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ABSTRACT 

 
 

Applications of Machine Learning in Content Generation for Educational Video Games 
 
 

Lloyd Donelan, Brenton Lenzen, and Kishan Patel 
Department of Computer Science & Engineering 

Texas A&M University 
 
 

Research Advisors: Professor Andre Thomas and Professor Hadeel Ramadan 
Department of Visualization 

Texas A&M University 
 

 
Research Advisor: Dr. Theodora Chaspari 

Department of Computer Science & Engineering 
Texas A&M University 

 
 

Over the past few years, students have become increasingly unmotivated to read their 

assigned textbooks as an accompaniment to classroom lectures and activities. Reading the 

textbook is known to improve comprehension and overall student performance in classrooms. If 

reading the textbook was reformatted into a more engaging experience, perhaps it would improve 

student motivation and knowledge retention. Teaching students the importance of learning while 

also motivating them to do well in class will help them gain the knowledge and grades needed to 

land competitive jobs after they graduate college.  

Game-Based Learning (GBL) is an emerging field of study that attempts to use video 

games to create interactive educational experiences. Game-Based Learning has been shown to 

have educational merit, being well-known for providing intrinsic motivation for students to learn 

(most often, as a supplement to traditional coursework). With GBL in mind, is it possible to 

generate interactive game content from textbooks using machine learning (ML) and artificial 
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intelligence (AI) that can replace or supplement the source material in terms of educational 

content in a traditional classroom setting?   

Our team proposes to lay the groundwork for future research in Game-Based Learning 

and Machine Learning at the LIVE Lab undergraduate research lab (Texas A&M University, 

College of Architecture, Dept. of Visualization) by attempting to reformat school textbooks into 

interactive chatbot AIs with the assistance of knowledge compilation & fact-retrieval systems 

designed for generating educational video game content.  
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NOMENCLATURE 

 
 

GBL   
  

Game-Based Learning  

AI    
  

Artificial Intelligence  

ML    
  

Machine Learning  

MLAI   
  

Machine Learning and Artificial Intelligence  

The Lab  LIVE Lab at Texas A&M University (College of Architecture, Department of 
Visualization). The undergraduate research lab that the authors belong to.  

 
edutainment Educational entertainment 

API  Application programming interface; also called “framework” 

NLU  Natural Language Understanding 

NLP  Natural Language Processing 

LSA  Latent Semantic Analysis 

NLTK  A natural language processing framework in Python 

spaCy  A natural language processing framework in Python 

chatbot An interactive AI that users can send messages to, and the chatbot will generate 
semi-intelligent messages to send back to the user 

Rasa  A retrieval-based chatbot framework in Python 

QG  Question Generation 

QA  Question-Answer 

KB  Knowledge Base  
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CHAPTER I 

INTRODUCTION 

 
 

Background Information and Research Motivations  

Studies have shown that reading textbooks improves student comprehension of class 

material at multiple levels of education[1][2][3], but have also shown that students are becoming 

increasingly unmotivated to read textbooks on their own[2][3]. Some studies have researched 

methods for improving student motivation and interest when performing assigned readings, but 

such methods have been mostly limited to traditional exercises such as worksheets, study guides, 

in-class discussions, and quizzes[2][3].  

The growing field of Game-Based Learning is known for utilizing the intrinsic motivation 

students have when playing video games to assist comprehension and to reinforce learning[4][5][6], 

yet there are few studies, if any, that attempt to provide students with an engaging educational 

experience that embodies the vast amount of information found in a textbook.  

Rather than designing games that encompass a small subset of learning objectives, what if 

we could procedurally generate content for all of the information in a textbook, thus 

encompassing most (or all) of the learning objectives of a class? Creating an extensive, 

interactive, and well-structured game that students could actively interact with would likely be 

used more frequently by students than their textbooks, which only offer a passive reading 

experience[6].  

Furthermore, if we could change the way students interact with their textbooks we could 

provide greater motivation for acquiring the knowledge present in the book without them 

needing to read it[3]. And, what better framework to use to motivate students to learn than Game-
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Based Learning? In addition to motivational benefits, GBL also provides both active and passive 

learning opportunities as well as the potential to embody practice problems and to foster social 

interaction between students[6].  

Machine learning and procedural game content generation have seen much progress in 

the past few years, and we believe that it is a highly capable vehicle for achieving our goals[7]. 

Thus, we propose using Machine Learning and AI (MLAI) to assist in procedural content 

generation for educational video games, to be employed in a traditional classroom setting.  

Differences from Previous Studies  

There are many studies within the realms of Game-Based Learning and procedural 

content generation using Machine Learning and AI (MLAI), but few, if any, attempt to merge the 

two together. First, our project is different than past research projects because it attempts to use 

MLAI to create content with the explicit purpose of being used in GBL. Multiple published 

research papers focus on generating high-quality procedural game content (in terms of fun factor, 

fairness, complexity, and player reception) for entertainment purposes, but not for educational 

purposes. Second, our project differs in its use of procedural content generation – rather than 

generating levels, enemies, or mechanics from a pre-determined set of game assets and 

developer-set constraints (as has been attempted by others in the past), we will be attempting to 

parse a secondary source of educational information (textbook, encyclopedia, database, etc) into 

a format that we can then generate interactive game content from. Lastly, our project differs from 

past research projects because we will not be testing several different methods of procedural 

content generation, nor will it be comparing the reception of these methods by players. Those 

tasks might be carried out in the future in a follow-up study.  
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Project Expectations  

My research team hopes to create a textbook parser using natural language processing 

techniques, outputting educational content from a school textbook into an intelligent and 

interactive chatbot AI. This is intended to be a “first venture” into procedural content generation 

for Game-Based Learning for my research team, and while we don’t expect to make major 

progress towards our end goal of procedurally generating comprehensive interactive educational 

experiences, we do expect to lay the groundwork for future research. By the end of the year, we 

hope to have completed:  

• Create a system for parsing a secondary source of educational information, such as a 

textbook, and outputting well-defined “knowledge bundles” containing all information 

pertaining to a particular concept or idea.  

• An interface between the information parser and the chatbot AI that allows the AI to 

receive “knowledge bundles” as inputs.  

• Create a prototype for an interactive chatbot AI that can provide information about a 

historical figure, creating dialogue from player inputs and relevant “knowledge bundles.”  

• Document all completed work and create estimates for the feasibility of potential future 

tasks for our team.  

