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ABSTRACT

Applications of Machine Learning in Content Generation for Educational Video Games

Lloyd Donelan, Brenton Lenzen, and Kishan Patel
Department of Computer Science & Engineering
Texas A&M University

Research Advisors: Professor Andre Thomas and Professor Hadeel Ramadan
Department of Visualization
Texas A&M University

Research Advisor: Dr. Theodora Chaspari
Department of Computer Science & Engineering
Texas A&M University

Over the past few years, students have become increasingly unmotivated to read their
assigned textbooks as an accompaniment to classroom lectures and activities. Reading the
textbook is known to improve comprehension and overall student performance in classrooms. If
reading the textbook was reformatted into a more engaging experience, perhaps it would improve
student motivation and knowledge retention. Teaching students the importance of learning while
also motivating them to do well in class will help them gain the knowledge and grades needed to
land competitive jobs after they graduate college.

Game-Based Learning (GBL) is an emerging field of study that attempts to use video
games to create interactive educational experiences. Game-Based Learning has been shown to
have educational merit, being well-known for providing intrinsic motivation for students to learn
(most often, as a supplement to traditional coursework). With GBL in mind, is it possible to

generate interactive game content from textbooks using machine learning (ML) and artificial



intelligence (Al) that can replace or supplement the source material in terms of educational
content in a traditional classroom setting?

Our team proposes to lay the groundwork for future research in Game-Based Learning
and Machine Learning at the LIVE Lab undergraduate research lab (Texas A&M University,
College of Architecture, Dept. of Visualization) by attempting to reformat school textbooks into
interactive chatbot Als with the assistance of knowledge compilation & fact-retrieval systems

designed for generating educational video game content.



NOMENCLATURE

GBL Game-Based Learning

Al Artificial Intelligence

ML Machine Learning

MLAI Machine Learning and Artificial Intelligence

The Lab LIVE Lab at Texas A&M University (College of Architecture, Department of

Visualization). The undergraduate research lab that the authors belong to.

edutainment Educational entertainment

API Application programming interface; also called “framework”

NLU Natural Language Understanding

NLP Natural Language Processing

LSA Latent Semantic Analysis

NLTK A natural language processing framework in Python

spaCy A natural language processing framework in Python

chatbot An interactive Al that users can send messages to, and the chatbot will generate

semi-intelligent messages to send back to the user

Rasa A retrieval-based chatbot framework in Python
QG Question Generation

QA Question-Answer

KB Knowledge Base



CHAPTER 1

INTRODUCTION

Background Information and Research Motivations

Studies have shown that reading textbooks improves student comprehension of class
material at multiple levels of education!'!2I3], but have also shown that students are becoming
increasingly unmotivated to read textbooks on their own'?*]. Some studies have researched
methods for improving student motivation and interest when performing assigned readings, but
such methods have been mostly limited to traditional exercises such as worksheets, study guides,
in-class discussions, and quizzes*!3].

The growing field of Game-Based Learning is known for utilizing the intrinsic motivation
students have when playing video games to assist comprehension and to reinforce learning!*5116],
yet there are few studies, if any, that attempt to provide students with an engaging educational
experience that embodies the vast amount of information found in a textbook.

Rather than designing games that encompass a small subset of learning objectives, what if
we could procedurally generate content for all of the information in a textbook, thus
encompassing most (or all) of the learning objectives of a class? Creating an extensive,
interactive, and well-structured game that students could actively interact with would likely be
used more frequently by students than their textbooks, which only offer a passive reading
experiencelS].

Furthermore, if we could change the way students interact with their textbooks we could
provide greater motivation for acquiring the knowledge present in the book without them

needing to read it!*). And, what better framework to use to motivate students to learn than Game-



Based Learning? In addition to motivational benefits, GBL also provides both active and passive
learning opportunities as well as the potential to embody practice problems and to foster social
interaction between students!®!.

Machine learning and procedural game content generation have seen much progress in
the past few years, and we believe that it is a highly capable vehicle for achieving our goals!’.
Thus, we propose using Machine Learning and AI (MLAI) to assist in procedural content
generation for educational video games, to be employed in a traditional classroom setting.
Differences from Previous Studies

There are many studies within the realms of Game-Based Learning and procedural
content generation using Machine Learning and AI (MLAI), but few, if any, attempt to merge the
two together. First, our project is different than past research projects because it attempts to use
MLAI to create content with the explicit purpose of being used in GBL. Multiple published
research papers focus on generating high-quality procedural game content (in terms of fun factor,
fairness, complexity, and player reception) for entertainment purposes, but not for educational
purposes. Second, our project differs in its use of procedural content generation — rather than
generating levels, enemies, or mechanics from a pre-determined set of game assets and
developer-set constraints (as has been attempted by others in the past), we will be attempting to
parse a secondary source of educational information (textbook, encyclopedia, database, etc) into
a format that we can then generate interactive game content from. Lastly, our project differs from
past research projects because we will not be testing several different methods of procedural
content generation, nor will it be comparing the reception of these methods by players. Those

tasks might be carried out in the future in a follow-up study.



Project Expectations

My research team hopes to create a textbook parser using natural language processing
techniques, outputting educational content from a school textbook into an intelligent and
interactive chatbot Al. This is intended to be a “first venture” into procedural content generation
for Game-Based Learning for my research team, and while we don’t expect to make major
progress towards our end goal of procedurally generating comprehensive interactive educational
experiences, we do expect to lay the groundwork for future research. By the end of the year, we
hope to have completed:

e Create a system for parsing a secondary source of educational information, such as a
textbook, and outputting well-defined “knowledge bundles” containing all information
pertaining to a particular concept or idea.

e An interface between the information parser and the chatbot Al that allows the Al to

receive “knowledge bundles” as inputs.

e Create a prototype for an interactive chatbot Al that can provide information about a

2

historical figure, creating dialogue from player inputs and relevant “knowledge bundles.’

e Document all completed work and create estimates for the feasibility of potential future
tasks for our team.

