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ABSTRACT

On a Series Involving Euler’s Function

William Frendreiss
Department of Mathematics
Texas A&M University

Faculty Research Advisor: Dr. Matthew P. Young
Department of Mathematics
Texas A&M University

The goal of this thesis is to provide an in-depth analysis and discussion of an equivalence

to the Riemann Hypothesis (RH) proven by Jean-Louis Nicolas. Nicolas’ proof relates RH to an

inequality of Euler’s totient function 𝜑, and establishes a number-theoretic equivalence to RH. If
Nicolas’ criterion holds for all primorial numbers, then RH is true. If not, then RH is false. This

proof is given an original translation into English from French and annotated, with small corrections

to computations and commentary when deemed necessary. His work is then extended by relating

the equivalence to the convergence of an infinite series which is shown to converge to 1/2. Using

this series and the related partial sum, consequences of the truth or falsehood of RH are explored in

the context of Nicolas’ criterion. We assume both the truth and falsehood of RH, and in doing so

underscore the extreme difficulty of this problem as well as the delicacy of the inequalities involved.

Also provided aremultiple programswhich computationally verify expectations regarding different

quantities from the analytic results section. Optimization of these programs are discussed as well

as difficulties. These programs produce plots of the behavior of consequential arithmetic-valued

functions, which are included in Chapter 4.
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The research results were limited by the nature of the problem. None of the analysis on

the convergence criterion yielded a contradiction to an established result or conjecture, assuming

either RH true or false. However, RH is known to be one of the most difficult problems in modern

mathematics and significant progress was largely outside the scope of this thesis. The hope is

that this research renews interest into Nicolas’ criterion specifically and arithmetic inequalities

equivalent to RH in general.
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NOMENCLATURE

RH Riemann Hypothesis

PNT Prime Number Theorem

𝑝𝑘 The 𝑘th prime number; 𝑝1 = 2, 𝑝2 = 3, …

𝑁𝑘 The 𝑘th primorial number; 𝑁1 = 2, 𝑁2 = 6, …

log(𝑥) The natural logarithm; log𝑒(𝑥) where 𝑒 = 2.71828 … as usual

𝜑(𝑛) Euler’s totient function, 𝜑(𝑛) = #{1 ≤ 𝑘 < 𝑛; gcd(𝑘, 𝑛) = 1}

𝛾 The Euler-Mascheroni constant 𝛾 ≈ 0.57722

𝜁(𝑠) The Riemann Zeta-Function

Γ(𝑧) Gamma function, the analytic extension of the factorial; Γ(𝑧) = (𝑧 − 1)!

𝜋(𝑥) Prime-counting function, 𝜋(𝑛) = #{0 < 𝑝 ≤ 𝑛; 𝑝 prime}

li(𝑥) Logarithmic integral ∫𝑥
0

𝑑𝑡
log 𝑡

Λ(𝑥) Von Mangoldt Function Λ(𝑛) = log(𝑝) if 𝑛 is a prime power, 0 otherwise

𝜃(𝑥) First Chebyshev function ∑ 𝑝≤𝑛
𝑝 prime

log(𝑝)

𝜓(𝑥) Second Chebyshev function, 𝜓(𝑥) ∶= ∑𝑛≤𝑥 Λ(𝑥)

𝜎(𝑛) Divisor-sum function 𝜎(𝑛) = ∑𝑑|𝑛 𝑑
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1. INTRODUCTION

This thesis investigates the relationship between the Riemann Hypothesis and the primorial

numbers through the lens of analytic number theory. We begin with a discussion of the Riemann

Hypothesis and the genesis of analytic number theory.