The successful completion of these tasks will demonstrate the importance of procedural 

content generation in educational entertainment (edutainment) as well as the relevance of Game-

Based Learning to cutting-edge research in the field of Computer Science. Additionally, our 

research could form the basis for renewed discussions on the topics of: abstraction of learning 

objectives, educational examination methods, methods of measuring student comprehension, 
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teaching strategies, and the development of intrinsic motivation in interactive educational 

content.  

Potential Future Tasks  

Because our current research is intended to lay the groundwork for future tasks, it is 

important to keep potential future tasks in mind. Some tasks we might like to work in the future 

that will build off of our research are:  

• Generating game assets from “knowledge bundles”  

• Generating game mechanics from “knowledge bundles”  

• Creating an intelligent learning assistant/tutor AI that will assist the player and create a 

personalized learning environment  
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CHAPTER II 

METHODS 

 
 

 Development on the project began with DonBot (shorthand for “Donatello Robot”). 

DonBot was a conceptual prototype for a chatbot that would store information on the renaissance 

artist Donatello, which would then be used to construct intelligent and informative responses to 

user inquiries about the artist. A fully functional prototype would require the following 

components: 

1. A text parser, to read in and format information about the subject (Donatello). 

2. A chatbot, to interact with users to provide them with information about the subject 

(Donatello).  

3. An interface between the text parser and the chatbot, containing the output of the text 

parser in a useful format for the chatbot and other tools/software that we might want to 

develop in the future for generating interactive educational content. 

To complete the overall process, a significant amount of NLP work is required before providing 

the chatbot with the information extracted from the input corpuses. This will ensure that all 

extracted information is sterilized and well-formatted, making it easy to use the information for 

future procedural work. Thus, we chose to store extracted information in a format which we call 

a “Knowledge Bundle.” 

NLP Pipeline Conceptual Overview 

In our theoretical design, Knowledge Bundles contain facts that are represented as tree-

like structures (called Knowledge Trees), with the root node containing a list of entities where 

the first listed entity is the subject of the knowledge bundle (in our case, Donatello) and the rest 
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of the entities are known synonyms for the subject. The second level in the tree contains nodes 

with a list of verbs, where the first verb is considered to be the “main verb” and the rest of the 

verbs are synonyms of the main verb. The third level in the tree contains nodes with prepositions 

or determiners, and the fourth level contains nodes with nouns (the subject of the verb in the 

second level of the tree). These first four levels of the tree comprise “core facts,” and the second, 

third, and fourth levels together comprise “knowledge statements.” Following one branch from 

the Entity (root level) to the fourth level of the tree builds a single factual statement, hence the 

term “core fact.” Additional details may be included in subsequent nodes after the fourth level of 

the tree, but are not necessary. 

By iterating through a Knowledge Tree, all known facts about a specific entity can be 

examined. Additional properties can be added to tree nodes or Knowledge Bundles to support 

project-specific algorithms or data that might be useful for further NLP techniques such as 

question and answer generation.  

Properly generating Knowledge Trees for use in Knowledge Bundles would require 

pipelining several modern NLP techniques and is thus a significant research challenge. For the 

syntactic approach described in this paper, these techniques may include: 

1. Spellchecking and Tokenization 

2. Entity Classification and/or Super-sense tagging, (intended to assist Co-reference 

Resolution and Clause Extraction) 

3. Co-reference Resolution, Pronoun Resolution 

4. Sentence Simplification and/or Clause Extraction 

5. Question and Answer Generation from Simplified Sentences 
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First, the input corpus(es) need to be sterilized and properly tokenized. There is already a 

great deal of work in these areas, and so we will not discuss these steps further[8]. After that, 

sentences should be read through and the parts of speech labelled, with special interest in 

preprocessing techniques that will assist with Co-reference Resolution, Pronoun Resolution, 

Sentence Simplification, and Clause Extraction. Next, ambiguous entity references should be 

resolved and replaced with entity names. Any ambiguous non-pronoun references to some entity 

X should be recorded as “synonyms” in the knowledge bundle for that entity (pronouns are not 

unique to any specific entity, and thus should not be considered synonyms). After (3), all entity 

references should be un-ambiguous. Sentences can now be simplified, and/or clauses extracted, 

to generate short factual statements. 

As an example, the sentences “Einstein died in 1955 at the Princeton Medical Center in 

New Jersey. He is well-known for his contributions to Physics,” would (ideally) yield outputs at 

each step in the pipeline similar to the following: 

 (1, 2) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. He is well-

known for his contributions to Physics.” 

 (3) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. Einstein is 

well-known for his contributions to Physics.” 

 (4) “Einstein died in 1955. Einstein died at the Princeton Medical Center. Einstein died in 

New Jersey. The Princeton Medical Center is in New Jersey. Einstein is well-known. 

Einstein has made contributions to Physics. Einstein is well-known because he has made 

contributions to Physics.” 
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Each sentence generated by (4) can now be added to a Knowledge Tree. Most of the 

sentences can be added to a Knowledge Tree for a Knowledge Bundle dedicated to the entity 

“Einstein,” but notice that there are two peculiar sentences in the output: 

(a) “The Princeton Medical Center is in New Jersey.” 

(b) “Einstein is well known because he has made contributions to Physics.” 

In (a), there is no mention of Einstein. Rather, this is a fact about a different entity (the 

Princeton Medical Center). Thus, (a) should actually be added to the Knowledge Tree for a 

Knowledge Bundle dedicated to the entity “Princeton Medical Center.” In (b), Einstein is 

mentioned but this sentence is actually just a more detailed version of a previous sentence: 

“Einstein is well-known.” For this reason, the Knowledge Tree for Einstein should contain a 

branch with “Einstein is well-known” as the core fact and “because he has made contributions to 

Physics” as additional details. 

It is worth noting that (3) and (4) won’t always proceed so smoothly. For example, the 

sentence “North Korea and Cuba are the only places you can’t buy Coca-Cola” would look 

something like this: 

 (1, 2, 3) “North Korea and Cuba are the only places you can’t buy Coca-Cola.” 

 (4) “You can’t buy Coca-Cola in North Korea. You can’t buy Coca-Cola in Cuba. You 

can buy Coca-Cola in every place except North Korea or Cuba.” 