The successful completion of these tasks will demonstrate the importance of procedural
content generation in educational entertainment (edutainment) as well as the relevance of Game-
Based Learning to cutting-edge research in the field of Computer Science. Additionally, our
research could form the basis for renewed discussions on the topics of: abstraction of learning

objectives, educational examination methods, methods of measuring student comprehension,



teaching strategies, and the development of intrinsic motivation in interactive educational
content.
Potential Future Tasks

Because our current research is intended to lay the groundwork for future tasks, it is
important to keep potential future tasks in mind. Some tasks we might like to work in the future

that will build off of our research are:

e (Generating game assets from “knowledge bundles”
e Generating game mechanics from “knowledge bundles”
e C(Creating an intelligent learning assistant/tutor Al that will assist the player and create a

personalized learning environment



CHAPTER II

METHODS

Development on the project began with DonBot (shorthand for “Donatello Robot”).
DonBot was a conceptual prototype for a chatbot that would store information on the renaissance
artist Donatello, which would then be used to construct intelligent and informative responses to
user inquiries about the artist. A fully functional prototype would require the following
components:

1. A text parser, to read in and format information about the subject (Donatello).

2. A chatbot, to interact with users to provide them with information about the subject
(Donatello).

3. An interface between the text parser and the chatbot, containing the output of the text
parser in a useful format for the chatbot and other tools/software that we might want to
develop in the future for generating interactive educational content.

To complete the overall process, a significant amount of NLP work is required before providing
the chatbot with the information extracted from the input corpuses. This will ensure that all
extracted information is sterilized and well-formatted, making it easy to use the information for
future procedural work. Thus, we chose to store extracted information in a format which we call
a “Knowledge Bundle.”

NLP Pipeline Conceptual Overview

In our theoretical design, Knowledge Bundles contain facts that are represented as tree-
like structures (called Knowledge Trees), with the root node containing a list of entities where

the first listed entity is the subject of the knowledge bundle (in our case, Donatello) and the rest



of the entities are known synonyms for the subject. The second level in the tree contains nodes
with a list of verbs, where the first verb is considered to be the “main verb” and the rest of the
verbs are synonyms of the main verb. The third level in the tree contains nodes with prepositions
or determiners, and the fourth level contains nodes with nouns (the subject of the verb in the
second level of the tree). These first four levels of the tree comprise “core facts,” and the second,
third, and fourth levels together comprise “knowledge statements.” Following one branch from
the Entity (root level) to the fourth level of the tree builds a single factual statement, hence the
term “core fact.” Additional details may be included in subsequent nodes after the fourth level of
the tree, but are not necessary.

By iterating through a Knowledge Tree, all known facts about a specific entity can be
examined. Additional properties can be added to tree nodes or Knowledge Bundles to support
project-specific algorithms or data that might be useful for further NLP techniques such as
question and answer generation.

Properly generating Knowledge Trees for use in Knowledge Bundles would require
pipelining several modern NLP techniques and is thus a significant research challenge. For the
syntactic approach described in this paper, these techniques may include:

1. Spellchecking and Tokenization

2. Entity Classification and/or Super-sense tagging, (intended to assist Co-reference
Resolution and Clause Extraction)

3. Co-reference Resolution, Pronoun Resolution

4. Sentence Simplification and/or Clause Extraction

5. Question and Answer Generation from Simplified Sentences



First, the input corpus(es) need to be sterilized and properly tokenized. There is already a
great deal of work in these areas, and so we will not discuss these steps further'®l. After that,
sentences should be read through and the parts of speech labelled, with special interest in
preprocessing techniques that will assist with Co-reference Resolution, Pronoun Resolution,
Sentence Simplification, and Clause Extraction. Next, ambiguous entity references should be
resolved and replaced with entity names. Any ambiguous non-pronoun references to some entity
X should be recorded as “synonyms” in the knowledge bundle for that entity (pronouns are not
unique to any specific entity, and thus should not be considered synonyms). After (3), all entity
references should be un-ambiguous. Sentences can now be simplified, and/or clauses extracted,
to generate short factual statements.

As an example, the sentences “Einstein died in 1955 at the Princeton Medical Center in
New Jersey. He is well-known for his contributions to Physics,” would (ideally) yield outputs at
each step in the pipeline similar to the following:

= (1, 2) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. He is well-
known for his contributions to Physics.”

= (3) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. Einstein is
well-known for his contributions to Physics.”

= (4) “Einstein died in 1955. Einstein died at the Princeton Medical Center. Einstein died in
New Jersey. The Princeton Medical Center is in New Jersey. Einstein is well-known.
Einstein has made contributions to Physics. Einstein is well-known because he has made

contributions to Physics.”
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Each sentence generated by (4) can now be added to a Knowledge Tree. Most of the
sentences can be added to a Knowledge Tree for a Knowledge Bundle dedicated to the entity
“Einstein,” but notice that there are two peculiar sentences in the output:

(a) “The Princeton Medical Center is in New Jersey.”
(b) “Einstein is well known because he has made contributions to Physics.”

In (a), there is no mention of Einstein. Rather, this is a fact about a different entity (the
Princeton Medical Center). Thus, (a) should actually be added to the Knowledge Tree for a
Knowledge Bundle dedicated to the entity “Princeton Medical Center.” In (b), Einstein is
mentioned but this sentence is actually just a more detailed version of a previous sentence:
“Einstein is well-known.” For this reason, the Knowledge Tree for Einstein should contain a
branch with “Einstein is well-known” as the core fact and “because he has made contributions to
Physics” as additional details.

It is worth noting that (3) and (4) won’t always proceed so smoothly. For example, the
sentence “North Korea and Cuba are the only places you can’t buy Coca-Cola” would look
something like this:

= (1,2, 3) “North Korea and Cuba are the only places you can’t buy Coca-Cola.”
= (4) “You can’t buy Coca-Cola in North Korea. You can’t buy Coca-Cola in Cuba. You
can buy Coca-Cola in every place except North Korea or Cuba.”