1.1 The Riemann Hypothesis

Since the Middle Ages, the class of infinite series of the type
∞

∑
𝑛=1

1
𝑛𝑘

for an integer 𝑘 were studied by mathematicians, mostly out of curiosity. The case 𝑘 = 1, the
so-called harmonic series, was proven to diverge (albeit slowly) by Nicole Oresme in the mid-

14th century [KS06]. For 𝑘 > 1 though, the series can be shown to converge by the integral test

that most students learn in elementary calculus. Interest in was spread widely, and Pietro Mengoli

posed the question of the value of the series at 𝑘 = 2 in the middle of the 17th century [Ayo74].

Famously, Leonhard Euler proved in 1734 that the series converges to 𝜋2
6 [Ayo74], solving the so-

called “Basel Problem.” Euler also famously related sums of this type to classical number theory

directly, by proving the Euler Product Formula
∞

∑
𝑛=1

1
𝑛𝑘 = ∏

𝑝 𝑝𝑟𝑖𝑚𝑒
(1 − 1

𝑝𝑘 )
−1

. (1)

1.1.1 Riemann’s Memoir

In 1859, Bernhard Riemann published his groundbreaking paper on analytic number theory

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (On the number of primes less than

a given quantity). The novelty in his paper was treating 𝑘 in the infinite sum not necessarily as a real

number, but as a complex number 𝑠 = 𝜎+𝑖𝑡. Riemann, an accomplished geometer and contributor
to the field of complex analysis, only wrote this one paper on number theory. Nonetheless, it has

become one of the most influential and famous manuscripts in the field and opened up countless

avenues of study within the field of analytic number theory.
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Following Riemann’s convention, define by

𝜁(𝑠) ∶=
∞

∑
𝑛=1

1
𝑛𝑠 (2)

the Riemann Zeta Function for the region Re(𝑠) = 𝜎 > 1. Euler’s product formula (1) still holds,
and we may write

𝜁(𝑠) = ∏
𝑝 𝑝𝑟𝑖𝑚𝑒

(1 − 1
𝑝𝑠 )

−1
, (3)

converging on the same region as the sum. Using his expertise in complex analysis, Riemann

applied the principle of analytic continuation to meromorphically extend 𝜁(𝑠) to ℂ − {1}. The
functional equation describes the relation between the region 𝜎 < 0 and 𝜎 > 1:

𝜋−𝑠/2Γ (𝑠
2) 𝜁(𝑠) = 𝜋−1/2(1−𝑠)Γ (1 − 𝑠

2 ) 𝜁(1 − 𝑠) (4)

[Dav00, p. 59] for 𝜎 < 0.
While not immediately obvious, (4) shows that 𝜁(−2𝑛) = 0 for all 𝑛 ∈ ℕ; these are the

so-called trivial zeros. The region 0 < 𝜎 < 1 is difficult to describe, but the symmetry in (4) shows
that zeros of the function in this region are reflected about the line 𝜎 = 1

2 . Riemann, after showing

that this region (called the critical strip by many modern sources) contains infinitely many zeros,

made his famous conjecture based upon the recognition of this inherent symmetry:

Conjecture 1.1.1 (Riemann Hypothesis). The zeros of the Riemann Zeta Function with real part

between 0 and 1 have real part 1
2 .

Countless mathematicians in the early 20th century took major efforts to prove the Riemann

Hypothesis (RH). However, advances in number theory still have not overcome it. While seemingly

a simple conjecture, and one that intuitively makes sense, RH has truly proven to be one of the most

difficult challenges in modern mathematics.

1.1.2 Connection to the Distribution of Primes

Riemann’s paper became very famous for showing how the Riemann Zeta Function could

be used to prove results about prime numbers analytically. In fact, it was used in the proof of the

Prime Number Theorem (PNT) at the turn of the century:
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Theorem 1.1.2 (Prime Number Theorem). Let 𝜋(𝑥) denote the number of primes less than or equal
to 𝑥. Then

𝜋(𝑥) ∼ li(𝑥) ∼ 𝑥
log𝑥, (5)

where li(𝑥) is the logarithmic integral ∫𝑥
0

𝑑𝑡
log 𝑡 .