There are a few peculiarities about the output here. Perhaps our original intuition tells us 

that some facts should’ve been generated about the entities North Korea and Cuba, yet the only 

facts generated were for the entity “you.” Additionally, there is no straightforward way to 

generate anything resembling the third sentence, “You can buy Coca-Cola in every place except 

North Korea or Cuba,” from the input text. Finally, notice that there are two potential pitfalls to 
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avoid – generating either of the sentences “You can’t buy Coca-Cola” (from the input sentence) 

or “You can buy Coca-Cola in every place” (which is seems to be a less-detailed version of the 

last output sentence, but is actually a different sentence because it has a different meaning from 

the original!). 

The final step in the Knowledge Bundle generation pipeline is to generate potential user 

inquiries, based on known facts about the entity referred to by a Knowledge Bundle. This 

enables a retrieval-based approach to user inquiries about facts in the Knowledge Database (the 

set of all Knowledge Bundles for a particular project). Generated inquiries can then be added to 

the Knowledge Database and given a reference to the fact that serves as their answer. These 

questions and answers can then be used as training data for a chatbot or other Q&A system, to 

allow the system to respond appropriately to user inquiries based on user intents. 

The process of question generation comes with its own challenges and pitfalls. Simple 

“reading comprehension”-style questions are known to be created with decent results using 

linguistic transformations on preprocessed sentences. Heilman took a similar approach to our 

proposed NLP pipeline, but did not fully explore the benefits of sentence simplification and 

paraphrasing on QG[8]. We hypothesize that “reading comprehension”-style questions can be 

generated more accurately with a similar approach if the input sentences are reduced to simple 

clauses (concise, factual statements) and are sterilized to remove unambiguous pronoun 

references. Additionally, by reducing input sentences to simple clauses, we can then use the 

reduced clauses (perhaps with some minor post-processing) as the answers to generated 

questions. This is a significant difference from Heilman’s approach, which deals exclusively 

with QG and not QA[8]. In simpler terms, the NLP pipeline is intended to reduce an input corpus 

down to a series of concise factual statements, which would then serve as answers to questions 
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that are generated from those statements using the statements themselves in combination with 

any contextual information that was extracted from the original input corpus. 

In the following sections, we explain the initial research process. Then, we give a high-

level overview of how each component in our prototype of the NLP pipeline. Finally, we 

describe future work to be done and potential improvements and applications of the project as a 

whole.  

First Iteration of the Text Parser 

The text parser needed to take in a large, domain-specific corpus of text and output facts 

about historical figures. Our input domain was restricted to educational works containing 

information about the artist Donatello or his work. Initially, we used the Britannica entry on 

Donatello as our (small) input corpus, with the intention of increasing the size & diversity of 

sources in the input corpus in the future. Britannica was chosen over alternatives such as 

Wikipedia because Britannica is curated by verified professionals, and does not provide an 

excessively large input corpus (smaller input size was preferred for initial prototyping). 

For the first iteration of the text parser, we did not yet have a clear understanding of our 

conceptual NLP pipeline. Instead, we retrieved data from the input text through the following 

process (using NLTK and spaCy): 

1. HTML tag scraping 

2. Removal of irrelevant information 

3. Creating Intent/Answer Pairs 

4. Creating Training Data Files for DonBot 

In (1), we extract the text of the web page from the HTML code of the web page. In (2), 

we remove irrelevant information such as information about Britannica and information about 
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other topics that are indirectly related to Donatello, which are not currently relevant to our 

research. 

Next, we performed some additional processing in NLTK to group sentences by intent 

(based on detected keywords). Finally, we automatically generated training data for the chatbot 

from our text using python scripts. Sadly, our algorithm did not succeed in generating 

acceptable-quality intent bins, and this is reflected in the generated training data. 

The text parser would remain in this state until the second iteration of the chatbot. 

First Iteration of the Chatbot 

DonBot’s first iteration was based off a generative chatbot created by github user 

Hugging Face. This model was chosen for two reasons: 

1. The model uses a ‘persona’ to generate responses, where the persona is defined with a 

couple of sentences that provide the AI with knowledge about a historical figure. 

2. The model uses transfer learning, which would (theoretically) reduce the amount of 

training data needed for the AI and improve the AI’s understanding of user messages. 

This chatbot did not work well, lacking enough training data related to Donatello while 

also having too much modern information from the conversation training data. The bot was able 

to state its name, Donatello, but was not able to provide users with reliable facts. In some tests, 

the chatbot went so far as to insist that Donatello was from the Dominican Republic and that he 

was a slave! This implementation was quickly abandoned. 

Second Iteration of the Chatbot 

The next iteration of DonBot, DaVinciBot, was created using the Rasa retrieval-based 

chatbot framework. This version of the chatbot requires three types of training data: 
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1. NLU Training: a collection of potential user inputs, each labeled with a particular intent. 

The bot will be able to recognize similar inputs as having the same intent. 

2. Domain: a collection of actions that the bot can take, the user intents that it can recognize, 

and templates for the bot’s responses to user inquiries. 

3. Stories: a collection of dialogue paths, outlining the structure of user-bot interactions. 

Also defines behavior for unrecognized intents. 

This iteration of the bot responds well to user inquiries, as long as the inquiries resemble 

something in the training data. Unlike the previous iteration, the bot will never respond with 

inaccurate information unless we provide some in the training data. If the bot is unable to 

understand the user’s inquiry it will always respond in a predefined way, which ensures 

professionalism and some level of reliability in the bot’s responses. 

Second Iteration of the Text Parser: The NLP Pipeline 

By this point, it was clear that we would need a more structured attempt to process our 

input text. This is when we came up with the NLP Pipeline, which could (theoretically) reduce 

an input corpus to a series of concise factual statements, grouped by the Entity they refer to. 

Implementing such a design would allow user inquiries to be interpreted as a simple search over 

the Knowledge Tree of the Entity in question; such an implementation would require Entity 

Recognition, Sentence Simplification and/or Clause Extraction. 

Entity Recognition has some major issues to deal with. Simplifying a sentence with only 

ambiguous references to an entity (such as pronouns or monikers) would not generate any useful 

information – a new entity would be generated (such as “The First President”, instead of “George 

Washington”), and the fact would be attributed to the new entity instead of the entity it truly 

applies for. This would result in facts for an entity X being distributed among up to n different 
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knowledge bundles, where n is the number of ambiguous references to X in the input corpus. 

Additionally, pronouns such as he/she could be used multiple times in the input corpus, each 

time referring to a different entity. Facts for two separate entities X and Y could be attributed to 

another Knowledge Bundle for a single entity “He”/“She”! Solving these issues would require 

additional steps to be added to the pipeline. 

