
APPLICATION OF MACHINE LEARNING IN CONTENT GENERATION

FOR EDUCATIONAL VIDEO GAMES

An Undergraduate Research Scholars Thesis

by

LLOYD DONELAN, BRENTON LENZEN, and KISHAN PATEL

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisors: Professor Andre Thomas
Professor Hadeel Ramadan

Dr. Theodora Chaspari

May 2020

Major: Computer Science

TABLE OF CONTENTS

Page

ABSTRACT ...1

NOMENCLATURE ..3

CHAPTER

I. INTRODUCTION ...4

Background Information and Research Motivations ...4
Differences from Previous Studies ..5
Project Expectations...6
Potential Future Tasks..7

II. METHODS ..8

NLP Pipeline Conceptual Overview ..8
First Iteration of the Text Parser ..13
First Iteration of the Chatbot ..14
Second Iteration of the Chatbot ...14
Second Iteration of the Text Parser: The NLP Pipeline ...15
First Attempt at Generating Knowledge Bundles ..16
Second Attempt at Generating Knowledge Bundles ...18

III. RESULTS ..22

Analysis of Question Generation Using Knowledge Bundle Attempt #122
Question Generation Good Examples (Knowledge Bundle Attempt #1)22
Question Generation Mixed Examples (Knowledge Bundle Attempt #1)23
Question Generations Bad Examples (Knowledge Bundle Attempt #1)23
Analysis of Knowledge Bundle Attempt #2 ..24

IV. CONCLUSION ..27

REFERENCES ..30

APPENDIX A: DICTIONARY-GEN ALGORITHM ..32

APPENDIX B: QUESTION-GEN ALGORITHM ...36

1

ABSTRACT

Applications of Machine Learning in Content Generation for Educational Video Games

Lloyd Donelan, Brenton Lenzen, and Kishan Patel
Department of Computer Science & Engineering

Texas A&M University

Research Advisors: Professor Andre Thomas and Professor Hadeel Ramadan
Department of Visualization

Texas A&M University

Research Advisor: Dr. Theodora Chaspari

Department of Computer Science & Engineering
Texas A&M University

Over the past few years, students have become increasingly unmotivated to read their

assigned textbooks as an accompaniment to classroom lectures and activities. Reading the

textbook is known to improve comprehension and overall student performance in classrooms. If

reading the textbook was reformatted into a more engaging experience, perhaps it would improve

student motivation and knowledge retention. Teaching students the importance of learning while

also motivating them to do well in class will help them gain the knowledge and grades needed to

land competitive jobs after they graduate college.

Game-Based Learning (GBL) is an emerging field of study that attempts to use video

games to create interactive educational experiences. Game-Based Learning has been shown to

have educational merit, being well-known for providing intrinsic motivation for students to learn

(most often, as a supplement to traditional coursework). With GBL in mind, is it possible to

generate interactive game content from textbooks using machine learning (ML) and artificial

2

intelligence (AI) that can replace or supplement the source material in terms of educational

content in a traditional classroom setting?

Our team proposes to lay the groundwork for future research in Game-Based Learning

and Machine Learning at the LIVE Lab undergraduate research lab (Texas A&M University,

College of Architecture, Dept. of Visualization) by attempting to reformat school textbooks into

interactive chatbot AIs with the assistance of knowledge compilation & fact-retrieval systems

designed for generating educational video game content.

3

NOMENCLATURE

GBL

Game-Based Learning

AI

Artificial Intelligence

ML

Machine Learning

MLAI

Machine Learning and Artificial Intelligence

The Lab LIVE Lab at Texas A&M University (College of Architecture, Department of
Visualization). The undergraduate research lab that the authors belong to.

edutainment Educational entertainment

API Application programming interface; also called “framework”

NLU Natural Language Understanding

NLP Natural Language Processing

LSA Latent Semantic Analysis

NLTK A natural language processing framework in Python

spaCy A natural language processing framework in Python

chatbot An interactive AI that users can send messages to, and the chatbot will generate
semi-intelligent messages to send back to the user

Rasa A retrieval-based chatbot framework in Python

QG Question Generation

QA Question-Answer

KB Knowledge Base

4

CHAPTER I

INTRODUCTION

Background Information and Research Motivations

Studies have shown that reading textbooks improves student comprehension of class

material at multiple levels of education[1][2][3], but have also shown that students are becoming

increasingly unmotivated to read textbooks on their own[2][3]. Some studies have researched

methods for improving student motivation and interest when performing assigned readings, but

such methods have been mostly limited to traditional exercises such as worksheets, study guides,

in-class discussions, and quizzes[2][3].

The growing field of Game-Based Learning is known for utilizing the intrinsic motivation

students have when playing video games to assist comprehension and to reinforce learning[4][5][6],

yet there are few studies, if any, that attempt to provide students with an engaging educational

experience that embodies the vast amount of information found in a textbook.

Rather than designing games that encompass a small subset of learning objectives, what if

we could procedurally generate content for all of the information in a textbook, thus

encompassing most (or all) of the learning objectives of a class? Creating an extensive,

interactive, and well-structured game that students could actively interact with would likely be

used more frequently by students than their textbooks, which only offer a passive reading

experience[6].

Furthermore, if we could change the way students interact with their textbooks we could

provide greater motivation for acquiring the knowledge present in the book without them

needing to read it[3]. And, what better framework to use to motivate students to learn than Game-

5

Based Learning? In addition to motivational benefits, GBL also provides both active and passive

learning opportunities as well as the potential to embody practice problems and to foster social

interaction between students[6].

Machine learning and procedural game content generation have seen much progress in

the past few years, and we believe that it is a highly capable vehicle for achieving our goals[7].

Thus, we propose using Machine Learning and AI (MLAI) to assist in procedural content

generation for educational video games, to be employed in a traditional classroom setting.

Differences from Previous Studies

There are many studies within the realms of Game-Based Learning and procedural

content generation using Machine Learning and AI (MLAI), but few, if any, attempt to merge the

two together. First, our project is different than past research projects because it attempts to use

MLAI to create content with the explicit purpose of being used in GBL. Multiple published

research papers focus on generating high-quality procedural game content (in terms of fun factor,

fairness, complexity, and player reception) for entertainment purposes, but not for educational

purposes. Second, our project differs in its use of procedural content generation – rather than

generating levels, enemies, or mechanics from a pre-determined set of game assets and

developer-set constraints (as has been attempted by others in the past), we will be attempting to

parse a secondary source of educational information (textbook, encyclopedia, database, etc) into

a format that we can then generate interactive game content from. Lastly, our project differs from

past research projects because we will not be testing several different methods of procedural

content generation, nor will it be comparing the reception of these methods by players. Those

tasks might be carried out in the future in a follow-up study.