The PNT was conjectured by Gauss, and evaded proof for a hundred years; it was only until

Charles de la Vallée Poussin and Jacques Hadamard indepently used the fact that 𝜁(𝑠) has no zeros
on the line 𝜎 = 1 to complete a proof.

While this advancement was very important, the true power of the Riemann Hypothesis

is in its direct relationship with the distribution of prime numbers. We define several important

arithmetic functions for our thesis. The Von Mangoldt Function is defined as

Λ(𝑛) ∶=
⎧{
⎨{⎩

log𝑛 if 𝑛 = 𝑝𝑘 for some prime 𝑝

0 otherwise
(6)

[Dav00, p. 55]. Using this, we define the first Chebyshev function [RS62, p. 64] and modified

second Chebyshev function [Dav00, p. 104] in the usual way as

𝜃(𝑥) ∶= log(∏
𝑝≤𝑥

𝑝) = ∑
𝑝≤𝑥

log 𝑝 and (7)

𝜓0(𝑥) ∶=
⎧{
⎨{⎩

∑𝑛≤𝑥 Λ(𝑛) − 1
2Λ(𝑥) if 𝑥 is a prime power;

∑𝑛≤𝑥 Λ(𝑛) otherwise
, (8)

respectively. It is important to note that Rosser and Schoenfeld developed a great deal of literature

for these functions in their highly cited paper [RS62] that lists and proves a plethora of inequalities.

In his original 1859 paper [Rie59], Riemann put forth several conjectures as well as his

functional equation. One of these ideas was an explicit connection between the distribution of

primes and his new interpretation of 𝜁(𝑠) as a function over the complex numbers; Specifically,
he proposed that there was an explicit formula for 𝜋(𝑥) − li(𝑥) in terms of the zeros of his zeta
function. While his formulation was complex and will not be discussed here, it follows from a later

7



(1895) result due to Von Mangoldt which is much easier to write:

𝜓0(𝑥) − 𝑥 = − ∑
𝜌

𝑥𝜌

𝜌 − 𝜁′(0)
𝜁(0) − 1

2 log (1 − 𝑥−2) , (9)

It is important to note that for practical purposes, a truncated version of (9) is often used in con-

junction with a small error term. Specifically, we may stop counting the zeta zeros when we reach

an imaginary part greater than a number 𝑇 , writing

𝜓0(𝑥) − 𝑥 = − ∑
|𝛾|<𝑇

𝑥𝜌

𝜌 − 𝜁′(0)
𝜁(0) − 1

2 log (1 − 𝑥−2) + 𝑅(𝑥, 𝑇 ) (10)

[Dav00, p. 109], where

𝑅(𝑥, 𝑇 ) = 𝑂 (𝑥 log2(𝑥𝑇 )
𝑇 + log𝑥)

The results in (9) (now known as the exact explicit formula) and (10) (the approximate

explicit formula) directly connect the analytic properties of the Riemann Zeta Function to the dis-

tribution of prime numbers. The Riemann Hypothesis plays a key part in estimating the sum in (9).

In fact, one can show throughmanipulation that RH gives the error term on the order of𝑂(√𝑥 log𝑥)
[Dav00, p. 113] in the difference 𝜋(𝑥) − li(𝑥). This is the best possible error term, meaning that
if RH is true, we can adequately estimate the error term. It is for this reason that verifying the

Riemann Hypothesis has become one of the most important ventures in modern mathematics, let

alone number theory.

1.2 Equivalences

The extraordinary difficulty of the Riemann Hypothesis is apparent to anyone who has

worked in analytic number theory. Initial attempts were made by Hardy, who showed that in-

finitely many zeros lie on the line [Har14] but failed to show that every zero does. A similar result

by Selberg took a statistical route, showing that a positive proportion of the zeros lie on the line

[Sel42]. Recent developments have improved this proportion, but overall no substantial progress

has been made towards the Riemann Hypothesis.