Solving the first issue (which will be referred to as “the nickname problem”) would 

require some way to resolve common nouns and nicknames to their owner’s name, which could 

most likely be achieved by, or with the assistance of, a semantic approach using Entity 

Clustering or word vector analysis. We choose to leave this to future work. 

To solve the second issue, we decided to implement Pronoun/Co-reference Resolution, 

substituting unclear pronouns with the real Entity’s name before performing Sentence 

Simplification. For our initial prototype, we used an existing spaCy module for Co-Reference 

Resolution. The module worked well for most sentences, but was less successful with long 

sentences. Perhaps some level of Sentence Simplification could be done as pre-processing to 

improve the success rate of Co-Reference Resolution, but it is important to note that too much 

pre-processing could have negative effects on the main Sentence Simplification process by 

introducing errors or removing important contextual information early on in the NLP pipeline. 

We leave improvements to Co-Reference Resolution to future work. 

First Attempt at Generating Knowledge Bundles 

Before implementing the Knowledge Tree structure that we originally planned for the 

NLP Pipeline, we needed a way to generate Knowledge Trees and Knowledge Bundles from the 

input data. Our first attempt at generation of Knowledge Bundles ended up as more of a 

Dictionary generator, using a series of dictionaries and hash ids that are generated from 
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sentences to associate parts of speech with their original context. Each part of speech would 

reference their source sentence, and each subject would then hold reference to every hash id of a 

sentence describing information about them. For example, for the sentence “Donatello seemingly 

demanded a measure of artistic freedom,” we would get the following output information for the 

sentence: 

1. Sentence hash id = -572009579105218340 

2. Subject(-572009579105218340) = Donatello 

3. Predicate(-572009579105218340) = seemingly demanded a measure of artistic freedom 

4. Modifiers(-572009579105218340) = null 

This populates data into four different dictionaries, each with the sentence hash id as the 

key and the content as the value. Additionally, we would also get the following output 

information in a dictionary of subjects, where the key is the subject name and the value is a list 

of hash ids of all sentences containing information about that subject: 

1. Donatello = [ -572009579105218340, … ] 

2. demanded = [ -572009579105218340, … ] 

3. measure = [ -572009579105218340, … ] 

4. artistic freedom = [ -572009579105218340, … ] 

This algorithm is referred to as the DICTIONARY-GEN algorithm. Now, all already 

known information about a subject(s) is accessible in O(1) time if the subject and clause keys are 

known, and the total time to iterate over all information about all subjects is in O(n) of the input 

corpus size (thanks to the use of dictionaries). The QUESTION-GEN algorithm can then be run 

on the collection of Dictionaries to generate questions for the RASA chatbot training data. In the 

future, we would prefer to use true Knowledge Bundles generated by some BUNDLE-GEN 
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algorithm (as opposed to the dictionary format we are currently using) to provide information to 

the question generation algorithm. See an overview of the DICTIONARY-GEN and 

QUESTION-GEN algorithms in Appendix A and Appendix B. 

For very large input corpuses, the collection of dictionaries might not be searchable at 

runtime at acceptable speeds for real-time applications (video games). This isn’t currently an 

issue for the small-time retrieval-based chatbot that we are currently using, which generates 

training data at compile time, but future projects such as generative chatbots would require this 

information to be accessible in something faster such as O(log(n)), which would require that we 

turn our collection of dictionaries into a balanced binary decision tree structure. Such a structure 

might lend itself to a very fast and robust database system, allowing queries of the hashed 

sentence data, and perhaps eliminating the need for individual knowledge bundles to be created 

at compile time. The entire database could be a Knowledge Tree comprising facts of the entire 

input corpus, and Knowledge Bundles for individual subjects could be generated at runtime for 

frequent access to information about particular subjects as needed. Although we leave the 

implementation of such systems to future work, we will now discuss the theory behind such an 

implementation. 

Second Attempt at Generating Knowledge Bundles 

 Finally, after implementing some semblance of the aforementioned NLP Pipeline and 

having a greater understanding of the linguistic tools at our disposal, we were able to start 

thinking about a truer implementation of Knowledge Bundles. By this point in time the idea of a 

Knowledge Bundle was no longer a “stand-alone package” of information, but was instead 

considered to be an “extracted subgraph” from a much larger graph of all known information, 

referred to as the Knowledge Base (KB). 
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 All of the facts known to the AI would be placed into a massive Knowledge Tree, which 

serves as the AI’s Knowledge Base. At any point in the tree, a node could be selected as the root 

of a subtree and that subtree could be extracted and cached (in theory, anyways) – such a subtree 

could then be used as a Knowledge Tree for the subject of the tree’s root node. For example, 

extracting a subtree where the root node’s subject is “artwork” (which is a category of things, 

rather than a named entity) would cache the Knowledge Tree for all artwork in the Knowledge 

Base. Extracting a subtree where the root node’s subject is “Da Vinci” would cache the 

Knowledge Tree for  all known information about the artist Da Vinci (a specific named entity, 

rather than a category of things); this subtree is, itself, a subtree of the subtree where the root 

node’s subject is “artists,” which is in turn a subtree of the subtree where the root node’s subject 

is “people.” 

 Nodes with categorical information such as “artwork,” “people,” or other broad specifiers 

are called “decision nodes.” Nodes with factual information such as a date, e.g. “1922,” or a 

name, e.g. “Donatello,” are called “data nodes.” A depiction of a Knowledge Tree is shown in 

Figure 1. 
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Figure 1: An example illustrating the structure of a Knowledge Tree. 
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 Each Knowledge Tree, edges contain a list of verbs, where each verb is guaranteed to be 

found in the main clause of at least one fact in the subtree containing that edge. For example, if 

an edge E contains a verb V, and E is adjacent to some nodes N1 and N2, with N1 being higher 

level than N2, then V is guaranteed to be found in the main clause of at least one fact in a subtree 

originating at N1. In Figure 1, this can be illustrated by choosing the following values for E, V, 

N1, and N2: 

• E := the edge from the decision node for “People” to the data node for “Da Vinci” or 

from the decision node for “People” to the data node for “Donatello” 

• V := created 

• N1 := the decision node for “People” 

• N2 := the data node for “Da Vinci” or the data node for “Donatello,” based on the choice 

of E 

• With these definitions, the verb “created” is guaranteed to appear in at least one fact in a 

subtree starting at the decision node for “People.” In this example, it appears in any 

subtree including the fact “Da Vinci created the Mona Lisa” or the fact “Donatello 

created art” (note that the training data for this tree should’ve been vetted to say 

“Donatello created artworks”). 