There are a few peculiarities about the output here. Perhaps our original intuition tells us
that some facts should’ve been generated about the entities North Korea and Cuba, yet the only
facts generated were for the entity “you.” Additionally, there is no straightforward way to
generate anything resembling the third sentence, “You can buy Coca-Cola in every place except

North Korea or Cuba,” from the input text. Finally, notice that there are two potential pitfalls to
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avoid — generating either of the sentences “You can’t buy Coca-Cola” (from the input sentence)
or “You can buy Coca-Cola in every place” (which is seems to be a less-detailed version of the
last output sentence, but is actually a different sentence because it has a different meaning from
the original!).

The final step in the Knowledge Bundle generation pipeline is to generate potential user
inquiries, based on known facts about the entity referred to by a Knowledge Bundle. This
enables a retrieval-based approach to user inquiries about facts in the Knowledge Database (the
set of all Knowledge Bundles for a particular project). Generated inquiries can then be added to
the Knowledge Database and given a reference to the fact that serves as their answer. These
questions and answers can then be used as training data for a chatbot or other Q&A system, to
allow the system to respond appropriately to user inquiries based on user intents.

The process of question generation comes with its own challenges and pitfalls. Simple
“reading comprehension”-style questions are known to be created with decent results using
linguistic transformations on preprocessed sentences. Heilman took a similar approach to our
proposed NLP pipeline, but did not fully explore the benefits of sentence simplification and
paraphrasing on QG®l. We hypothesize that “reading comprehension”-style questions can be
generated more accurately with a similar approach if the input sentences are reduced to simple
clauses (concise, factual statements) and are sterilized to remove unambiguous pronoun
references. Additionally, by reducing input sentences to simple clauses, we can then use the
reduced clauses (perhaps with some minor post-processing) as the answers to generated
questions. This is a significant difference from Heilman’s approach, which deals exclusively
with QG and not QAB®. In simpler terms, the NLP pipeline is intended to reduce an input corpus

down to a series of concise factual statements, which would then serve as answers to questions
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that are generated from those statements using the statements themselves in combination with
any contextual information that was extracted from the original input corpus.

In the following sections, we explain the initial research process. Then, we give a high-
level overview of how each component in our prototype of the NLP pipeline. Finally, we
describe future work to be done and potential improvements and applications of the project as a
whole.

First Iteration of the Text Parser

The text parser needed to take in a large, domain-specific corpus of text and output facts
about historical figures. Our input domain was restricted to educational works containing
information about the artist Donatello or his work. Initially, we used the Britannica entry on
Donatello as our (small) input corpus, with the intention of increasing the size & diversity of
sources in the input corpus in the future. Britannica was chosen over alternatives such as
Wikipedia because Britannica is curated by verified professionals, and does not provide an
excessively large input corpus (smaller input size was preferred for initial prototyping).

For the first iteration of the text parser, we did not yet have a clear understanding of our
conceptual NLP pipeline. Instead, we retrieved data from the input text through the following
process (using NLTK and spaCy):

1. HTML tag scraping
2. Removal of irrelevant information
3. Creating Intent/Answer Pairs
4. Creating Training Data Files for DonBot
In (1), we extract the text of the web page from the HTML code of the web page. In (2),

we remove irrelevant information such as information about Britannica and information about
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other topics that are indirectly related to Donatello, which are not currently relevant to our
research.

Next, we performed some additional processing in NLTK to group sentences by intent
(based on detected keywords). Finally, we automatically generated training data for the chatbot
from our text using python scripts. Sadly, our algorithm did not succeed in generating
acceptable-quality intent bins, and this is reflected in the generated training data.

The text parser would remain in this state until the second iteration of the chatbot.
First Iteration of the Chatbot

DonBot’s first iteration was based off a generative chatbot created by github user
Hugging Face. This model was chosen for two reasons:

1. The model uses a ‘persona’ to generate responses, where the persona is defined with a
couple of sentences that provide the Al with knowledge about a historical figure.
2. The model uses transfer learning, which would (theoretically) reduce the amount of

training data needed for the Al and improve the AI’s understanding of user messages.

This chatbot did not work well, lacking enough training data related to Donatello while
also having too much modern information from the conversation training data. The bot was able
to state its name, Donatello, but was not able to provide users with reliable facts. In some tests,
the chatbot went so far as to insist that Donatello was from the Dominican Republic and that he
was a slave! This implementation was quickly abandoned.
Second Iteration of the Chatbot

The next iteration of DonBot, DaVinciBot, was created using the Rasa retrieval-based

chatbot framework. This version of the chatbot requires three types of training data:
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1. NLU Training: a collection of potential user inputs, each labeled with a particular intent.

The bot will be able to recognize similar inputs as having the same intent.

2. Domain: a collection of actions that the bot can take, the user intents that it can recognize,
and templates for the bot’s responses to user inquiries.
3. Stories: a collection of dialogue paths, outlining the structure of user-bot interactions.

Also defines behavior for unrecognized intents.

This iteration of the bot responds well to user inquiries, as long as the inquiries resemble
something in the training data. Unlike the previous iteration, the bot will never respond with
inaccurate information unless we provide some in the training data. If the bot is unable to
understand the user’s inquiry it will always respond in a predefined way, which ensures
professionalism and some level of reliability in the bot’s responses.

Second Iteration of the Text Parser: The NLP Pipeline

By this point, it was clear that we would need a more structured attempt to process our
input text. This is when we came up with the NLP Pipeline, which could (theoretically) reduce
an input corpus to a series of concise factual statements, grouped by the Entity they refer to.
Implementing such a design would allow user inquiries to be interpreted as a simple search over
the Knowledge Tree of the Entity in question; such an implementation would require Entity
Recognition, Sentence Simplification and/or Clause Extraction.

Entity Recognition has some major issues to deal with. Simplifying a sentence with only
ambiguous references to an entity (such as pronouns or monikers) would not generate any useful
information — a new entity would be generated (such as “The First President”, instead of “George
Washington™), and the fact would be attributed to the new entity instead of the entity it truly

applies for. This would result in facts for an entity X being distributed among up to n different
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knowledge bundles, where n is the number of ambiguous references to X in the input corpus.
Additionally, pronouns such as he/she could be used multiple times in the input corpus, each
time referring to a different entity. Facts for two separate entities X and Y could be attributed to
another Knowledge Bundle for a single entity “He”/“She”! Solving these issues would require
additional steps to be added to the pipeline.