As such, a major research question is that of equivalents to RH. Robin proved that RH is

8



equivalent to

𝜎(𝑛) < 𝑒𝛾𝑛 log log𝑛

being true for all 𝑛 ≥ 5040 [Rob84], where 𝜎(𝑛) is the divisor-sum function. Lagarias altered

Robin’s criterion to add in a connection to the harmonic numbers, partial sums of the harmonic

series. He showed that the above is equivalent to

𝜎(𝑛) < 𝐻𝑛 + 𝑒𝐻𝑛 log𝐻𝑛

[Lag02], where 𝐻𝑛 is the 𝑛th harmonic number ∑1≤𝑘≤𝑛
1
𝑘 . These equivalences have sparked

a great deal of literature, see Banks et al. [BHMN09], Briggs [Bri06], and Wójtowicz [W0́7]

in particular. Many of the statements on these class of functions focus heavily on the proving

the inequalities for various ‘special’ classes of numbers based on the property of ‘abundancy’ of

divisors. Even the great Ramanujan studied so-called ‘colossally abundant’ numbers and studied

their properties [Ram97] as related to the divisor-count function.

1.3 Nicolas’ Criterion

The central object of this thesis is a similar result to Robin and Lagarias’ results as discussed

in the previous section, provided by Jean-Louis Nicolas in [Nic83]. His paper focuses on a special

class of numbers with an optimal ratio of the well-known totient function. Using the notation of

Nicolas, we define as follows:

Definition 1.3.1. Let 𝑝𝑘 be the 𝑘th prime number, with 𝑝1 = 2. We define the 𝑘th primorial number
as

𝑁𝑘 ∶= ∏
1≤𝑛≤𝑘

𝑝𝑛.

Remark. Note that log𝑁𝑘 = 𝜃(𝑝𝑘). This will be useful for proofs in Chapter 3, especially the
proof of theorem 3.3.1.

The primorials are unique for their number of unique prime factors, and it is plain that they

have a greater number of distinct prime factors than any integer less than it. Recall the definition

9



of Euler’s totient function as

𝜑(𝑛) ∶= #{0 < 𝑘 < 𝑛| gcd(𝑘, 𝑛) = 1}.

Now this function is multiplicative (𝜑(𝑚𝑛) = 𝜑(𝑚) ⋅ 𝜑(𝑛)) if gcd(𝑚, 𝑛) = 1. Furthermore, by
definition, 𝜑(𝑝) = 𝑝 −1 for all primes 𝑝. Since primes are clearly coprime to one another, iterative
logic naturally implies that

𝑁𝑘
𝜑 (𝑁𝑘) = ∏𝑘

𝑖=1 𝑝𝑖

∏𝑘
𝑖=1(𝑝𝑖 − 1)

=
𝑘

∏
𝑖=1

(1 − 1
𝑝𝑖

)
−1

. (11)

In 1874, Mertens [Mer74] proved his 3 famous theorems, the third of which is of particular

importance to this thesis:

lim
𝑛→∞

log𝑛 ∏
𝑝≤𝑛

(1 − 1
𝑝) = 𝑒−𝛾. (12)

In a similar result, Landau [Lan53] showed that

lim inf
𝑛→∞

𝜑(𝑛) log log𝑛
𝑛 = 𝑒−𝛾 (13)

which of course can be reformulated as

lim sup
𝑛→∞

𝑛
𝜑(𝑛) log log𝑛 = (𝑒−𝛾)−1 = 𝑒𝛾. (14)

In view of (11), (12), and (14), one can see the historical interest in certain quantities involv-

ing a primorial integer and its totient. Critically, the totient function is relatively small at primorial

numbers, and so these ratios are extremal in that case. This should provide the intuition for the

main preliminary result of this thesis, dubbed Nicolas’ Criterion:

Theorem 1.3.2 ([Nic83], Théorème 2). If the Riemann Hypothesis is true, then

𝑁𝑘
𝜑 (𝑁𝑘) > 𝑒𝛾 log log𝑁𝑘 (15)

for all 𝑘 ∈ ℕ. If RH is false, then the inequality in (15) switches signs infinitely many times.