6

Project Expectations

My research team hopes to create a textbook parser using natural language processing

techniques, outputting educational content from a school textbook into an intelligent and

interactive chatbot AI. This is intended to be a “first venture” into procedural content generation

for Game-Based Learning for my research team, and while we don’t expect to make major

progress towards our end goal of procedurally generating comprehensive interactive educational

experiences, we do expect to lay the groundwork for future research. By the end of the year, we

hope to have completed:

• Create a system for parsing a secondary source of educational information, such as a

textbook, and outputting well-defined “knowledge bundles” containing all information

pertaining to a particular concept or idea.

• An interface between the information parser and the chatbot AI that allows the AI to

receive “knowledge bundles” as inputs.

• Create a prototype for an interactive chatbot AI that can provide information about a

historical figure, creating dialogue from player inputs and relevant “knowledge bundles.”

• Document all completed work and create estimates for the feasibility of potential future

tasks for our team.

The successful completion of these tasks will demonstrate the importance of procedural

content generation in educational entertainment (edutainment) as well as the relevance of Game-

Based Learning to cutting-edge research in the field of Computer Science. Additionally, our

research could form the basis for renewed discussions on the topics of: abstraction of learning

objectives, educational examination methods, methods of measuring student comprehension,

7

teaching strategies, and the development of intrinsic motivation in interactive educational

content.

Potential Future Tasks

Because our current research is intended to lay the groundwork for future tasks, it is

important to keep potential future tasks in mind. Some tasks we might like to work in the future

that will build off of our research are:

• Generating game assets from “knowledge bundles”

• Generating game mechanics from “knowledge bundles”

• Creating an intelligent learning assistant/tutor AI that will assist the player and create a

personalized learning environment

8

CHAPTER II

METHODS

 Development on the project began with DonBot (shorthand for “Donatello Robot”).

DonBot was a conceptual prototype for a chatbot that would store information on the renaissance

artist Donatello, which would then be used to construct intelligent and informative responses to

user inquiries about the artist. A fully functional prototype would require the following

components:

1. A text parser, to read in and format information about the subject (Donatello).

2. A chatbot, to interact with users to provide them with information about the subject

(Donatello).

3. An interface between the text parser and the chatbot, containing the output of the text

parser in a useful format for the chatbot and other tools/software that we might want to

develop in the future for generating interactive educational content.

To complete the overall process, a significant amount of NLP work is required before providing

the chatbot with the information extracted from the input corpuses. This will ensure that all

extracted information is sterilized and well-formatted, making it easy to use the information for

future procedural work. Thus, we chose to store extracted information in a format which we call

a “Knowledge Bundle.”

NLP Pipeline Conceptual Overview

In our theoretical design, Knowledge Bundles contain facts that are represented as tree-

like structures (called Knowledge Trees), with the root node containing a list of entities where

the first listed entity is the subject of the knowledge bundle (in our case, Donatello) and the rest

9

of the entities are known synonyms for the subject. The second level in the tree contains nodes

with a list of verbs, where the first verb is considered to be the “main verb” and the rest of the

verbs are synonyms of the main verb. The third level in the tree contains nodes with prepositions

or determiners, and the fourth level contains nodes with nouns (the subject of the verb in the

second level of the tree). These first four levels of the tree comprise “core facts,” and the second,

third, and fourth levels together comprise “knowledge statements.” Following one branch from

the Entity (root level) to the fourth level of the tree builds a single factual statement, hence the

term “core fact.” Additional details may be included in subsequent nodes after the fourth level of

the tree, but are not necessary.

By iterating through a Knowledge Tree, all known facts about a specific entity can be

examined. Additional properties can be added to tree nodes or Knowledge Bundles to support

project-specific algorithms or data that might be useful for further NLP techniques such as

question and answer generation.

Properly generating Knowledge Trees for use in Knowledge Bundles would require

pipelining several modern NLP techniques and is thus a significant research challenge. For the

syntactic approach described in this paper, these techniques may include:

1. Spellchecking and Tokenization

2. Entity Classification and/or Super-sense tagging, (intended to assist Co-reference

Resolution and Clause Extraction)

3. Co-reference Resolution, Pronoun Resolution

4. Sentence Simplification and/or Clause Extraction

5. Question and Answer Generation from Simplified Sentences

10

First, the input corpus(es) need to be sterilized and properly tokenized. There is already a

great deal of work in these areas, and so we will not discuss these steps further[8]. After that,

sentences should be read through and the parts of speech labelled, with special interest in

preprocessing techniques that will assist with Co-reference Resolution, Pronoun Resolution,

Sentence Simplification, and Clause Extraction. Next, ambiguous entity references should be

resolved and replaced with entity names. Any ambiguous non-pronoun references to some entity

X should be recorded as “synonyms” in the knowledge bundle for that entity (pronouns are not

unique to any specific entity, and thus should not be considered synonyms). After (3), all entity

references should be un-ambiguous. Sentences can now be simplified, and/or clauses extracted,

to generate short factual statements.

As an example, the sentences “Einstein died in 1955 at the Princeton Medical Center in

New Jersey. He is well-known for his contributions to Physics,” would (ideally) yield outputs at

each step in the pipeline similar to the following:

 (1, 2) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. He is well-

known for his contributions to Physics.”

 (3) “Einstein died in 1955 at the Princeton Medical Center in New Jersey. Einstein is

well-known for his contributions to Physics.”

 (4) “Einstein died in 1955. Einstein died at the Princeton Medical Center. Einstein died in

New Jersey. The Princeton Medical Center is in New Jersey. Einstein is well-known.

Einstein has made contributions to Physics. Einstein is well-known because he has made

contributions to Physics.”

11

Each sentence generated by (4) can now be added to a Knowledge Tree. Most of the

sentences can be added to a Knowledge Tree for a Knowledge Bundle dedicated to the entity

“Einstein,” but notice that there are two peculiar sentences in the output:

(a) “The Princeton Medical Center is in New Jersey.”

(b) “Einstein is well known because he has made contributions to Physics.”

In (a), there is no mention of Einstein. Rather, this is a fact about a different entity (the

Princeton Medical Center). Thus, (a) should actually be added to the Knowledge Tree for a

Knowledge Bundle dedicated to the entity “Princeton Medical Center.” In (b), Einstein is

mentioned but this sentence is actually just a more detailed version of a previous sentence:

“Einstein is well-known.” For this reason, the Knowledge Tree for Einstein should contain a

branch with “Einstein is well-known” as the core fact and “because he has made contributions to

Physics” as additional details.