Solving the first issue (which will be referred to as “the nickname problem”) would
require some way to resolve common nouns and nicknames to their owner’s name, which could
most likely be achieved by, or with the assistance of, a semantic approach using Entity
Clustering or word vector analysis. We choose to leave this to future work.

To solve the second issue, we decided to implement Pronoun/Co-reference Resolution,
substituting unclear pronouns with the real Entity’s name before performing Sentence
Simplification. For our initial prototype, we used an existing spaCy module for Co-Reference
Resolution. The module worked well for most sentences, but was less successful with long
sentences. Perhaps some level of Sentence Simplification could be done as pre-processing to
improve the success rate of Co-Reference Resolution, but it is important to note that too much
pre-processing could have negative effects on the main Sentence Simplification process by
introducing errors or removing important contextual information early on in the NLP pipeline.
We leave improvements to Co-Reference Resolution to future work.

First Attempt at Generating Knowledge Bundles

Before implementing the Knowledge Tree structure that we originally planned for the
NLP Pipeline, we needed a way to generate Knowledge Trees and Knowledge Bundles from the
input data. Our first attempt at generation of Knowledge Bundles ended up as more of a

Dictionary generator, using a series of dictionaries and hash ids that are generated from
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sentences to associate parts of speech with their original context. Each part of speech would

reference their source sentence, and each subject would then hold reference to every hash id of a

sentence describing information about them. For example, for the sentence “Donatello seemingly

demanded a measure of artistic freedom,” we would get the following output information for the

sentence:

1.

Sentence hash id = -572009579105218340

Subject(-572009579105218340) = Donatello

Predicate(-572009579105218340) = seemingly demanded a measure of artistic freedom
Modifiers(-572009579105218340) = null

This populates data into four different dictionaries, each with the sentence hash id as the

key and the content as the value. Additionally, we would also get the following output

information in a dictionary of subjects, where the key is the subject name and the value is a list

of hash ids of all sentences containing information about that subject:

1.

2.

Donatello = [ -572009579105218340, ... ]

demanded = [ -572009579105218340, ... ]

. measure = [ -572009579105218340, ... ]

artistic freedom = [ -572009579105218340, ... ]

This algorithm is referred to as the DICTIONARY-GEN algorithm. Now, all already

known information about a subject(s) is accessible in O(1) time if the subject and clause keys are

known, and the total time to iterate over all information about all subjects is in O(n) of the input

corpus size (thanks to the use of dictionaries). The QUESTION-GEN algorithm can then be run

on the collection of Dictionaries to generate questions for the RASA chatbot training data. In the

future, we would prefer to use true Knowledge Bundles generated by some BUNDLE-GEN
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algorithm (as opposed to the dictionary format we are currently using) to provide information to
the question generation algorithm. See an overview of the DICTIONARY-GEN and
QUESTION-GEN algorithms in Appendix A and Appendix B.

For very large input corpuses, the collection of dictionaries might not be searchable at
runtime at acceptable speeds for real-time applications (video games). This isn’t currently an
issue for the small-time retrieval-based chatbot that we are currently using, which generates
training data at compile time, but future projects such as generative chatbots would require this
information to be accessible in something faster such as O(log(n)), which would require that we
turn our collection of dictionaries into a balanced binary decision tree structure. Such a structure
might lend itself to a very fast and robust database system, allowing queries of the hashed
sentence data, and perhaps eliminating the need for individual knowledge bundles to be created
at compile time. The entire database could be a Knowledge Tree comprising facts of the entire
input corpus, and Knowledge Bundles for individual subjects could be generated at runtime for
frequent access to information about particular subjects as needed. Although we leave the
implementation of such systems to future work, we will now discuss the theory behind such an
implementation.

Second Attempt at Generating Knowledge Bundles

Finally, after implementing some semblance of the aforementioned NLP Pipeline and
having a greater understanding of the linguistic tools at our disposal, we were able to start
thinking about a truer implementation of Knowledge Bundles. By this point in time the idea of a
Knowledge Bundle was no longer a “stand-alone package” of information, but was instead
considered to be an “extracted subgraph” from a much larger graph of all known information,

referred to as the Knowledge Base (KB).

18



All of the facts known to the Al would be placed into a massive Knowledge Tree, which
serves as the AI’s Knowledge Base. At any point in the tree, a node could be selected as the root
of a subtree and that subtree could be extracted and cached (in theory, anyways) — such a subtree
could then be used as a Knowledge Tree for the subject of the tree’s root node. For example,
extracting a subtree where the root node’s subject is “artwork” (which is a category of things,
rather than a named entity) would cache the Knowledge Tree for all artwork in the Knowledge
Base. Extracting a subtree where the root node’s subject is “Da Vinci” would cache the
Knowledge Tree for all known information about the artist Da Vinci (a specific named entity,
rather than a category of things); this subtree is, itself, a subtree of the subtree where the root
node’s subject is “artists,” which is in turn a subtree of the subtree where the root node’s subject
is “people.”

Nodes with categorical information such as “artwork,” “people,” or other broad specifiers
are called “decision nodes.” Nodes with factual information such as a date, e.g. “1922,” or a
name, e.g. “Donatello,” are called “data nodes.” A depiction of a Knowledge Tree is shown in

Figure 1.
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Figure 1: An example illustrating the structure of a Knowledge Tree.
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Each Knowledge Tree, edges contain a list of verbs, where each verb is guaranteed to be
found in the main clause of at least one fact in the subtree containing that edge. For example, if
an edge E contains a verb V, and E is adjacent to some nodes N1 and N2, with N1 being higher
level than N2, then V is guaranteed to be found in the main clause of at least one fact in a subtree
originating at N1. In Figure 1, this can be illustrated by choosing the following values for E, V,
N1, and N2:

e E :=the edge from the decision node for “People” to the data node for “Da Vinci” or
from the decision node for “People” to the data node for “Donatello”

e V :=created

e NI :=the decision node for “People”

e N2 :=the data node for “Da Vinci” or the data node for “Donatello,” based on the choice

of E

e With these definitions, the verb “created” is guaranteed to appear in at least one fact in a
subtree starting at the decision node for “People.” In this example, it appears in any
subtree including the fact “Da Vinci created the Mona Lisa” or the fact “Donatello
created art” (note that the training data for this tree should’ve been vetted to say

“Donatello created artworks”).