Theorem 1.3.2 was proven in the early 1980s by Jean-Louis Nicolas, and has become a well-

studied result in analytic number theory. Banks et al [BHMN09] provided a connection between

Nicolas’ criterion and Robin’s criterion [Rob84] through numbers representable by a sum of two

squares. Elsewhere, Akbary and Francis [AF20] equivocate Nicolas’ criterion to an equivalence to
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the Generalized Riemann Hypothesis of a Dedekind Zeta Function of a class of cyclotomic fields.

In a unique approach, Planat, Solé, and Omar [PSO11] connect Nicolas’ criterion and the Riemann

Hypothesis to properties of quantum systems. Namely, they use Nicolas’ result in multiple proofs

to show that RH is equivalent to a similar inequality incorporating temperature as a variable in the

Bost-Connes quantum dynamical system. Even Nicolas himself later revisited his original paper

[Nic83] and proved that

lim sup
𝑛→∞

( 𝑛
𝜑(𝑛) − 𝑒𝛾 log log𝑛) √log𝑛 = 𝑒𝛾(2 + 𝐵),

where𝐵 is a constant based on a sum over the nontrivial zeta zeros [Nic12]; he also provided several

more equivalents to the Riemann Hypothesis based on his computations regarding this limit.

In Chapter 2, we review and give notes on Nicolas’ 1982 proof of Theorem 1.3.2. We provide

a translation from the original French and give an expanded algebraic manipulation for heightened

clarity. In Chapter 3 we provide original work and analysis of Nicolas’ Criterion. We prove two

results independent of Nicolas’ Criterion, and then their properties are explored in the context of the

truth or falsehood of the RiemannHypothesis. Therein the difficulty of the RiemannHypothesis as a

problem is underscored. We endwith a discussion of the design of the algorithms and computational

difficulties in Chapter 4 before moving on to the conclusion. We also provide original plots of

computations performed.

11



2. NICOLAS’ PROOF

We provide here an English translation and rewriting of Nicolas’ proof using the original

complex analysis techniques. Where we believe there are small errors, we have added notes.

Jean-Louis Nicolas’ original paper [Nic83] was written in French and was translated into

English for the purposes of this thesis. The author used preexisting knowledge of the language,

mathematical nomenclature similarities, and context clues to piece together most of the tranlation.

However, where small checks were necessary, Google Translate was used for an occasional un-

known word or phrase.

2.1 Definitions

We define the following, which wewill use frequently throughout the proof. The definitions

for 𝑝𝑘 and 𝑁𝑘 were already given. The notation used below is the same as used by Nicolas in his

original proof for ease of reference.

𝑓(𝑥) ∶= 𝑒𝛾 log (𝜃(𝑥)) ∏
𝑝≤𝑥

(1 − 1
𝑝)

𝑆(𝑥) ∶= 𝜃(𝑥) − 𝑥

𝑅(𝑥) ∶= 𝜓(𝑥) − 𝑥

𝐾(𝑥) ∶= ∫
∞

𝑥

𝑆(𝑡)
𝑡2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡

𝐽(𝑥) ∶= ∫
∞

𝑥

𝑅(𝑡)
𝑡2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡

𝐹𝜌(𝑥) ∶= ∫
∞

𝑥
𝑡𝜌−2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡

Remark. We know from the Prime Number Theorem that 𝑆(𝑡) = 𝑂(𝑡/ log 𝑡) and this ensures the
convergence of the integral defining 𝐾(𝑥). BY similar logic we know 𝐽(𝑥) converges.