It is worth noting that (3) and (4) won’t always proceed so smoothly. For example, the

sentence “North Korea and Cuba are the only places you can’t buy Coca-Cola” would look

something like this:

 (1, 2, 3) “North Korea and Cuba are the only places you can’t buy Coca-Cola.”

 (4) “You can’t buy Coca-Cola in North Korea. You can’t buy Coca-Cola in Cuba. You

can buy Coca-Cola in every place except North Korea or Cuba.”

There are a few peculiarities about the output here. Perhaps our original intuition tells us

that some facts should’ve been generated about the entities North Korea and Cuba, yet the only

facts generated were for the entity “you.” Additionally, there is no straightforward way to

generate anything resembling the third sentence, “You can buy Coca-Cola in every place except

North Korea or Cuba,” from the input text. Finally, notice that there are two potential pitfalls to

12

avoid – generating either of the sentences “You can’t buy Coca-Cola” (from the input sentence)

or “You can buy Coca-Cola in every place” (which is seems to be a less-detailed version of the

last output sentence, but is actually a different sentence because it has a different meaning from

the original!).

The final step in the Knowledge Bundle generation pipeline is to generate potential user

inquiries, based on known facts about the entity referred to by a Knowledge Bundle. This

enables a retrieval-based approach to user inquiries about facts in the Knowledge Database (the

set of all Knowledge Bundles for a particular project). Generated inquiries can then be added to

the Knowledge Database and given a reference to the fact that serves as their answer. These

questions and answers can then be used as training data for a chatbot or other Q&A system, to

allow the system to respond appropriately to user inquiries based on user intents.

The process of question generation comes with its own challenges and pitfalls. Simple

“reading comprehension”-style questions are known to be created with decent results using

linguistic transformations on preprocessed sentences. Heilman took a similar approach to our

proposed NLP pipeline, but did not fully explore the benefits of sentence simplification and

paraphrasing on QG[8]. We hypothesize that “reading comprehension”-style questions can be

generated more accurately with a similar approach if the input sentences are reduced to simple

clauses (concise, factual statements) and are sterilized to remove unambiguous pronoun

references. Additionally, by reducing input sentences to simple clauses, we can then use the

reduced clauses (perhaps with some minor post-processing) as the answers to generated

questions. This is a significant difference from Heilman’s approach, which deals exclusively

with QG and not QA[8]. In simpler terms, the NLP pipeline is intended to reduce an input corpus

down to a series of concise factual statements, which would then serve as answers to questions

13

that are generated from those statements using the statements themselves in combination with

any contextual information that was extracted from the original input corpus.

In the following sections, we explain the initial research process. Then, we give a high-

level overview of how each component in our prototype of the NLP pipeline. Finally, we

describe future work to be done and potential improvements and applications of the project as a

whole.

First Iteration of the Text Parser

The text parser needed to take in a large, domain-specific corpus of text and output facts

about historical figures. Our input domain was restricted to educational works containing

information about the artist Donatello or his work. Initially, we used the Britannica entry on

Donatello as our (small) input corpus, with the intention of increasing the size & diversity of

sources in the input corpus in the future. Britannica was chosen over alternatives such as

Wikipedia because Britannica is curated by verified professionals, and does not provide an

excessively large input corpus (smaller input size was preferred for initial prototyping).

For the first iteration of the text parser, we did not yet have a clear understanding of our

conceptual NLP pipeline. Instead, we retrieved data from the input text through the following

process (using NLTK and spaCy):

1. HTML tag scraping

2. Removal of irrelevant information

3. Creating Intent/Answer Pairs

4. Creating Training Data Files for DonBot

In (1), we extract the text of the web page from the HTML code of the web page. In (2),

we remove irrelevant information such as information about Britannica and information about

14

other topics that are indirectly related to Donatello, which are not currently relevant to our

research.

Next, we performed some additional processing in NLTK to group sentences by intent

(based on detected keywords). Finally, we automatically generated training data for the chatbot

from our text using python scripts. Sadly, our algorithm did not succeed in generating

acceptable-quality intent bins, and this is reflected in the generated training data.

The text parser would remain in this state until the second iteration of the chatbot.

First Iteration of the Chatbot

DonBot’s first iteration was based off a generative chatbot created by github user

Hugging Face. This model was chosen for two reasons:

1. The model uses a ‘persona’ to generate responses, where the persona is defined with a

couple of sentences that provide the AI with knowledge about a historical figure.

2. The model uses transfer learning, which would (theoretically) reduce the amount of

training data needed for the AI and improve the AI’s understanding of user messages.

This chatbot did not work well, lacking enough training data related to Donatello while

also having too much modern information from the conversation training data. The bot was able

to state its name, Donatello, but was not able to provide users with reliable facts. In some tests,

the chatbot went so far as to insist that Donatello was from the Dominican Republic and that he

was a slave! This implementation was quickly abandoned.

Second Iteration of the Chatbot

The next iteration of DonBot, DaVinciBot, was created using the Rasa retrieval-based

chatbot framework. This version of the chatbot requires three types of training data:

15

1. NLU Training: a collection of potential user inputs, each labeled with a particular intent.

The bot will be able to recognize similar inputs as having the same intent.

2. Domain: a collection of actions that the bot can take, the user intents that it can recognize,

and templates for the bot’s responses to user inquiries.

3. Stories: a collection of dialogue paths, outlining the structure of user-bot interactions.

Also defines behavior for unrecognized intents.

This iteration of the bot responds well to user inquiries, as long as the inquiries resemble

something in the training data. Unlike the previous iteration, the bot will never respond with

inaccurate information unless we provide some in the training data. If the bot is unable to

understand the user’s inquiry it will always respond in a predefined way, which ensures

professionalism and some level of reliability in the bot’s responses.

Second Iteration of the Text Parser: The NLP Pipeline

By this point, it was clear that we would need a more structured attempt to process our

input text. This is when we came up with the NLP Pipeline, which could (theoretically) reduce

an input corpus to a series of concise factual statements, grouped by the Entity they refer to.

Implementing such a design would allow user inquiries to be interpreted as a simple search over

the Knowledge Tree of the Entity in question; such an implementation would require Entity

Recognition, Sentence Simplification and/or Clause Extraction.

Entity Recognition has some major issues to deal with. Simplifying a sentence with only

ambiguous references to an entity (such as pronouns or monikers) would not generate any useful

information – a new entity would be generated (such as “The First President”, instead of “George

Washington”), and the fact would be attributed to the new entity instead of the entity it truly

applies for. This would result in facts for an entity X being distributed among up to n different

16

knowledge bundles, where n is the number of ambiguous references to X in the input corpus.