As demonstrated in the example, facts can be generated simply by starting at a data node
that contains a subject, then traversing the Knowledge Tree down to a leaf node. This structure
removes the need for dictionaries and is useful as both, an intermediate data format to change the
input corpus into chatbot training data, and an efficient way to lookup facts (in terms of time
complexity). Our Results section will discuss the time and space complexity of this format for

Knowledge Bundles as well as implications of the system and ideas for future work.
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CHAPTER I1I

RESULTS

Analysis of Question Generation Using Knowledge Bundle Attempt #1
The NLP Pipeline appears to be a fairly effective approach to generating facts for the
chatbot’s training data. Our current prototype shows mixed results, but can effectively identify
user inquiries related to simple sentences from the input corpus or some extracted simple clauses.
Although we are not currently looking up any information at runtime, runtime lookup of
information in our collection of hash id dictionaries is O(1) with a known key, and O(n) for an
unknown key. Some good and bad examples of user inquiries, and the chatbot’s responses, will
now be given. For these examples, the chatbot was trained on the output of question generation
resulting from an input corpus comprised of the Britannica pages for Donatello and Leonardo Da
Vinci.
Question Generation Good Examples (Knowledge Bundle Attempt #1)
(1) O: What was Leonardo da Vinci’s personality like?
A: Leonardo da Vinci was described as having a gracious but reserved personality and an
elegant bearing.
(2) O: Was Leonardo unmarried?
A: Leonardo never married, but Leonardo da Vinci had many close relationships with
other arists and intellectuals as well as with Leonardo da Vinci’s assistants.
(3) O: Where his parents married?

A: Leonardo’s parents were unmarried at the time of Leonardo da Vinci’s birth.

22



Example (1) is straightforward. It demonstrates a good response to a simple question.
Examples (2) and (3) both show an impressive response to seemingly simple questions that are
essentially asking to retrieve the same factual information, but for different subjects (Leonardo
versus his parents). Additionally, (2) uses “married” and (3) uses “unmarried,” where “married”
was in the training data but “unmarried” was not. In (3), “his” is easily ignored in favor of “Da
Vinci” because, in this case, the chatbot was only trained on information about Da Vinci.
Semantic information related to the context could be used to apply coreference resolution to user
inquiries in the future.

Question Generation Mixed Examples (Knowledge Bundle Attempt #1)
(1) O: Who was Leonardo da Vinci?
A: Leonardo da Vinci was an artist and engineer who is best known for Leonardo da
Vinci’s paintings, notable Mona Lisa Mona Lisa and the Last Supper.
(2) O: Was Leonardo ever commissioned to make anything?

A: According to contemporary sources, Leonardo was commissioned to create three more

pictures, but six works have since disappeared or were never done.

Example (1) demonstrates that issues in Coreference Resolution have caused strange
syntax and duplication of the name “Mona Lisa.” These issues were propagated down the NLP
Pipeline. Example (2) confirms that Leonardo was commissioned to make something, but it does
not tell the user what he was commissioned to make.

Question Generation Bad Examples (Knowledge Bundle Attempt #1)
(1) O: When did Leonardo die?
A: In 1482 Leonardo moved to Milan to work in the service of the city’s duke- a

surprising step when one realizes that the 30-year-old artist had just received Leonardo’s
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first substantial commissions from Leonardo’s native city of Florence — the unfinished

panel painting Adoration of the Magi for the monastery of San Donato a Scopeto and an

altar painting for the St. Bernarn Chapel in the Palazzo della Signoria, which was never
begun.
(2) O: dasfsadfaserfewqrqwersdfsadfasefwaer

A: Leonardo da Vinci’s father, Ser Piero, was a Florentine notary and landlord, and

Leonardo da Vinci’s mother, Caterina, was a young peasant woman who shortly

thereafter married an artisan.

(3) O: Did Leonardo take care of himself?

A: Leonardo da Vinci — Lady with an Ermine Lady with an Ermine, oil on panel by

Leonardo da Vinci, ¢. 1489-91; in the National Museum, Krakow, Poland.

Example (1) is straightforward — the bot provides a very long and unrelated response to a
seemingly simple question. Example (2) shows that the bot failed to detect an invalid input, and
as a result chose a seemingly random response instead of using the fallback response of telling
the user that it didn’t understand the question. Example (3) shows the bot giving a completely
unrelated response to a question that is very similar to some sentences in the training data.
Analysis of Knowledge Bundle Attempt #2

For the second formulation of Knowledge Bundles using a Knowledge Tree as the
Knowledge Base, the worst-case search time for a fact and the space complexity of the system
are both O(N+E), where N is proportional to the number of nodes and E is proportional to the
number of edges in the tree to search through (either the entire KB, or a cached subtree of
significantly smaller size). Although O(N+E) is an acceptable start, it is less than ideal for the

massive Knowledge Base that would be generated from an input corpus comprised of multiple
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textbooks. To improve the space and time complexity of the current system to O(log(n)), it could
be converted to a binary decision tree, which would require an efficient method of collapsing
multiple nodes into “super nodes” or strongly connected components of the graph that could then
be efficiently searched. We leave these optimizations to future work.

Efficient time complexity for such a KB requires loading the KB into memory which, for
a large Knowledge Base, would incur a very large space complexity cost. For end-users this
space complexity could be unfeasible due to low available memory. The space complexity
becomes even larger if we also include references to cached Knowledge Trees, which would
probably be stored in hash tables for constant time lookup, resulting in an additional O(n) space
complexity where n is the maximum number of Knowledge Trees to keep cached in memory at a
time. A potential solution to space complexity is to distribute data between a cloud server, which
could host the entire Knowledge Base, and the end user’s machine, which could keep only
cached data in memory such as references to subtrees, or the subtrees themselves. Keeping more
data in memory on the client’s machine will result in faster fact retrieval times (because there is
no travel time for packets being sent to / received by the server), but would also incur an
increased local space complexity cost on the client. We leave the effective distribution of data
across a cloud server and client machines to future work.