2.2 Estimating 𝑓(𝑥)

Lemma 2.2.1. For all 𝑥 ≥ 121, we have

𝐾(𝑥) − 𝑆2(𝑥)
𝑥2 log𝑥 ≤ log 𝑓(𝑥) ≤ 𝐾(𝑥) + 1

2(𝑥 − 1). (16)
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Proof. From [RS62, Theorem 4 & Theorem 18], 𝜃(𝑠) ≥ 4𝑥/5 for 𝑥 ≥ 121. Additionally,

− ( 𝑑2

𝑑𝑡2 ) (log log 𝑡) = 1 + log 𝑡
𝑡2 log2 𝑡

is a decreasing function in 𝑡 for 𝑡 > 1, and 𝑡 ↦ 𝑡 𝑡+1−𝑎
(𝑡−𝑎)2 is decreasing for 𝑡 > 𝑎 > 0. Using 𝑡 = 4𝑥

5 ,

𝑎 = log 5
4 and 𝑥 ≥ 121 in the negative second derivative,

log(4𝑥/5) + 1
(4𝑥/5)2 log2(4𝑥/5)

≤ log(𝑥/
√

2) + 1
(𝑥/

√
2)2 log2(𝑥/

√
2)

= 2(log(𝑥/
√

2) + 1)
𝑥2(log𝑥 − 1/2 log(2))2

< 2 log𝑥
𝑥2(log𝑥)2 = 2

𝑥2 log𝑥.

Using Taylor’s Theorem on log log(𝜃(𝑥) − 𝑥) about 𝑥,

log log(𝜃(𝑥)) = log log𝑥 + 1
𝑥 log𝑥(𝜃(𝑥) − 𝑥) + − log𝑥 − 1

𝑥2 log2 𝑥
(𝜃(𝑥) − 𝑥)2 + ⋯

= log log𝑥 + 1
𝑥 log𝑥𝑆(𝑥) − 1

𝑥2 log𝑥𝑆2(𝑥) − 1
𝑥2 log2 𝑥

𝑆2(𝑥) ± ⋯ .

By truncating the alternating series, we see that for 𝑥 ≥ 3 > 𝑒,

log log(𝜃(𝑥)) ≤ log log𝑥 + 𝑆(𝑥)
𝑥 log𝑥, (17)

as well as

log log(𝜃(𝑥)) ≥ log log𝑥 + 𝑆(𝑥)
𝑥 log𝑥 − 1

𝑥2 log𝑥𝑆2(𝑥) (18)

when the second derivative is positive and decreasing on 𝑥 ≥ 121. It follows that

∑
𝑝≤𝑥

1
𝑝 = ∫

𝑥

2−

𝑑(𝜃(𝑡))
𝑡 log 𝑡 𝑑𝑡 = 𝜃(𝑥)

𝑥 log𝑥 + ∫
𝑥

2

𝜃(𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

𝑑𝑡

via the definition of 𝜃(𝑥) and then integration by parts. Using 𝜃(𝑥) = 𝑥 + 𝑆(𝑥),

∑
𝑝≤𝑥

1
𝑝 = 𝜃(𝑥) − 𝑥 + 𝑥

𝑥 log𝑥 + ∫
𝑥

2

(𝜃(𝑡) − 𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

+ 𝑡 log 𝑡 + 1
𝑡2 log2 𝑡

𝑑𝑡

= 𝑆(𝑥)
𝑥 log𝑥 + 1

log𝑥 + ∫
𝑥

2

1
𝑡 log 𝑡 𝑑𝑡 + ∫

𝑥

2

1
𝑡 log2 𝑡

𝑑𝑡 + ∫
𝑥

2

𝑆(𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

𝑑𝑡

= 𝑆(𝑥)
𝑥 log𝑥 + 1

log𝑥 + (log log𝑥 − log log 2) + (− 1
log𝑥 + 1

log 2) + ∫
𝑥

2

𝑆(𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

𝑑𝑡

= 𝑆(𝑥)
𝑥 log𝑥 + log log𝑥 − log log 2 + 1

log 2 + ∫
𝑥

2

𝑆(𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

𝑑𝑡.
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Writing 𝐵1 ∶= − log log 2 + 1
log2 + ∫∞