Additionally, pronouns such as he/she could be used multiple times in the input corpus, each

time referring to a different entity. Facts for two separate entities X and Y could be attributed to

another Knowledge Bundle for a single entity “He”/“She”! Solving these issues would require

additional steps to be added to the pipeline.

Solving the first issue (which will be referred to as “the nickname problem”) would

require some way to resolve common nouns and nicknames to their owner’s name, which could

most likely be achieved by, or with the assistance of, a semantic approach using Entity

Clustering or word vector analysis. We choose to leave this to future work.

To solve the second issue, we decided to implement Pronoun/Co-reference Resolution,

substituting unclear pronouns with the real Entity’s name before performing Sentence

Simplification. For our initial prototype, we used an existing spaCy module for Co-Reference

Resolution. The module worked well for most sentences, but was less successful with long

sentences. Perhaps some level of Sentence Simplification could be done as pre-processing to

improve the success rate of Co-Reference Resolution, but it is important to note that too much

pre-processing could have negative effects on the main Sentence Simplification process by

introducing errors or removing important contextual information early on in the NLP pipeline.

We leave improvements to Co-Reference Resolution to future work.

First Attempt at Generating Knowledge Bundles

Before implementing the Knowledge Tree structure that we originally planned for the

NLP Pipeline, we needed a way to generate Knowledge Trees and Knowledge Bundles from the

input data. Our first attempt at generation of Knowledge Bundles ended up as more of a

Dictionary generator, using a series of dictionaries and hash ids that are generated from

17

sentences to associate parts of speech with their original context. Each part of speech would

reference their source sentence, and each subject would then hold reference to every hash id of a

sentence describing information about them. For example, for the sentence “Donatello seemingly

demanded a measure of artistic freedom,” we would get the following output information for the

sentence:

1. Sentence hash id = -572009579105218340

2. Subject(-572009579105218340) = Donatello

3. Predicate(-572009579105218340) = seemingly demanded a measure of artistic freedom

4. Modifiers(-572009579105218340) = null

This populates data into four different dictionaries, each with the sentence hash id as the

key and the content as the value. Additionally, we would also get the following output

information in a dictionary of subjects, where the key is the subject name and the value is a list

of hash ids of all sentences containing information about that subject:

1. Donatello = [-572009579105218340, …]

2. demanded = [-572009579105218340, …]

3. measure = [-572009579105218340, …]

4. artistic freedom = [-572009579105218340, …]

This algorithm is referred to as the DICTIONARY-GEN algorithm. Now, all already

known information about a subject(s) is accessible in O(1) time if the subject and clause keys are

known, and the total time to iterate over all information about all subjects is in O(n) of the input

corpus size (thanks to the use of dictionaries). The QUESTION-GEN algorithm can then be run

on the collection of Dictionaries to generate questions for the RASA chatbot training data. In the

future, we would prefer to use true Knowledge Bundles generated by some BUNDLE-GEN

18

algorithm (as opposed to the dictionary format we are currently using) to provide information to

the question generation algorithm. See an overview of the DICTIONARY-GEN and

QUESTION-GEN algorithms in Appendix A and Appendix B.

For very large input corpuses, the collection of dictionaries might not be searchable at

runtime at acceptable speeds for real-time applications (video games). This isn’t currently an

issue for the small-time retrieval-based chatbot that we are currently using, which generates

training data at compile time, but future projects such as generative chatbots would require this

information to be accessible in something faster such as O(log(n)), which would require that we

turn our collection of dictionaries into a balanced binary decision tree structure. Such a structure

might lend itself to a very fast and robust database system, allowing queries of the hashed

sentence data, and perhaps eliminating the need for individual knowledge bundles to be created

at compile time. The entire database could be a Knowledge Tree comprising facts of the entire

input corpus, and Knowledge Bundles for individual subjects could be generated at runtime for

frequent access to information about particular subjects as needed. Although we leave the

implementation of such systems to future work, we will now discuss the theory behind such an

implementation.

Second Attempt at Generating Knowledge Bundles

 Finally, after implementing some semblance of the aforementioned NLP Pipeline and

having a greater understanding of the linguistic tools at our disposal, we were able to start

thinking about a truer implementation of Knowledge Bundles. By this point in time the idea of a

Knowledge Bundle was no longer a “stand-alone package” of information, but was instead

considered to be an “extracted subgraph” from a much larger graph of all known information,

referred to as the Knowledge Base (KB).

19

 All of the facts known to the AI would be placed into a massive Knowledge Tree, which

serves as the AI’s Knowledge Base. At any point in the tree, a node could be selected as the root

of a subtree and that subtree could be extracted and cached (in theory, anyways) – such a subtree

could then be used as a Knowledge Tree for the subject of the tree’s root node. For example,

extracting a subtree where the root node’s subject is “artwork” (which is a category of things,

rather than a named entity) would cache the Knowledge Tree for all artwork in the Knowledge

Base. Extracting a subtree where the root node’s subject is “Da Vinci” would cache the

Knowledge Tree for all known information about the artist Da Vinci (a specific named entity,

rather than a category of things); this subtree is, itself, a subtree of the subtree where the root

node’s subject is “artists,” which is in turn a subtree of the subtree where the root node’s subject

is “people.”

 Nodes with categorical information such as “artwork,” “people,” or other broad specifiers

are called “decision nodes.” Nodes with factual information such as a date, e.g. “1922,” or a

name, e.g. “Donatello,” are called “data nodes.” A depiction of a Knowledge Tree is shown in

Figure 1.

20

Figure 1: An example illustrating the structure of a Knowledge Tree.

21

 Each Knowledge Tree, edges contain a list of verbs, where each verb is guaranteed to be

found in the main clause of at least one fact in the subtree containing that edge. For example, if

an edge E contains a verb V, and E is adjacent to some nodes N1 and N2, with N1 being higher

level than N2, then V is guaranteed to be found in the main clause of at least one fact in a subtree

originating at N1. In Figure 1, this can be illustrated by choosing the following values for E, V,

N1, and N2:

• E := the edge from the decision node for “People” to the data node for “Da Vinci” or

from the decision node for “People” to the data node for “Donatello”

• V := created

• N1 := the decision node for “People”

• N2 := the data node for “Da Vinci” or the data node for “Donatello,” based on the choice

of E

• With these definitions, the verb “created” is guaranteed to appear in at least one fact in a

subtree starting at the decision node for “People.” In this example, it appears in any

subtree including the fact “Da Vinci created the Mona Lisa” or the fact “Donatello

created art” (note that the training data for this tree should’ve been vetted to say

“Donatello created artworks”).