As demonstrated in the example, facts can be generated simply by starting at a data node 

that contains a subject, then traversing the Knowledge Tree down to a leaf node. This structure 

removes the need for dictionaries and is useful as both, an intermediate data format to change the 

input corpus into chatbot training data, and an efficient way to lookup facts (in terms of time 

complexity). Our Results section will discuss the time and space complexity of this format for 

Knowledge Bundles as well as implications of the system and ideas for future work.  
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CHAPTER III 

RESULTS 

 
 

Analysis of Question Generation Using Knowledge Bundle Attempt #1 

The NLP Pipeline appears to be a fairly effective approach to generating facts for the 

chatbot’s training data. Our current prototype shows mixed results, but can effectively identify 

user inquiries related to simple sentences from the input corpus or some extracted simple clauses. 

Although we are not currently looking up any information at runtime, runtime lookup of 

information in our collection of hash id dictionaries is O(1) with a known key, and O(n) for an 

unknown key. Some good and bad examples of user inquiries, and the chatbot’s responses, will 

now be given. For these examples, the chatbot was trained on the output of question generation 

resulting from an input corpus comprised of the Britannica pages for Donatello and Leonardo Da 

Vinci. 

Question Generation Good Examples (Knowledge Bundle Attempt #1) 

(1) Q: What was Leonardo da Vinci’s personality like? 

A: Leonardo da Vinci was described as having a gracious but reserved personality and an 

elegant bearing. 

(2) Q: Was Leonardo unmarried? 

A: Leonardo never married, but Leonardo da Vinci had many close relationships with 

other arists and intellectuals as well as with Leonardo da Vinci’s assistants. 

(3) Q: Where his parents married? 

A: Leonardo’s parents were unmarried at the time of Leonardo da Vinci’s birth. 
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Example (1) is straightforward. It demonstrates a good response to a simple question. 

Examples (2) and (3) both show an impressive response to seemingly simple questions that are 

essentially asking to retrieve the same factual information, but for different subjects (Leonardo 

versus his parents). Additionally, (2) uses “married” and (3) uses “unmarried,” where “married” 

was in the training data but “unmarried” was not. In (3), “his” is easily ignored in favor of “Da 

Vinci” because, in this case, the chatbot was only trained on information about Da Vinci. 

Semantic information related to the context could be used to apply coreference resolution to user 

inquiries in the future. 

Question Generation Mixed Examples (Knowledge Bundle Attempt #1) 

(1) Q: Who was Leonardo da Vinci? 

A: Leonardo da Vinci was an artist and engineer who is best known for Leonardo da 

Vinci’s paintings, notable Mona Lisa Mona Lisa and the Last Supper. 

(2) Q: Was Leonardo ever commissioned to make anything? 

A: According to contemporary sources, Leonardo was commissioned to create three more 

pictures, but six works have since disappeared or were never done. 

Example (1) demonstrates that issues in Coreference Resolution have caused strange 

syntax and duplication of the name “Mona Lisa.” These issues were propagated down the NLP 

Pipeline. Example (2) confirms that Leonardo was commissioned to make something, but it does 

not tell the user what he was commissioned to make. 

Question Generation Bad Examples (Knowledge Bundle Attempt #1) 

(1) Q: When did Leonardo die? 

A: In 1482 Leonardo moved to Milan to work in the service of the city’s duke- a 

surprising step when one realizes that the 30-year-old  artist had just received Leonardo’s 
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first substantial commissions from Leonardo’s native city of Florence – the unfinished 

panel painting Adoration of the Magi for the monastery of San Donato a Scopeto and an 

altar painting for the St. Bernarn Chapel in the Palazzo della Signoria, which was never 

begun. 

(2) Q: dasfsadfaserfewqrqwersdfsadfasefwaer 

A: Leonardo da Vinci’s father, Ser Piero, was a Florentine notary and landlord, and 

Leonardo da Vinci’s mother, Caterina, was a young peasant woman who shortly 

thereafter married an artisan. 

(3) Q: Did Leonardo take care of himself? 

A: Leonardo da Vinci – Lady with an Ermine Lady with an Ermine, oil on panel by 

Leonardo da Vinci, c. 1489-91; in the National Museum, Krakow, Poland. 

Example (1) is straightforward – the bot provides a very long and unrelated response to a 

seemingly simple question. Example (2) shows that the bot failed to detect an invalid input, and 

as a result chose a seemingly random response instead of using the fallback response of telling 

the user that it didn’t understand the question. Example (3) shows the bot giving a completely 

unrelated response to a question that is very similar to some sentences in the training data. 

Analysis of Knowledge Bundle Attempt #2 

For the second formulation of Knowledge Bundles using a Knowledge Tree as the 

Knowledge Base, the worst-case search time for a fact and the space complexity of the system 

are both O(N+E), where N is proportional to the number of nodes and E is proportional to the 

number of edges in the tree to search through (either the entire KB, or a cached subtree of 

significantly smaller size). Although O(N+E) is an acceptable start, it is less than ideal for the 

massive Knowledge Base that would be generated from an input corpus comprised of multiple 
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textbooks. To improve the space and time complexity of the current system to O(log(n)), it could 

be converted to a binary decision tree, which would require an efficient method of collapsing 

multiple nodes into “super nodes” or strongly connected components of the graph that could then 

be efficiently searched. We leave these optimizations to future work. 

Efficient time complexity for such a KB requires loading the KB into memory which, for 

a large Knowledge Base, would incur a very large space complexity cost. For end-users this 

space complexity could be unfeasible due to low available memory. The space complexity 

becomes even larger if we also include references to cached Knowledge Trees, which would 

probably be stored in hash tables for constant time lookup, resulting in an additional O(n) space 

complexity where n is the maximum number of Knowledge Trees to keep cached in memory at a 

time. A potential solution to space complexity is to distribute data between a cloud server, which 

could host the entire Knowledge Base, and the end user’s machine, which could keep only 

cached data in memory such as references to subtrees, or the subtrees themselves. Keeping more 

data in memory on the client’s machine will result in faster fact retrieval times (because there is 

no travel time for packets being sent to / received by the server), but would also incur an 

increased local space complexity cost on the client. We leave the effective distribution of data 

across a cloud server and client machines to future work.  