2
𝑆(𝑡)(log 𝑡+1)

𝑡2 log2 𝑡 𝑑𝑡,

∑
𝑝≤𝑥

1
𝑝 = 𝑆(𝑥)

𝑥 log𝑥 + log log𝑥 + 𝐵1 − ∫
∞

𝑥

𝑆(𝑡)(log 𝑡 + 1)
𝑡2 log2 𝑡

𝑑𝑡 = 𝑆(𝑥)
𝑥 log𝑥 + log log𝑥 + 𝐵1 − 𝐾(𝑥).

(19)

By comparing (19) to Mertens’ Second Theorem [Mer74], ∑𝑝≤𝑥
1
𝑝 = log log𝑥 + 𝐵1 + 𝑜(1), we

have

𝐵1 = 𝛾 + ∑
𝑝

(log(1 − 1/𝑝) + 1/𝑝) .

We now define

𝑈(𝑥) ∶= log log 𝜃(𝑥) + ∑
𝑝≤𝑥

(−1
𝑝) + 𝐵1 (20)

and

𝑢(𝑥) ∶= ∑
𝑝≤𝑥

(log(1 − 1
𝑝) + 1

𝑝) + 𝛾 − 𝐵1 = ∑
𝑝>𝑥

− log(1 − 1
𝑝) − 1

𝑝.

Notice that

𝑈(𝑥) + 𝑢(𝑥) = log log(𝜃(𝑥)) + 𝛾 + ∑
𝑝≤𝑥

log(1 − 1
𝑝) = log 𝑓(𝑥).

Bounding 𝑢(𝑥), we have

𝑢(𝑥) = ∑
𝑝>𝑥

− log(1 − 1
𝑝) − 1

𝑝

= ∑
𝑝>𝑥

(
∞

∑
𝑛=1

1
𝑛𝑝𝑛 − 1

𝑝)

= ∑
𝑝>𝑥

∞
∑
𝑛=2

1
𝑛𝑝𝑛

≤ ∑
𝑝>𝑥

∞
∑
𝑛=2

1
2𝑝𝑛

= ∑
𝑝>𝑥

1
2𝑝2 ⋅ 1

1 − 1/𝑝 = ∑
𝑝>𝑥

1
2𝑝(𝑝 − 1)

< ∑
𝑛>𝑥

1
2𝑛(𝑛 − 1) < 1

2(𝑥 − 1).

Since 𝑈(𝑥) = 𝑆(𝑥)
𝑥 log𝑥 + 𝐾(𝑥) from (19), we have the second inequality in (16).
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2.3 If RH is True

Lemma 2.3.1. Let 𝜌 be a complex number with real part 1
2 . We have

𝐹𝜌(𝑥) = − 1
𝜌 − 1

𝑥𝜌−1

log𝑥 + 𝑟𝜌(𝑥) (21)

where

∣𝑟𝜌(𝑥)∣ ≤ 5
|𝜌 − 1|√𝑥 log2(𝑥)

(22)

for 𝑥 > 𝑒2.

Proof. Integrating by parts on the definition of 𝐹𝜌,

𝐹𝜌(𝑥) = ∫
∞

𝑥
𝑡𝜌−2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡

= 1
𝜌 − 1𝑡𝜌−1 1 + log 𝑡

log2(𝑡)
∣
∞

𝑥
− ∫

∞

𝑥
𝑡𝜌−1

1
𝑡 log

2 𝑡 − (1 + log 𝑡)2
𝑡 log 𝑡

log4(𝑡)
𝑑𝑡

= − 1
𝜌 − 1𝑥𝜌−1 1 + log𝑥

log2(𝑥)
+ ∫

∞

𝑥
𝑡𝜌−2 ( 1

log2 𝑡
+ 2
log3 𝑡

) 𝑑𝑡

= − 1
𝜌 − 1

𝑥𝜌−1

log(𝑥) −

𝑟𝜌(𝑥)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
𝜌 − 1

𝑥𝜌−1

log2(𝑥)
+ ∫

∞

𝑥
𝑡𝜌−2 ( 1

log2 𝑡
+ 2
log3 𝑡

) 𝑑𝑡 .