As demonstrated in the example, facts can be generated simply by starting at a data node

that contains a subject, then traversing the Knowledge Tree down to a leaf node. This structure

removes the need for dictionaries and is useful as both, an intermediate data format to change the

input corpus into chatbot training data, and an efficient way to lookup facts (in terms of time

complexity). Our Results section will discuss the time and space complexity of this format for

Knowledge Bundles as well as implications of the system and ideas for future work.

22

CHAPTER III

RESULTS

Analysis of Question Generation Using Knowledge Bundle Attempt #1

The NLP Pipeline appears to be a fairly effective approach to generating facts for the

chatbot’s training data. Our current prototype shows mixed results, but can effectively identify

user inquiries related to simple sentences from the input corpus or some extracted simple clauses.

Although we are not currently looking up any information at runtime, runtime lookup of

information in our collection of hash id dictionaries is O(1) with a known key, and O(n) for an

unknown key. Some good and bad examples of user inquiries, and the chatbot’s responses, will

now be given. For these examples, the chatbot was trained on the output of question generation

resulting from an input corpus comprised of the Britannica pages for Donatello and Leonardo Da

Vinci.

Question Generation Good Examples (Knowledge Bundle Attempt #1)

(1) Q: What was Leonardo da Vinci’s personality like?

A: Leonardo da Vinci was described as having a gracious but reserved personality and an

elegant bearing.

(2) Q: Was Leonardo unmarried?

A: Leonardo never married, but Leonardo da Vinci had many close relationships with

other arists and intellectuals as well as with Leonardo da Vinci’s assistants.

(3) Q: Where his parents married?

A: Leonardo’s parents were unmarried at the time of Leonardo da Vinci’s birth.

23

Example (1) is straightforward. It demonstrates a good response to a simple question.

Examples (2) and (3) both show an impressive response to seemingly simple questions that are

essentially asking to retrieve the same factual information, but for different subjects (Leonardo

versus his parents). Additionally, (2) uses “married” and (3) uses “unmarried,” where “married”

was in the training data but “unmarried” was not. In (3), “his” is easily ignored in favor of “Da

Vinci” because, in this case, the chatbot was only trained on information about Da Vinci.

Semantic information related to the context could be used to apply coreference resolution to user

inquiries in the future.

Question Generation Mixed Examples (Knowledge Bundle Attempt #1)

(1) Q: Who was Leonardo da Vinci?

A: Leonardo da Vinci was an artist and engineer who is best known for Leonardo da

Vinci’s paintings, notable Mona Lisa Mona Lisa and the Last Supper.

(2) Q: Was Leonardo ever commissioned to make anything?

A: According to contemporary sources, Leonardo was commissioned to create three more

pictures, but six works have since disappeared or were never done.

Example (1) demonstrates that issues in Coreference Resolution have caused strange

syntax and duplication of the name “Mona Lisa.” These issues were propagated down the NLP

Pipeline. Example (2) confirms that Leonardo was commissioned to make something, but it does

not tell the user what he was commissioned to make.

Question Generation Bad Examples (Knowledge Bundle Attempt #1)

(1) Q: When did Leonardo die?

A: In 1482 Leonardo moved to Milan to work in the service of the city’s duke- a

surprising step when one realizes that the 30-year-old artist had just received Leonardo’s

24

first substantial commissions from Leonardo’s native city of Florence – the unfinished

panel painting Adoration of the Magi for the monastery of San Donato a Scopeto and an

altar painting for the St. Bernarn Chapel in the Palazzo della Signoria, which was never

begun.

(2) Q: dasfsadfaserfewqrqwersdfsadfasefwaer

A: Leonardo da Vinci’s father, Ser Piero, was a Florentine notary and landlord, and

Leonardo da Vinci’s mother, Caterina, was a young peasant woman who shortly

thereafter married an artisan.

(3) Q: Did Leonardo take care of himself?

A: Leonardo da Vinci – Lady with an Ermine Lady with an Ermine, oil on panel by

Leonardo da Vinci, c. 1489-91; in the National Museum, Krakow, Poland.

Example (1) is straightforward – the bot provides a very long and unrelated response to a

seemingly simple question. Example (2) shows that the bot failed to detect an invalid input, and

as a result chose a seemingly random response instead of using the fallback response of telling

the user that it didn’t understand the question. Example (3) shows the bot giving a completely

unrelated response to a question that is very similar to some sentences in the training data.

Analysis of Knowledge Bundle Attempt #2

For the second formulation of Knowledge Bundles using a Knowledge Tree as the

Knowledge Base, the worst-case search time for a fact and the space complexity of the system

are both O(N+E), where N is proportional to the number of nodes and E is proportional to the

number of edges in the tree to search through (either the entire KB, or a cached subtree of

significantly smaller size). Although O(N+E) is an acceptable start, it is less than ideal for the

massive Knowledge Base that would be generated from an input corpus comprised of multiple

25

textbooks. To improve the space and time complexity of the current system to O(log(n)), it could

be converted to a binary decision tree, which would require an efficient method of collapsing

multiple nodes into “super nodes” or strongly connected components of the graph that could then

be efficiently searched. We leave these optimizations to future work.

Efficient time complexity for such a KB requires loading the KB into memory which, for

a large Knowledge Base, would incur a very large space complexity cost. For end-users this

space complexity could be unfeasible due to low available memory. The space complexity

becomes even larger if we also include references to cached Knowledge Trees, which would

probably be stored in hash tables for constant time lookup, resulting in an additional O(n) space

complexity where n is the maximum number of Knowledge Trees to keep cached in memory at a

time. A potential solution to space complexity is to distribute data between a cloud server, which

could host the entire Knowledge Base, and the end user’s machine, which could keep only

cached data in memory such as references to subtrees, or the subtrees themselves. Keeping more

data in memory on the client’s machine will result in faster fact retrieval times (because there is

no travel time for packets being sent to / received by the server), but would also incur an

increased local space complexity cost on the client. We leave the effective distribution of data

across a cloud server and client machines to future work.

Named Entity Recognition (NER) accuracy is highly important to be able to generate

such a Knowledge Base. The system hinges on being able to accurately label categories of

entities to create decision nodes, and of course, being able to accurately label named entities for

data nodes. During development it is imperative that training data contains accurately labelled

entities to ensure that the performance of algorithms operating on Knowledge Trees is examined

in optimal conditions. Testing the system with training data that is not labelled accurately (or, not

26

labelled at all) is equally important – doing so will inform us of what kinds of additional training

data are needed for the system to be reliable, and how to handle non-vetted training data.