Named Entity Recognition (NER) accuracy is highly important to be able to generate 

such a Knowledge Base. The system hinges on being able to accurately label categories of 

entities to create decision nodes, and of course, being able to accurately label named entities for 

data nodes. During development it is imperative that training data contains accurately labelled 

entities to ensure that the performance of algorithms operating on Knowledge Trees is examined 

in optimal conditions. Testing the system with training data that is not labelled accurately (or, not 
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labelled at all) is equally important – doing so will inform us of what kinds of additional training 

data are needed for the system to be reliable, and how to handle non-vetted training data. 

Additionally, effective clause extraction is extremely important to be able to generate 

such a Knowledge Base. Each branch in the Knowledge Base is based on facts in the form of 

simple clauses that are generated by the clause extraction step of the NLP Pipeline. Our current 

clause extractor does not have sufficiently reliable performance to allow for Knowledge Trees to 

be generated without additional input processing. Introducing a heuristic to measure the accuracy 

of extracted clauses based on the original input sentence would improve the reliability of the 

system by providing an internal “vetting” mechanism, which could then be used to automatically 

switch from clause extraction to some other fallback mechanism if the measured accuracy of an 

extracted clause(s) does not meet some minimum threshold. We leave the improvement of the 

clause extractor to future work. 

This format of Knowledge Trees lends itself extremely well to question generation (QG), 

allowing questions to be generated simply by specifying a data node S containing the subject of 

the question, and then traversing down a branch(es) to the leaf node(s) of a subtree(s) rooted at S. 

This is the primary motivator behind this Knowledge Base format. 

 
 

  



27 

CHAPTER IV 

CONCLUSION 

 
 

In the end, we were able to achieve most of our goals that we set out at the beginning of 

the project – we created a somewhat functional prototype, with mixed chatbot accuracy. The 

current chatbot is retrieval-based and thus does not require an efficient runtime implementation 

of knowledge trees (only compile time). Ideally, we will be able to create an effective data 

storage and retrieval system in the future that allows for fast search algorithms and lookup times 

for facts at runtime. This will allow for the project to shift its focus to a semantic-based 

approach, which has the potential to be more accurate and more flexible when responding to user 

inquiries. 

The current description for the true Knowledge Tree format specifies a large Knowledge 

Base containing all the facts known by a particular instance of the AI, which can then be broken 

down into smaller subtrees of facts about particular subjects. Those subtrees of facts can then be 

used as a smaller knowledge base for retrieving information about the subject of the subtree (e.g. 

Donatello, Da Vinci). This scheme will provide a worst-case time and space complexity O(N+E), 

where N is the number of nodes and E is the number of edges in the Knowledge Base and thus is 

proportional to the number of facts in the input corpus. Future implementations of such 

algorithms should include the use of a dictionary, hash table, or hash map data structure to cache 

references to subtrees for recently and frequently referenced subjects, allowing O(1) lookup time 

after the initial O(N+E) search. 

As suggested by our faculty advisor, trees may not be the optimal data structure for fact 

storage and retrieval. A portion of future research endeavors should be dedicated to looking for 
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other graph structures or improvements to the existing tree structure that might be better for our 

use case. Another avenue to explore is the use of fuzzy logic to assist searching through the 

knowledge base at runtime; fuzzy logic could potentially be implemented by providing some 

additional meta information to subject nodes in the graph, and then using that meta information 

in our search algorithm. We leave such tasks to future work. 

There are also opportunities for future work in improving the NLP Pipeline. Coreference 

resolution was particularly problematic for us, and adding it to the pipeline tended to reduce the 

accuracy of other components in the pipeline and propagating errors, so we were unable to use it 

in our initial project showcase. Sentence simplification was useful, but not completely accurate 

and was not able to simplify larger, complex sentences. More recently, we discovered that 

translation to and from English to Chinese would produce a slightly different sentence than the 

original, allowing us to improve our training data. Similarly, what if we included information 

from before Co-reference resolution, and before Sentence Simplification and Clause Extraction, 

in our training data as well (but not in the knowledge base)? This would allow each sentence to 

be converted into tens of sentences for the training data, each being similar but demonstrating 

variations on the same semantic meaning and improving the breadth of the training data, 

potentially improving the AI’s understanding of user inquiries which in turn would allow it to 

retrieve the correct contextually-relevant facts from the knowledge base when constructing or 

retrieving its responses in real-time. 

One area for improvement that we didn’t address with our current implementation is the 

additional processing of user inquiries, to allow the AI to better understand what the user is 

asking. We could run the NLP Pipeline on user inquiries at runtime, allowing users to ask 

slightly more vague questions or ask multiple questions in the same inquiry. Such goals also 
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outline the necessity of a semantic-based approach to the AI, which would allow contextual 

information (such as information related to the current conversation) to be used when searching 

through the knowledge base and constructing responses. Other important contextual 

improvements such as the distinction between entities of different categories with similar names 

– for example, the Medici estate versus the Medici family – or differentiating between Queen 

Elizabeth I and Queen Elizabeth II in-context – should be considered as well, and might be 

particularly useful for a semantic approach. We leave the development of contextual analysis for 

the AI to future work. 

In conclusion, our goal was to create a working prototype of the NLP Pipeline and 

interface it with a retrieval-based chatbot, with less emphasis on the accuracy of the chatbot’s 

responses to user inquiries than on the design process itself, as long as the functional ideas 

behind the implementation were demonstrated clearly and in such a way that would allow 

improvements and support/outline further research. We believe that we have succeeded in 

reaching this goal, and hope that this research paper will serve as a valuable reference for future 

work on the project.  
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APPENDIX A 

DICTIONARY-GEN ALGORITHM 

 
 

function DICTIONARY-GEN(resolvedText, &sentences, &subjects, &predicates, &modifiers, 
&keywords, &inverseSubjects) returns null 

#Dependency Tag Numbers (May Change in the Future) 
prepositionTagID = 443 #443 = preposition 
nominalSubjectTagID = 429 #429 = nominal subj 
 
#Keyword Helpers 
nounAndVerbAbreviations = ["NN", "NNP", "NNPS", "NNS", "PRP", "PRP$", "VB"
, "VBD", "VBG", "VBN", "VBP", "VBZ"] 
nounAndVerbExceptions = ["is", "he", "him", "his", "she", "her", "hers", "
’", "have", "has", "be", "been", "being", "were"] 
 
spacyDocument = nlp(resolvedText)  
spacySentences = list(spacyDocument.sents) 
for spacySentence in spacySentences: 
  modifierStartIndex = -1 
  modifierEndIndex = -1 
  subjectStartIndex = -1 
  subjectEndIndex = -1 
  predicateStartIndex = -1 
  predicateEndIndex = -1 
 