Named Entity Recognition (NER) accuracy is highly important to be able to generate
such a Knowledge Base. The system hinges on being able to accurately label categories of
entities to create decision nodes, and of course, being able to accurately label named entities for
data nodes. During development it is imperative that training data contains accurately labelled
entities to ensure that the performance of algorithms operating on Knowledge Trees is examined

in optimal conditions. Testing the system with training data that is not labelled accurately (or, not
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labelled at all) is equally important — doing so will inform us of what kinds of additional training
data are needed for the system to be reliable, and how to handle non-vetted training data.

Additionally, effective clause extraction is extremely important to be able to generate
such a Knowledge Base. Each branch in the Knowledge Base is based on facts in the form of
simple clauses that are generated by the clause extraction step of the NLP Pipeline. Our current
clause extractor does not have sufficiently reliable performance to allow for Knowledge Trees to
be generated without additional input processing. Introducing a heuristic to measure the accuracy
of extracted clauses based on the original input sentence would improve the reliability of the
system by providing an internal “vetting” mechanism, which could then be used to automatically
switch from clause extraction to some other fallback mechanism if the measured accuracy of an
extracted clause(s) does not meet some minimum threshold. We leave the improvement of the
clause extractor to future work.

This format of Knowledge Trees lends itself extremely well to question generation (QG),
allowing questions to be generated simply by specifying a data node S containing the subject of
the question, and then traversing down a branch(es) to the leaf node(s) of a subtree(s) rooted at S.

This is the primary motivator behind this Knowledge Base format.
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CHAPTER 1V

CONCLUSION

In the end, we were able to achieve most of our goals that we set out at the beginning of
the project — we created a somewhat functional prototype, with mixed chatbot accuracy. The
current chatbot is retrieval-based and thus does not require an efficient runtime implementation
of knowledge trees (only compile time). Ideally, we will be able to create an effective data
storage and retrieval system in the future that allows for fast search algorithms and lookup times
for facts at runtime. This will allow for the project to shift its focus to a semantic-based
approach, which has the potential to be more accurate and more flexible when responding to user
inquiries.

The current description for the true Knowledge Tree format specifies a large Knowledge
Base containing all the facts known by a particular instance of the Al, which can then be broken
down into smaller subtrees of facts about particular subjects. Those subtrees of facts can then be
used as a smaller knowledge base for retrieving information about the subject of the subtree (e.g.
Donatello, Da Vinci). This scheme will provide a worst-case time and space complexity O(N+E),
where N is the number of nodes and E is the number of edges in the Knowledge Base and thus is
proportional to the number of facts in the input corpus. Future implementations of such
algorithms should include the use of a dictionary, hash table, or hash map data structure to cache
references to subtrees for recently and frequently referenced subjects, allowing O(1) lookup time
after the initial O(N+E) search.

As suggested by our faculty advisor, trees may not be the optimal data structure for fact

storage and retrieval. A portion of future research endeavors should be dedicated to looking for
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other graph structures or improvements to the existing tree structure that might be better for our
use case. Another avenue to explore is the use of fuzzy logic to assist searching through the
knowledge base at runtime; fuzzy logic could potentially be implemented by providing some
additional meta information to subject nodes in the graph, and then using that meta information
in our search algorithm. We leave such tasks to future work.

There are also opportunities for future work in improving the NLP Pipeline. Coreference
resolution was particularly problematic for us, and adding it to the pipeline tended to reduce the
accuracy of other components in the pipeline and propagating errors, so we were unable to use it
in our initial project showcase. Sentence simplification was useful, but not completely accurate
and was not able to simplify larger, complex sentences. More recently, we discovered that
translation to and from English to Chinese would produce a slightly different sentence than the
original, allowing us to improve our training data. Similarly, what if we included information
from before Co-reference resolution, and before Sentence Simplification and Clause Extraction,
in our training data as well (but not in the knowledge base)? This would allow each sentence to
be converted into tens of sentences for the training data, each being similar but demonstrating
variations on the same semantic meaning and improving the breadth of the training data,
potentially improving the AI’s understanding of user inquiries which in turn would allow it to
retrieve the correct contextually-relevant facts from the knowledge base when constructing or
retrieving its responses in real-time.

One area for improvement that we didn’t address with our current implementation is the
additional processing of user inquiries, to allow the Al to better understand what the user is
asking. We could run the NLP Pipeline on user inquiries at runtime, allowing users to ask

slightly more vague questions or ask multiple questions in the same inquiry. Such goals also
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outline the necessity of a semantic-based approach to the Al, which would allow contextual
information (such as information related to the current conversation) to be used when searching
through the knowledge base and constructing responses. Other important contextual
improvements such as the distinction between entities of different categories with similar names
— for example, the Medici estate versus the Medici family — or differentiating between Queen
Elizabeth I and Queen Elizabeth II in-context — should be considered as well, and might be
particularly useful for a semantic approach. We leave the development of contextual analysis for
the Al to future work.