Additionally, effective clause extraction is extremely important to be able to generate

such a Knowledge Base. Each branch in the Knowledge Base is based on facts in the form of

simple clauses that are generated by the clause extraction step of the NLP Pipeline. Our current

clause extractor does not have sufficiently reliable performance to allow for Knowledge Trees to

be generated without additional input processing. Introducing a heuristic to measure the accuracy

of extracted clauses based on the original input sentence would improve the reliability of the

system by providing an internal “vetting” mechanism, which could then be used to automatically

switch from clause extraction to some other fallback mechanism if the measured accuracy of an

extracted clause(s) does not meet some minimum threshold. We leave the improvement of the

clause extractor to future work.

This format of Knowledge Trees lends itself extremely well to question generation (QG),

allowing questions to be generated simply by specifying a data node S containing the subject of

the question, and then traversing down a branch(es) to the leaf node(s) of a subtree(s) rooted at S.

This is the primary motivator behind this Knowledge Base format.

27

CHAPTER IV

CONCLUSION

In the end, we were able to achieve most of our goals that we set out at the beginning of

the project – we created a somewhat functional prototype, with mixed chatbot accuracy. The

current chatbot is retrieval-based and thus does not require an efficient runtime implementation

of knowledge trees (only compile time). Ideally, we will be able to create an effective data

storage and retrieval system in the future that allows for fast search algorithms and lookup times

for facts at runtime. This will allow for the project to shift its focus to a semantic-based

approach, which has the potential to be more accurate and more flexible when responding to user

inquiries.

The current description for the true Knowledge Tree format specifies a large Knowledge

Base containing all the facts known by a particular instance of the AI, which can then be broken

down into smaller subtrees of facts about particular subjects. Those subtrees of facts can then be

used as a smaller knowledge base for retrieving information about the subject of the subtree (e.g.

Donatello, Da Vinci). This scheme will provide a worst-case time and space complexity O(N+E),

where N is the number of nodes and E is the number of edges in the Knowledge Base and thus is

proportional to the number of facts in the input corpus. Future implementations of such

algorithms should include the use of a dictionary, hash table, or hash map data structure to cache

references to subtrees for recently and frequently referenced subjects, allowing O(1) lookup time

after the initial O(N+E) search.

As suggested by our faculty advisor, trees may not be the optimal data structure for fact

storage and retrieval. A portion of future research endeavors should be dedicated to looking for

28

other graph structures or improvements to the existing tree structure that might be better for our

use case. Another avenue to explore is the use of fuzzy logic to assist searching through the

knowledge base at runtime; fuzzy logic could potentially be implemented by providing some

additional meta information to subject nodes in the graph, and then using that meta information

in our search algorithm. We leave such tasks to future work.

There are also opportunities for future work in improving the NLP Pipeline. Coreference

resolution was particularly problematic for us, and adding it to the pipeline tended to reduce the

accuracy of other components in the pipeline and propagating errors, so we were unable to use it

in our initial project showcase. Sentence simplification was useful, but not completely accurate

and was not able to simplify larger, complex sentences. More recently, we discovered that

translation to and from English to Chinese would produce a slightly different sentence than the

original, allowing us to improve our training data. Similarly, what if we included information

from before Co-reference resolution, and before Sentence Simplification and Clause Extraction,

in our training data as well (but not in the knowledge base)? This would allow each sentence to

be converted into tens of sentences for the training data, each being similar but demonstrating

variations on the same semantic meaning and improving the breadth of the training data,

potentially improving the AI’s understanding of user inquiries which in turn would allow it to

retrieve the correct contextually-relevant facts from the knowledge base when constructing or

retrieving its responses in real-time.

One area for improvement that we didn’t address with our current implementation is the

additional processing of user inquiries, to allow the AI to better understand what the user is

asking. We could run the NLP Pipeline on user inquiries at runtime, allowing users to ask

slightly more vague questions or ask multiple questions in the same inquiry. Such goals also

29

outline the necessity of a semantic-based approach to the AI, which would allow contextual

information (such as information related to the current conversation) to be used when searching

through the knowledge base and constructing responses. Other important contextual

improvements such as the distinction between entities of different categories with similar names

– for example, the Medici estate versus the Medici family – or differentiating between Queen

Elizabeth I and Queen Elizabeth II in-context – should be considered as well, and might be

particularly useful for a semantic approach. We leave the development of contextual analysis for

the AI to future work.

In conclusion, our goal was to create a working prototype of the NLP Pipeline and

interface it with a retrieval-based chatbot, with less emphasis on the accuracy of the chatbot’s

responses to user inquiries than on the design process itself, as long as the functional ideas

behind the implementation were demonstrated clearly and in such a way that would allow

improvements and support/outline further research. We believe that we have succeeded in

reaching this goal, and hope that this research paper will serve as a valuable reference for future

work on the project.

30

REFERENCES

[1] K. Baier, C. Hendricks, K. W. Gorden, J. E. Hendricks, L. Cochran, "College students'
textbook reading, or not!" American Reading Forum Annual Yearbook, vol. 31, 2011.
[Online]. Available:
http://americanreadingforum.org/yearbook/11_yearbook/documents/BAIER%20ET%20
AL%20PAPER.pdf. [Accessed Sep. 13, 2009].

[2] T. E. Ryan, “Motivating Novice Students to Read their Textbooks," Journal of Instructional
Psychology, vol. 33, no. 2, pp. 136-140, Jun. 2006.

[3] E. Vandsburger, R. Duncan-Daston, "Evaluating the Study Guide as a Tool for Increasing
Students' Accountability for Reading the Textbook," Journal of College Reading and
Learning, vol. 42, no. 1, Fall 2011. [Online]. Available:
https://files.eric.ed.gov/fulltext/EJ961149.pdf. [Accessed Sep. 13, 2019].

[4] M. Papastergiou, "Digital Game-Based Learning in high school Computer Science education:
Impact on educational effectiveness and student motivation," Computers & Education, vol.
52, no.1, pp. 1-12, Jan. 2009. [Online]. Available:Science Direct,
https://www.sciencedirect.com/science/article/pii/S0360131508000845. [Accessed Sep. 13,
2019].

[5] M. Ebner, A. Holzinger, "Successful implementation of user-centered game based learning in
higher education: An example from civil engineering," Computers & Education, vol. 49,
no.3, pp. 873-890, Nov. 2007. [Online]. Available:Science Direct,
https://www.sciencedirect.com/science/article/pii/S0360131505001910. [Accessed Sep. 13,
2019].

[6] S. Rapini, "Beyond Textbooks and Lectures: Digital Game-Based Learning in STEM
Subjects," Texas A&M Bush School of Government and Public Service, Texas A&M Univ.,
College Station, research paper. Summer 2012. [Online]. Available:
https://www.esa.org/esa/wp-content/uploads/2012/12/digital-gamebased-learning.pdf.
[Accessed Sep. 13, 2019].

