the qubits we are studying.

The mirrors used to contain the optical field are distributed Bragg reflectors (DBRs). DBRs

are stacks of aM pairs of alternating dielectrics with dielectric constant n1 and n2 (Fig. 5.1). These

alternating stacks lead to constructive interference so that the stacks act as a mirror, confining the

electric field to the cavity. The reflectivity of a DBR with M pairs is given by the well known

relation [12]

R =

(
1− ns

n0

(
n1

n2

)2M

1 + ns

n0

(
n1

n2

)2M

)2

, (Eq. 1)
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where n0 = 1 is the index of refraction of air, ns is the index of refraction of the hBN, and n1 and

n2 are the indices of refraction for the alternating dielectrics that make up the DBR.

5.2 Doing some calculations

Now let us attempt to do some rough calculations for our system. Since we are working

in the rotating wave approximation, for the purpose of obtaining numbers for calculations we will

take the frequency of the optical field to be ω = ωc. Furthermore, we take the field to be normalized

to be E ≈
√

2πh̄ω
V ε

. The length, width, and height of the cavity are λ
2n

where λ = 2πc
ω

is the vacuum

wavelength of the optical field.

The relative permittivity ε for the hBN is approximately 10. Then ns =
√
ε ≈ 3.16. The

magnitude of the dipole moment is |d| = evF
ω

[7]. Recall that the Fermi-velocity is vF = 106

m/s. Take the magnetic field to be B = 8 tesla, a magnetic field that can be easily produced in

a lab. Then (in SI units) lc =
√

h̄
eB
≈ 9.07 · 10−9 m and ωc =

√
2vF
lc
≈ 1.56 · 1014 s−1. The

vacuum wavelength is then λ = 2πc
ω
≈ 1.21 · 10−5 m. This gives a cavity area and volume of

A =
(
λ
2n

)2

≈ 3.65 · 10−12 m2 and V =
(
λ
2n

)3

≈ 6.99 · 10−18 m3. The number of qubits can now

be calculated to be N = A
πl2c
≈ 1.41 · 104. The Rabi frequncy in SI units is

ΩR ∼
Ed

h̄
=

√
2πh̄ω

V εε0

evF
h̄ω

= evF

√
2π

V h̄ωεε0

≈ 1.26 · 1011 s−1. (Eq. 1)

We now plot the eigenenergies from Chapter 4,

ωeigen = −iΓ1,2 = −∆

2
±
√

∆2

4
+N |ΩR|2, (Eq. 2)

with ∆ = ωc − ω as a function of the optical frequency ω and using our values for N and ΩR. In

this case SI units are slightly unwieldy so we will use meV. In these units ΩR = 0.0829 meV and

ωc = 103. meV.
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Figure 5.2: A plot of the anti-crossing signaling strong coupling between the optical field and the
Landau quantized graphene.

For simplicity, let us take the case where ∆ = 0. That is, ω = ωc exactly. In Fig. 5.2 this

corresponds to the point where the there is the smallest gap between the bands. Moreover, take the

intial state to be |1〉
∏N

j=1 |0j〉 - the state with one photon excitation of the electromagnetic field

and no excited qubits. With state vector

|Ψ(0)〉 = C00(0)|0〉
N∏
j=1

|0j〉+ C10(0)|1〉
N∏
j=1

|0j〉+
N∑
j=1

C0j(0)|0〉|1j〉
N∏
m6=j

|0m〉. (Eq. 3)

we can see thatC00(0) = 0 soC00(t) = C00(0)e−iωt/2 = 0 for all time, C10(0) = 1, andC0j(0) = 0

for all qubits j. As a function of time, we obtain

C10(t) = e−i3ωt/2G10(t) =
1

2
e−i3ωt/2

(
eΓ1t + eΓ2t

)
(Eq. 4)

With ∆ = 0, note that we have simply Γ1,2 = ±i
√
N |ΩR|. Then

C10(t) =
1

2
e−i3ωt/2

(
ei
√
N |ΩR|t + e−i

√
N |ΩR|t

)
= e−i3ωt/2 cos(

√
N |ΩR|t) (Eq. 5)
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The probability a photon is excited as a function of time is P10(t) = |C10(t)|2 = cos2(
√
N |ΩR|t).