In conclusion, our goal was to create a working prototype of the NLP Pipeline and
interface it with a retrieval-based chatbot, with less emphasis on the accuracy of the chatbot’s
responses to user inquiries than on the design process itself, as long as the functional ideas
behind the implementation were demonstrated clearly and in such a way that would allow
improvements and support/outline further research. We believe that we have succeeded in
reaching this goal, and hope that this research paper will serve as a valuable reference for future

work on the project.
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APPENDIX A

DICTIONARY-GEN ALGORITHM

function DICTIONARY-GEN(resolvedText, &sentences, &subjects, &predicates, &modifiers,
&keywords, &inverseSubjects) returns null

#Dependency Tag Numbers (May Change in the Future)
prepositionTagID = 443 #443 = preposition
nominalSubjectTagID = 429 #429 = nominal subj

#Keyword Helpers

nounAndVerbAbreviations = ["NN", "NNP", "NNPS", "NNS", "PRP", "PRPS$", "VB"
IIVBD", HVBG", "VBN", "VBP", IIVBZ"]
nounAndVerbExceptions = ["is", "he", "him", "his", "she", "her", "hers", "

rm
4

"have", "haS", "be", "been", "being", "were"]

spacyDocument = nlp(resolvedText)

spacySentences = list (spacyDocument.sents)
for spacySentence in spacySentences:
modifierStartIndex = -1
modifierEndIndex = -1
subjectStartIndex = -1
subjectEndIndex = -1
predicateStartIndex = -1
predicateEndIndex = -1
#Sentences
sentences[hash (spacySentence)] = spacySentence

startsWithPrep = False

inMod = False

predicate = []

if spacySentence[0].dep == prepositionTaglD:
startsWithPrep = True
inMod = True

for token in spacySentence:
#Keywords
if (token.tag 1in nounAndVerbAbreviations and token.text.lower () not i
n nounAndVerbExceptions) :
if str(token) in keywords:
if hash (spacySentence) in keywords[str (token)]:
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continue
keywords [str (token) ].append (hash (spacySentence))

else:
keywords[str (token)] = [hash (spacySentence) ]
# Modifiers - Starts with a preposition - Look for the separating comm
a
if (startsWithPrep and str (token) == ","):
modifiers[hash (spacySentence)] = spacyDocument [spacySentence[0].i:to
ken.i]

inMod = False
modifierStartIndex = spacySentence[0].1
modifierEndIndex = token.i

continue
# Modififers - Ends with a preposition
if(str(token) == "," and spacyDocument[token.i+1].dep == prepositionTa
gID):

modifiers[hash (spacySentence)] = spacyDocument[token.i+1:spacySenten

ce[len (spacySentence)-1].1]

modifierStartIndex = token.i+1l

modifierEndIndex = spacySentence[len (spacySentence)-1].1
break

#Subjects + Inverse Subjects
if token.dep == nominalSubjectTagID and subjectStartIndex == -1:
subjects[hash (spacySentence)] = token
if str(token) in inverseSubjects:
inverseSubjects[str (token) ].append (hash (spacySentence))
else:
inverseSubjects[str (token)] = [hash (spacySentence) ]
subjectStartIndex = token.i
subjectEndIndex = token.i

#Predicates
if not inMod and token.dep != nominalSubjectTagID:
predicate.append (token.i)

if len(predicate) > O:

predicates[hash (spacySentence)] = spacyDocument [predicate[0]:predicate
[-11+1]
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The first attempt of the knowledge bundler mainly involved the use of dictionaries.
Dictionaries were preferred here because of their O(1) lookup time and simple implementation.
This algorithm is used to fill those dictionaries with the relevant information.

The inputs contain a piece of text and 6 dictionaries. The input text refers to the text from
a textbook, or alternate source, after it has gone through the first three steps of our NLP pipeline.
The 6 dictionaries are as follows: sentences, subjects, predicates, modifiers, keywords, and
inverse subjects. Sentences include the sentences extracted from the text. Subjects include the
subjects of those sentences. Modifiers, in this case, refer to sentence level modifiers. “In 1452,
...”, would be an example of this and would be parsed out as the modifier for the sentence.
Predicates include the verb, the objects, and any extra part that isn’t a subject or modifier. These
first four dictionaries have all have their key as the sentence id and the value as their respective
data. The inverse subjects dictionary is the opposite of the subjects dictionary in the sense that
the key is the subject and the value are lists of sentence ids. This is useful in cases where you
want to get all the sentences of a given subject. The last dictionary is keywords. This dictionary
is similar to inverse subjects since the key is the keyword and the value is a list of sentence ids.
Similarly, this is useful to know information such as which sentences contain the word “painted.”
Keywords are the nouns and verbs of a sentence with a few exceptions.

The algorithm starts by going through all the sentences in the input. For each sentence, it
stores the sentence in the sentences dictionary. Once added, the algorithm looks to see if the first
word in the sentence is a preposition. If it is, the sentence starts with a modifier, so the algorithm
parses the text between the first word and the first comma, labelling that as a modifier for this
sentence. Then for every token after, the algorithm checks to see if the token is a verb or noun

and 1s not in the exceptions list; if the criteria is met then the word is added to keywords. After
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that, we check to see if the token is a comma that is followed by a preposition. If so, the sentence
ends with a modifier, so the algorithm parses out the reminder of the sentence and labels it as a
modifier for the sentence. Then the algorithm checks if the token is a subject. If so, the algorithm
adds the subject to both the subjects list and the inverse subjects list. Any token that is not the
subject or inside a modifier is then labeled as part of the predicate which is then appended
together as the sentence’s predicate.

This algorithm has a lot of holes in it but works well as a first prototype (for the most
part), but it relies on well-formatted (e.g. human-vetted) input. For example, if a sentence with a
starting preposition does not have a comma that closes the preposition, the algorithm will not be
able to classify the sentence modifier. Similarly, if the sentence has an interrupting preposition,

the algorithm will think everything including and past that preposition is a modifier.
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APPENDIX B

QUESTION-GEN ALGORITHM

function QUESTION-GEN(sentences, subjects, predicates, modifiers, keywords,
inverseSubjects, & gquestionDict) returns null

#dictionary containing all of the questions mapped to each intent that the
Rasa bot will recognize

#dictionary - {"intent name" : ("Source Sentence", [questions])}
questionDict = {}

#generate questions for each sentence
#predicates is from DICTIONARY-GEN
for key in predicates.keys():
sentence = "".join((token.text + " ") for token in predicateslkeyl])

subj = None
subjType = None
act = None
obj = None
objType = None

sentDoc = nlp(sentence)

#Get subject, action and object from sentence
for token in sentDoc:
fuse earliest subject
if (token.dep == "nsubj" or token.dep == "nsubjpass") and subj == No
ne:
subj = token
#in most cases, the root is the main action
elif token.dep == "ROOT":
act = token
#fuse earliest and most important object
elif (token.dep == "pobj" or token.dep == "dobj") and ((obj == None
or (obj.dep == "dobj" and token.dep == "pobj")) ):
obj = token