[7] J. Roberts, K. Chen, "Learning-Based Procedural Content Generation," IEEE Transactions on
Computational Intelligence and AI in Games, vol. 7, no. 1, pp. 88-101, Mar. 2015. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6853332/authors#authors.[Accessed
Sep. 13, 2019].

31

[8] Heilman, Michael, “Automatic Factual Question Generation from Text,” Ph.D. dissertation,
Dept. Language and Dept. Information Technologies, Carnegie Mellon Univ., Pittsburgh,
Pennsylvania, 2011.

32

APPENDIX A

DICTIONARY-GEN ALGORITHM

function DICTIONARY-GEN(resolvedText, &sentences, &subjects, &predicates, &modifiers,
&keywords, &inverseSubjects) returns null

#Dependency Tag Numbers (May Change in the Future)
prepositionTagID = 443 #443 = preposition
nominalSubjectTagID = 429 #429 = nominal subj

#Keyword Helpers
nounAndVerbAbreviations = ["NN", "NNP", "NNPS", "NNS", "PRP", "PRP$", "VB"
, "VBD", "VBG", "VBN", "VBP", "VBZ"]
nounAndVerbExceptions = ["is", "he", "him", "his", "she", "her", "hers", "
’", "have", "has", "be", "been", "being", "were"]

spacyDocument = nlp(resolvedText)
spacySentences = list(spacyDocument.sents)
for spacySentence in spacySentences:
 modifierStartIndex = -1
 modifierEndIndex = -1
 subjectStartIndex = -1
 subjectEndIndex = -1
 predicateStartIndex = -1
 predicateEndIndex = -1

 #Sentences
 sentences[hash(spacySentence)] = spacySentence

 startsWithPrep = False
 inMod = False
 predicate = []
 if spacySentence[0].dep == prepositionTagID:
 startsWithPrep = True
 inMod = True

 for token in spacySentence:
 #Keywords
 if (token.tag_ in nounAndVerbAbreviations and token.text.lower() not i
n nounAndVerbExceptions):
 if str(token) in keywords:
 if hash(spacySentence) in keywords[str(token)]:

33

 continue
 keywords[str(token)].append(hash(spacySentence))
 else:
 keywords[str(token)] = [hash(spacySentence)]

 # Modifiers - Starts with a preposition - Look for the separating comm

a
 if(startsWithPrep and str(token) == ","):
 modifiers[hash(spacySentence)] = spacyDocument[spacySentence[0].i:to

ken.i]
 inMod = False
 modifierStartIndex = spacySentence[0].i
 modifierEndIndex = token.i
 continue

 # Modififers - Ends with a preposition
 if(str(token) == "," and spacyDocument[token.i+1].dep == prepositionTa

gID):
 modifiers[hash(spacySentence)] = spacyDocument[token.i+1:spacySenten

ce[len(spacySentence)-1].i]
 modifierStartIndex = token.i+1
 modifierEndIndex = spacySentence[len(spacySentence)-1].i
 break

 #Subjects + Inverse Subjects
 if token.dep == nominalSubjectTagID and subjectStartIndex == -1:
 subjects[hash(spacySentence)] = token
 if str(token) in inverseSubjects:
 inverseSubjects[str(token)].append(hash(spacySentence))
 else:
 inverseSubjects[str(token)] = [hash(spacySentence)]
 subjectStartIndex = token.i
 subjectEndIndex = token.i

 #Predicates
 if not inMod and token.dep != nominalSubjectTagID:
 predicate.append(token.i)

 if len(predicate) > 0:
 predicates[hash(spacySentence)] = spacyDocument[predicate[0]:predicate

[-1]+1]

34

The first attempt of the knowledge bundler mainly involved the use of dictionaries.

Dictionaries were preferred here because of their O(1) lookup time and simple implementation.

This algorithm is used to fill those dictionaries with the relevant information.

The inputs contain a piece of text and 6 dictionaries. The input text refers to the text from

a textbook, or alternate source, after it has gone through the first three steps of our NLP pipeline.

The 6 dictionaries are as follows: sentences, subjects, predicates, modifiers, keywords, and

inverse subjects. Sentences include the sentences extracted from the text. Subjects include the

subjects of those sentences. Modifiers, in this case, refer to sentence level modifiers. “In 1452,

…”, would be an example of this and would be parsed out as the modifier for the sentence.

Predicates include the verb, the objects, and any extra part that isn’t a subject or modifier. These

first four dictionaries have all have their key as the sentence id and the value as their respective

data. The inverse subjects dictionary is the opposite of the subjects dictionary in the sense that

the key is the subject and the value are lists of sentence ids. This is useful in cases where you

want to get all the sentences of a given subject. The last dictionary is keywords. This dictionary

is similar to inverse subjects since the key is the keyword and the value is a list of sentence ids.

Similarly, this is useful to know information such as which sentences contain the word “painted.”

Keywords are the nouns and verbs of a sentence with a few exceptions.

The algorithm starts by going through all the sentences in the input. For each sentence, it

stores the sentence in the sentences dictionary. Once added, the algorithm looks to see if the first

word in the sentence is a preposition. If it is, the sentence starts with a modifier, so the algorithm

parses the text between the first word and the first comma, labelling that as a modifier for this

sentence. Then for every token after, the algorithm checks to see if the token is a verb or noun

and is not in the exceptions list; if the criteria is met then the word is added to keywords. After

35

that, we check to see if the token is a comma that is followed by a preposition. If so, the sentence

ends with a modifier, so the algorithm parses out the reminder of the sentence and labels it as a

modifier for the sentence. Then the algorithm checks if the token is a subject. If so, the algorithm

adds the subject to both the subjects list and the inverse subjects list. Any token that is not the

subject or inside a modifier is then labeled as part of the predicate which is then appended

together as the sentence’s predicate.

This algorithm has a lot of holes in it but works well as a first prototype (for the most

part), but it relies on well-formatted (e.g. human-vetted) input. For example, if a sentence with a

starting preposition does not have a comma that closes the preposition, the algorithm will not be

able to classify the sentence modifier. Similarly, if the sentence has an interrupting preposition,

the algorithm will think everything including and past that preposition is a modifier.