We similarly have as a function of time

C0j(t) = iΩRe
−i3ωt/2

∫ t

0

cos(
√
N |ΩR|τ)dτ = i

ΩR√
N |ΩR|

e−i3ωt/2 sin(
√
N |ΩR|t). (Eq. 6)

It follows that the probability as a function of time that the jth qubit is excited is P0j(t) =

|C0j(t)|2 = 1
N

sin2(
√
N |ΩR|t). This makes physical sense because we can think of the proba-

bility that the jth qubit is excited as the probability that any qubit is excited, divided evenly N

ways, which is what we have. It is worth noting that the probabilities sum to unity

P10(t) +
N∑
j=1

P0j(t) = cos2(
√
N |ΩR|t) + sin2(

√
N |ΩR|t) = 1, (Eq. 7)

as they should.

Figure 5.3: The orange plot shows P10(t), which has peaks at 1. The blue plot shows P0j(t), which
only has peaks of just above 0.008 for any particular j. Time is in units of meV−1.

Fig. 5.3 shows the probabilities as a function of time. Recall that this is a highly idealized
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situation so no damping from outside noise has been considered which would cause the populations

to all accumulate around the ground state after some amount of time. That is, P10(t → ∞) → 0

and P0j(t→∞)→ 0.

5.3 Including noise

To see if strong coupling is a possibility, we must include relaxation rates of the system. The

relaxation constants we denote γn0 and γn1 for the states with n photons and zero qubit excitations

and n photons and 1 qubit excitation, respectively. If we take the system to be at zero temperature,

these constants are given in [13] and are

γn0 =
µ

2
n, γn1 =

γ

2
+
µ

2
n, (Eq. 1)

where γ and µ are the partial relaxation rates atomic and photon field, respectively. These equa-

tions are a simplified version of the ones in [13] because we did not include phonons, quantized

oscillations of the (in this case) graphene lattice, in this treatment.

To achieve strong coupling we must have that |Ω̃R| > γ10+γ01
2

, where

Ω̃R =
√
N |ΩR|2 − (γ01 − γ10)2/4

by [13]. Squaring both sides of the inequality and rearranging gives the condition

N |ΩR|2 >
γ2

10 + γ2
01

2
=
µ2 + γ2

8
. (Eq. 2)

That is, with enough qubits depending on the partial relaxation rates µ and γ, strong coupling can

be achieved.

To put some numbers to this, suppose our decoherence is γ = 0.5 meV. The left hand side

of Eq. 2 is N |ΩR|2 = 96.9 meV2. In this case, the term γ2/8 works out to be .031 meV2. This

allows for a relatively high µ. Substituting in and neglecting the small γ term, we can see that

the maximum µ to allow for strong coupling is approximately 27 meV. Defining the quality of the
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cavity to beQ = ω/µ, this gives a minimum allowable cavity quality ofQ ≈ 3.8, a very achievable

number given that the quality of the cavity will increase as the reflectivity R increases, which we

can do by increasing the number of pairs of alternating dielectrics M.
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6. CONCLUSION

One way to create qubits is to apply a magnetic field perpendicular to a sheet of graphene.

This creates Landau quantized graphene with a number of qubits that is proportional to the strength

of the magnetic field. We can put this Landau quantized graphene in a plasmonic cavity and apply

an optical electromagnetic field to it. These qubits will become entangled to the optical field. In

some sense, N qubits couple to an optical field as if they are on qubit whose dipole moment and

hence coupling strength is
√
N times larger.

The probability of the system being in a state with an excited optical mode and the prob-

ability of the system being in a state with one of the N qubits excited oscillate back and forth at

a frequency
√
N |ΩR| with the system decaying into the ground state over a characteristic amount

of time. If the coupling is stronger than this characteristic decay time, strong coupling can be

achieved.

In the future, it would be interesting to obtain more exact numbers for the the partial re-

laxation rates to be able to calculate the system parameters, such as the reflectivity of the DBR,

needed to ensure strong coupling in an experiment. Moreover, it would be interesting to include

phonons, or lattice oscillations, coupling to the field-cavity system.
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