  #Sentences 
  sentences[hash(spacySentence)] = spacySentence 
 
  startsWithPrep = False 
  inMod = False 
  predicate = [] 
  if spacySentence[0].dep == prepositionTagID: 
    startsWithPrep = True 
    inMod = True 
 
  for token in spacySentence: 
    #Keywords 
    if (token.tag_ in nounAndVerbAbreviations and token.text.lower() not i
n nounAndVerbExceptions): 
      if str(token) in keywords: 
        if hash(spacySentence) in keywords[str(token)]: 



33 

          continue 
        keywords[str(token)].append(hash(spacySentence)) 
      else: 
        keywords[str(token)] = [hash(spacySentence)] 
 
    # Modifiers - Starts with a preposition - Look for the separating comm

a 
    if(startsWithPrep and str(token) == ","):  
      modifiers[hash(spacySentence)] = spacyDocument[spacySentence[0].i:to

ken.i] 
      inMod = False 
      modifierStartIndex = spacySentence[0].i 
      modifierEndIndex = token.i 
      continue 
 
    # Modififers - Ends with a preposition 
    if(str(token) == "," and spacyDocument[token.i+1].dep == prepositionTa

gID): 
      modifiers[hash(spacySentence)] = spacyDocument[token.i+1:spacySenten

ce[len(spacySentence)-1].i] 
      modifierStartIndex = token.i+1 
      modifierEndIndex = spacySentence[len(spacySentence)-1].i 
      break 
 
    #Subjects + Inverse Subjects 
    if token.dep == nominalSubjectTagID and subjectStartIndex == -1: 
      subjects[hash(spacySentence)] = token 
      if str(token) in inverseSubjects: 
        inverseSubjects[str(token)].append(hash(spacySentence)) 
      else: 
        inverseSubjects[str(token)] = [hash(spacySentence)] 
      subjectStartIndex = token.i 
      subjectEndIndex = token.i 
 
    #Predicates 
    if not inMod and token.dep != nominalSubjectTagID: 
      predicate.append(token.i) 
 
  if len(predicate) > 0: 
    predicates[hash(spacySentence)] = spacyDocument[predicate[0]:predicate

[-1]+1] 
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The first attempt of the knowledge bundler mainly involved the use of dictionaries. 

Dictionaries were preferred here because of their O(1) lookup time and simple implementation. 

This algorithm is used to fill those dictionaries with the relevant information.  

The inputs contain a piece of text and 6 dictionaries. The input text refers to the text from 

a textbook, or alternate source, after it has gone through the first three steps of our NLP pipeline. 

The 6 dictionaries are as follows: sentences, subjects, predicates, modifiers, keywords, and 

inverse subjects. Sentences include the sentences extracted from the text. Subjects include the 

subjects of those sentences. Modifiers, in this case, refer to sentence level modifiers. “In 1452, 

…”, would be an example of this and would be parsed out as the modifier for the sentence. 

Predicates include the verb, the objects, and any extra part that isn’t a subject or modifier. These 

first four dictionaries have all have their key as the sentence id and the value as their respective 

data. The inverse subjects dictionary is the opposite of the subjects dictionary in the sense that 

the key is the subject and the value are lists of sentence ids. This is useful in cases where you 

want to get all the sentences of a given subject. The last dictionary is keywords. This dictionary 

is similar to inverse subjects since the key is the keyword and the value is a list of sentence ids. 

Similarly, this is useful to know information such as which sentences contain the word “painted.” 

Keywords are the nouns and verbs of a sentence with a few exceptions. 

The algorithm starts by going through all the sentences in the input. For each sentence, it 

stores the sentence in the sentences dictionary. Once added, the algorithm looks to see if the first 

word in the sentence is a preposition. If it is, the sentence starts with a modifier, so the algorithm 

parses the text between the first word and the first comma, labelling that as a modifier for this 

sentence. Then for every token after, the algorithm checks to see if the token is a verb or noun 

and is not in the exceptions list; if the criteria is met then the word is added to keywords. After 
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that, we check to see if the token is a comma that is followed by a preposition. If so, the sentence 

ends with a modifier, so the algorithm parses out the reminder of the sentence and labels it as a 

modifier for the sentence. Then the algorithm checks if the token is a subject. If so, the algorithm 

adds the subject to both the subjects list and the inverse subjects list. Any token that is not the 

subject or inside a modifier is then labeled as part of the predicate which is then appended 

together as the sentence’s predicate. 

This algorithm has a lot of holes in it but works well as a first prototype (for the most 

part), but it relies on well-formatted (e.g. human-vetted) input. For example, if a sentence with a 

starting preposition does not have a comma that closes the preposition, the algorithm will not be 

able to classify the sentence modifier. Similarly, if the sentence has an interrupting preposition, 

the algorithm will think everything including and past that preposition is a modifier.  
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APPENDIX B 

QUESTION-GEN ALGORITHM 

 
 

function QUESTION-GEN(sentences, subjects, predicates, modifiers, keywords, 
inverseSubjects, & questionDict) returns null  
 
#dictionary containing all of the questions mapped to each intent that the 
Rasa bot will recognize 
#dictionary - {"intent_name" : ("Source Sentence", [questions])} 
questionDict = {} 
 
#generate questions for each sentence 
#predicates is from DICTIONARY-GEN 
for key in predicates.keys(): 
  sentence = "".join((token.text + " ") for token in predicates[key]) 
 
  subj = None 
  subjType = None 
  act = None 
  obj = None 
  objType = None 
 
  sentDoc = nlp(sentence) 
 
  #Get subject, action and object from sentence 
  for token in sentDoc: 
  #use earliest subject 
    if (token.dep_ == "nsubj" or token.dep_ == "nsubjpass") and subj == No

ne: 
      subj = token 
    #in most cases, the root is the main action 
    elif token.dep_ == "ROOT": 
      act = token 
    #use earliest and most important object 
    elif (token.dep_ == "pobj" or token.dep_ == "dobj") and ((obj == None 

or (obj.dep_ == "dobj" and token.dep_ == "pobj")) ): 
      obj = token 
 
  #Name intent for questions 
  intentName = str(act) + "_" + str(obj) 
 