#Name intent for questions
intentName = str(act) + " " + str(obj)

#get extended action, if possible
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#adds on supplemental parts of verbs (like 'go to' instead of 'go')
tok = act
action = ""
action += tok.text
arry = [token for token in sentDoc]
index = act.i
while index+1l < len(arry):
index += 1
tok = arryl[index]

if (tok.dep == "aux" or tok.pos == "VERB"):
action += " "+ tok.text

else:
break

#Get more specific object and object type, if possible
#searches entity list to see if there is an entity that includes the sel
ected object (to get its entire name)
for entity in sentDoc.ents:
strtest = str(entity.text)
if strtest.find(str(obj)) != -1:
objType = entity.label
obj = entity.text
break

# get more specific subject (ex. "Leonardo da Vinci" instead of "Vinci")
for entity in sentDoc.ents:
strtest = str(entity.text)
if strtest.find(str(subj)) != -1:
subjType = entity.label
subj = entity.text
break

questions = list ()

#Generate basic questions based on object type and available information
if (subj != None and act != None and obj != None):

#checking for missing information removes about half of the possible int
ents

if str(objType) == "GPE":

questions.append (str ("Where was " + str(subj) + " " + str(act) + "?2"
))
elif str(objType) == "DATE":

questions.append(str ("When did " + str(subj) + " " + str(act) + "?2")

37



elif str (objType) == "PERSON" or (not type(obj) == str and obj.dep ==

"pobj") :

questions.append(str ("Who " + str(act) + " " + str(subj) + "2"))
else:

questions.append(str ("What did " + str(subj) + " " + str(act) + "2")
)
if str(subjType) == "GPE":

questions.append (str ("Where was " + str(obj) + " " + str(act) + "?")
)
elif str(subjType) == "DATE":

questions.append(str ("When did " + str(obj) + " " + str(act) + "?"))
elif str(subjType) == "PERSON":

questions.append(str ("Who " + str(act) + " " + str(obj) + "2"))
else:

questions.append(str ("What did " + str(obj) + " " + str(act) + "?2"))

questions.append(str ("What is " + str(obj) + " to " + str(subj) + "?2")
)

questions.append(str ("What " + str(act) + " " + str(subj) + "2?2™M))
questions.append(str ("What " + str(obj) + " " + str(act) + " " + str(s
ubj) + "?"))

questions.append(str ("Why did " + str(subj) + " " + str(act) + " " + s
tr(obj) + "2M))

questions.append(str ("How did " + str(subj) + " " + str(act) + " " + s
tr(obj) + "2"))

questions.append(str ("How does " + str(subj) + " " + str(obj) + "?"))
questions.append(str(str(subj) + " " + str(act) + " " + str(obj) + "?"
))

translations = [SimplifyText (question) for question in questions]

# 's&quot' and '&#39' come up in some translations. Seem to denote pro

per names (ex. 'Mona Lisa') or possessive
translations.append (SimplifyText (sentence) .replace ("&quot;","'") .repla
Ce("&#39;","'"))

for translation in translations:
questions.append(translation.replace ("&quot;","'") .replace ("&#39;","

l"))

#ensure intents aren't overwritten

while (intentName in questionDict.keys()):
intentName += " "

questionDict[intentName] = (sentence, questions)
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The QUESTION-GEN algorithm is used to generate the questions that will be used to
train the Rasa-bot’s intent recognition. The input for this algorithm is the predicates formed by
the DICTIONARY-GEN algorithm. Each predicate is reformed into a sentence string and fed
into SpaCy NLP to tokenize each word. The sentence is then searched to find the tokens
representing its subject, main verb, and object. This is done by checking the syntactic
dependency tag (._dep) of the token. Subjects either have a tag of “nsubj” or “nsubjpass”
(nominal subject or passive nominal subject). The main verb of the sentence usually has the
“ROOT” tag, which denotes the token that connects multiple noun phrases (i.e. the subject and
the object). The object of the sentence will either be tagged as “dobj” or “pobj” (direct object or
object of preposition). There can be multiple objects in a sentence and it was found through
testing that this algorithm was more effective if the first object of preposition is used, if there is
one available. Note that separating the predicates with DICTIONARY-GEN already broke up
most sentences that originally had multiple clauses and would therefore have multiple subjects,
verbs, and/or objects. Since the subject and object found in this way would only be a single
token, the list of entities in the sentence generated by SpaCy is searched to find the full name of
the subject/object, if there is one available (ex. if “Leonardo” is found as the subject, it might be
expanded to “Leonardo da Vinci”). Similarly, if the main verb is immediately followed by other
verbs or auxiliary verbs, they are combined to form a more complete action (ex. “go to” instead
of “go”).

From there, the subject, action and object are then inserted into several question formats
in order to generate questions. If the algorithm did not find a subject, verb or object in the
sentence, no questions will be generated from the sentence and the previous process will start

again with the next predicate from DICTIONARY-GEN. There are several general question
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formats that will be formed for every sentence such as “Why did [SUBJECT] [ACTION]?”, but
there are also questions that will only be formed depending on the type of entity that SpaCy
tagged the subject or object to be. For example, if the object is tagged as a location, the question
generated will be “Where did [SUBJECT] [ACTION]?”. The sentences formed in this way may
not be grammatically correct, but it was found that since the Rasa bot searches for keywords in
input, it is trained better with quantity over quality. All questions generated in this way are then
added to a list. To improve the training data, synonymous sentences are then generated by using
the SimplifyText() function on each question, which translates the question into a foreign
language and then translates it back into English, altering the structure of the question without
changing the meaning. The retranslated sentences are then added to the list of questions.
Finally, the intent name that the Rasa bot will use to group these questions will be
generated as “[ACTION] [OBJECT]” with additional “  characters added on if there already
happens to be an intent with this name. An entry into a dictionary containing all of the
intents/questions is then made with the intent name as the key mapped to a tuple containing the
source sentence and the list of questions generated from that sentence. This process is then

repeated for every predicate formed in DICTIONARY-GEN.
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