36

APPENDIX B

QUESTION-GEN ALGORITHM

function QUESTION-GEN(sentences, subjects, predicates, modifiers, keywords,
inverseSubjects, & questionDict) returns null

#dictionary containing all of the questions mapped to each intent that the
Rasa bot will recognize
#dictionary - {"intent_name" : ("Source Sentence", [questions])}
questionDict = {}

#generate questions for each sentence
#predicates is from DICTIONARY-GEN
for key in predicates.keys():
 sentence = "".join((token.text + " ") for token in predicates[key])

 subj = None
 subjType = None
 act = None
 obj = None
 objType = None

 sentDoc = nlp(sentence)

 #Get subject, action and object from sentence
 for token in sentDoc:
 #use earliest subject
 if (token.dep_ == "nsubj" or token.dep_ == "nsubjpass") and subj == No

ne:
 subj = token
 #in most cases, the root is the main action
 elif token.dep_ == "ROOT":
 act = token
 #use earliest and most important object
 elif (token.dep_ == "pobj" or token.dep_ == "dobj") and ((obj == None

or (obj.dep_ == "dobj" and token.dep_ == "pobj"))):
 obj = token

 #Name intent for questions
 intentName = str(act) + "_" + str(obj)

 #get extended action, if possible

37

 #adds on supplemental parts of verbs (like 'go to' instead of 'go')
 tok = act
 action = ""
 action += tok.text
 arry = [token for token in sentDoc]
 index = act.i
 while index+1 < len(arry):
 index += 1
 tok = arry[index]
 if(tok.dep_ == "aux" or tok.pos_ == "VERB"):
 action += " "+ tok.text
 else:
 break

 #Get more specific object and object type, if possible
 #searches entity list to see if there is an entity that includes the sel

ected object (to get its entire name)
 for entity in sentDoc.ents:
 strtest = str(entity.text)
 if strtest.find(str(obj)) != -1:
 objType = entity.label_
 obj = entity.text
 break

 # get more specific subject (ex. "Leonardo da Vinci" instead of "Vinci")
 for entity in sentDoc.ents:
 strtest = str(entity.text)
 if strtest.find(str(subj)) != -1:
 subjType = entity.label_
 subj = entity.text
 break

 questions = list()

 #Generate basic questions based on object type and available information
 if(subj != None and act != None and obj != None):

#checking for missing information removes about half of the possible int
ents

 if str(objType) == "GPE":
 questions.append(str("Where was " + str(subj) + " " + str(act) + "?"

))
 elif str(objType) == "DATE":
 questions.append(str("When did " + str(subj) + " " + str(act) + "?")

)

38

 elif str(objType) == "PERSON" or (not type(obj) == str and obj.dep_ ==
 "pobj"):

 questions.append(str("Who " + str(act) + " " + str(subj) + "?"))
 else:
 questions.append(str("What did " + str(subj) + " " + str(act) + "?")

)

 if str(subjType) == "GPE":

 questions.append(str("Where was " + str(obj) + " " + str(act) + "?")
)

 elif str(subjType) == "DATE":
 questions.append(str("When did " + str(obj) + " " + str(act) + "?"))
 elif str(subjType) == "PERSON":
 questions.append(str("Who " + str(act) + " " + str(obj) + "?"))
 else:
 questions.append(str("What did " + str(obj) + " " + str(act) + "?"))

 questions.append(str("What is " + str(obj) + " to " + str(subj) + "?")

)
 questions.append(str("What " + str(act) + " " + str(subj) + "?"))
 questions.append(str("What " + str(obj) + " " + str(act) + " " + str(s

ubj) + "?"))
 questions.append(str("Why did " + str(subj) + " " + str(act) + " " + s

tr(obj) + "?"))
 questions.append(str("How did " + str(subj) + " " + str(act) + " " + s

tr(obj) + "?"))
 questions.append(str("How does " + str(subj) + " " + str(obj) + "?"))
 questions.append(str(str(subj) + " " + str(act) + " " + str(obj) + "?"

))

 translations = [SimplifyText(question) for question in questions]

'"' and ''' come up in some translations. Seem to denote pro
per names (ex. 'Mona Lisa') or possessive

 translations.append(SimplifyText(sentence).replace(""","'").repla
ce("'","'"))

 for translation in translations:
 questions.append(translation.replace(""","'").replace("'","

'"))

 #ensure intents aren't overwritten
 while(intentName in questionDict.keys()):
 intentName += "_"
 questionDict[intentName] = (sentence, questions)

39

The QUESTION-GEN algorithm is used to generate the questions that will be used to

train the Rasa-bot’s intent recognition. The input for this algorithm is the predicates formed by

the DICTIONARY-GEN algorithm. Each predicate is reformed into a sentence string and fed

into SpaCy NLP to tokenize each word. The sentence is then searched to find the tokens

representing its subject, main verb, and object. This is done by checking the syntactic

dependency tag (._dep) of the token. Subjects either have a tag of “nsubj” or “nsubjpass”

(nominal subject or passive nominal subject). The main verb of the sentence usually has the

“ROOT” tag, which denotes the token that connects multiple noun phrases (i.e. the subject and

the object). The object of the sentence will either be tagged as “dobj” or “pobj” (direct object or

object of preposition). There can be multiple objects in a sentence and it was found through

testing that this algorithm was more effective if the first object of preposition is used, if there is

one available. Note that separating the predicates with DICTIONARY-GEN already broke up

most sentences that originally had multiple clauses and would therefore have multiple subjects,

verbs, and/or objects. Since the subject and object found in this way would only be a single

token, the list of entities in the sentence generated by SpaCy is searched to find the full name of

the subject/object, if there is one available (ex. if “Leonardo” is found as the subject, it might be

expanded to “Leonardo da Vinci”). Similarly, if the main verb is immediately followed by other

verbs or auxiliary verbs, they are combined to form a more complete action (ex. “go to” instead

of “go”).

From there, the subject, action and object are then inserted into several question formats

in order to generate questions. If the algorithm did not find a subject, verb or object in the

sentence, no questions will be generated from the sentence and the previous process will start

again with the next predicate from DICTIONARY-GEN. There are several general question

40

formats that will be formed for every sentence such as “Why did [SUBJECT] [ACTION]?”, but

there are also questions that will only be formed depending on the type of entity that SpaCy

tagged the subject or object to be. For example, if the object is tagged as a location, the question

generated will be “Where did [SUBJECT] [ACTION]?”. The sentences formed in this way may

not be grammatically correct, but it was found that since the Rasa bot searches for keywords in

input, it is trained better with quantity over quality. All questions generated in this way are then

added to a list. To improve the training data, synonymous sentences are then generated by using

the SimplifyText() function on each question, which translates the question into a foreign

language and then translates it back into English, altering the structure of the question without

changing the meaning. The retranslated sentences are then added to the list of questions.

Finally, the intent name that the Rasa bot will use to group these questions will be

generated as “[ACTION]_[OBJECT]” with additional “_” characters added on if there already

happens to be an intent with this name. An entry into a dictionary containing all of the

intents/questions is then made with the intent name as the key mapped to a tuple containing the

source sentence and the list of questions generated from that sentence. This process is then

repeated for every predicate formed in DICTIONARY-GEN.