  #get extended action, if possible 
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  #adds on supplemental parts of verbs (like 'go to' instead of 'go') 
  tok = act 
  action = "" 
  action += tok.text 
  arry = [token for token in sentDoc] 
  index = act.i 
  while index+1 < len(arry): 
    index += 1 
    tok = arry[index] 
    if(tok.dep_ == "aux" or tok.pos_ == "VERB"): 
      action += " "+ tok.text 
    else: 
      break 
 
  #Get more specific object and object type, if possible 
  #searches entity list to see if there is an entity that includes the sel

ected object (to get its entire name) 
  for entity in sentDoc.ents: 
   strtest = str(entity.text) 
   if strtest.find(str(obj)) != -1: 
     objType = entity.label_ 
     obj = entity.text 
     break 
 
  # get more specific subject (ex. "Leonardo da Vinci" instead of "Vinci") 
  for entity in sentDoc.ents: 
   strtest = str(entity.text) 
   if strtest.find(str(subj)) != -1: 
     subjType = entity.label_ 
     subj = entity.text 
     break 
 
  questions = list() 
 
  #Generate basic questions based on object type and available information 
  if(subj != None and act != None and obj != None): 

#checking for missing information removes about half of the possible int
ents 

    if str(objType) == "GPE": 
      questions.append(str("Where was " + str(subj) + " " + str(act) + "?"

)) 
    elif str(objType) == "DATE": 
      questions.append(str("When did " + str(subj) + " " + str(act) + "?")

) 
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    elif str(objType) == "PERSON" or (not type(obj) == str and obj.dep_ ==
 "pobj"): 

      questions.append(str("Who " + str(act) + " " + str(subj) + "?")) 
    else: 
      questions.append(str("What did " + str(subj) + " " + str(act) + "?")

) 
 
    if str(subjType) == "GPE": 

  questions.append(str("Where was " + str(obj) + " " + str(act) + "?")
) 

    elif str(subjType) == "DATE": 
      questions.append(str("When did " + str(obj) + " " + str(act) + "?")) 
    elif str(subjType) == "PERSON": 
      questions.append(str("Who " + str(act) + " " + str(obj) + "?")) 
    else: 
      questions.append(str("What did " + str(obj) + " " + str(act) + "?")) 
 
    questions.append(str("What is " + str(obj) + " to " + str(subj) + "?")

) 
    questions.append(str("What " + str(act) + " " + str(subj) + "?")) 
    questions.append(str("What " + str(obj) + " " + str(act) + " " + str(s

ubj) + "?")) 
    questions.append(str("Why did " + str(subj) + " " + str(act) + " " + s

tr(obj) + "?")) 
    questions.append(str("How did " + str(subj) + " " + str(act) + " " + s

tr(obj) + "?")) 
    questions.append(str("How does " + str(subj) + " " + str(obj) + "?")) 
    questions.append(str(str(subj) + " " + str(act) + " " + str(obj) + "?"

)) 
 
    translations = [SimplifyText(question) for question in questions] 

# '&quot' and '&#39' come up in some translations. Seem to denote pro
per names (ex. 'Mona Lisa') or possessive  

    translations.append(SimplifyText(sentence).replace("&quot;","'").repla
ce("&#39;","'"))  

    for translation in translations: 
      questions.append(translation.replace("&quot;","'").replace("&#39;","

'")) 
 
    #ensure intents aren't overwritten 
    while(intentName in questionDict.keys()): 
      intentName += "_" 
    questionDict[intentName] = (sentence, questions) 
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The QUESTION-GEN algorithm is used to generate the questions that will be used to 

train the Rasa-bot’s intent recognition. The input for this algorithm is the predicates formed by 

the DICTIONARY-GEN algorithm. Each predicate is reformed into a sentence string and fed 

into SpaCy NLP to tokenize each word. The sentence is then searched to find the tokens 

representing its subject, main verb, and object. This is done by checking the syntactic 

dependency tag (._dep) of the token. Subjects either have a tag of “nsubj” or “nsubjpass” 

(nominal subject or passive nominal subject). The main verb of the sentence usually has the 

“ROOT” tag, which denotes the token that connects multiple noun phrases (i.e. the subject and 

the object).  The object of the sentence will either be tagged as “dobj” or “pobj” (direct object or 

object of preposition). There can be multiple objects in a sentence and it was found through 

testing that this algorithm was more effective if the first object of preposition is used, if there is 

one available.  Note that separating the predicates with DICTIONARY-GEN already broke up 

most sentences that originally had multiple clauses and would therefore have multiple subjects, 

verbs, and/or objects. Since the subject and object found in this way would only be a single 

token, the list of entities in the sentence generated by SpaCy is searched to find the full name of 

the subject/object, if there is one available (ex. if “Leonardo” is found as the subject, it might be 

expanded to “Leonardo da Vinci”). Similarly, if the main verb is immediately followed by other 

verbs or auxiliary verbs, they are combined to form a more complete action (ex. “go to” instead 

of “go”).  

From there, the subject, action and object are then inserted into several question formats 

in order to generate questions. If the algorithm did not find a subject, verb or object in the 

sentence, no questions will be generated from the sentence and the previous process will start 

again with the next predicate from DICTIONARY-GEN. There are several general question 
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formats that will be formed for every sentence such as “Why did [SUBJECT] [ACTION]?”, but 

there are also questions that will only be formed depending on the type of entity that SpaCy 

tagged the subject or object to be. For example, if the object is tagged as a location, the question 

generated will be “Where did [SUBJECT] [ACTION]?”. The sentences formed in this way may 

not be grammatically correct, but it was found that since the Rasa bot searches for keywords in 

input, it is trained better with quantity over quality. All questions generated in this way are then 

added to a list. To improve the training data, synonymous sentences are then generated by using 

the SimplifyText() function on each question, which translates the question into a foreign 

language and then translates it back into English, altering the structure of the question without 

changing the meaning. The retranslated sentences are then added to the list of questions. 

Finally, the intent name that the Rasa bot will use to group these questions will be 

generated as “[ACTION]_[OBJECT]” with additional “_” characters added on if there already 

happens to be an intent with this name. An entry into a dictionary containing all of the 

intents/questions is then made with the intent name as the key mapped to a tuple containing the 

source sentence and the list of questions generated from that sentence. This process is then 

repeated for every predicate formed in DICTIONARY-GEN. 

 