For 𝑡 ≥ 𝑥 > 𝑒2, we have log3 𝑡 ≥ 2 log2 𝑥 and

∣𝑟𝜌(𝑥)∣ ≤ 1
|𝜌 − 1|√𝑥 log2 𝑥

+ 2
|𝜌 − 1| log2 𝑥

∫
∞

𝑥
𝑡−3/2 𝑑𝑡

by the triangle inequality for integrals. The integral on the right is 2√𝑥 , yielding the desired bound.

Proposition 2.3.2. Under the Riemann Hypothesis, we have for 𝑥 ≥ 55 > 𝑒4,

𝐽(𝑥) ≤ 0.1√𝑥 log𝑥.

Proof. By integrating the exact explicit formula (9),

𝜓1(𝑥) = ∫
𝑥

0
𝜓(𝑡) 𝑑𝑡 = 𝑥2

2 − ∑
𝜌

𝑥𝜌+1

𝜌(𝜌 + 1) − 𝑥𝜁′

𝜁 (0) + 𝜁′

𝜁 (−1) −
∞

∑
𝑖=1

𝑥1−2𝑖

2𝑖(2𝑖 − 1). (23)
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The series ∑𝜌
1

|𝜌(𝜌+1)| is convergent, say with sum 𝐴. Define, for all 𝑡 > 0

𝑔(𝑡) ∶= 1
𝑡2 ( 1

log 𝑡 + 1
log2 𝑡

) .

This yields

𝑔′(𝑡) = −2
𝑡3 ( 1

log 𝑡 + 1
log2 𝑡

) + 1
𝑡2 ( −1

log2 𝑡
+ −2
log3 𝑡

)

= − 1
𝑡3 ( 2

log 𝑡 + 3
log2 𝑡

+ 2
log3 𝑡

) .

The series ∑𝜌 𝑔′(𝑡)𝑡𝜌+1/𝜌(𝜌+1) is absolutely convergent and under the Riemann Hypothesis, the
partial sums are 𝑂 (|𝑔′(𝑡)|𝑡3/2) in absolute value, which is integrable on [𝑥, ∞] for 𝑥 > 1.

Due to the absolute convergence,

∫
∞

0
(∑

𝜌
𝑔′(𝑡) 𝑡𝜌+1

𝜌(𝜌 + 1)) 𝑑𝑡 = ∑
𝜌

∫
∞

0
𝑔′(𝑡) 𝑡𝜌+1

𝜌(𝜌 + 1) 𝑑𝑡. (24)

From (23), define

𝑔1(𝑥) ∶= 𝑥𝜁′

𝜁 (0) − 𝜁′

𝜁 (−1) +
∞

∑
𝑟=1

𝑥1−2𝑟

2𝑟(2𝑟 − 1).

For 𝑥 > 1,
𝑔′

1(𝑥) = log 2𝜋 + 1
2 log(1 − 1/𝑥2),

and for 𝑥 ≥ 2, we have
0 ≤ 𝑔′

1(𝑥) ≤ log 2𝜋. (25)

The left side of (24) becomes

∫
∞

𝑥
𝑔′(𝑡) (𝑡2

2 − 𝜓1(𝑡) − 𝑔1(𝑡)) 𝑑𝑡 = 𝑔(𝑥) (𝜓1(𝑥) − 𝑥2

2 − 𝑔1(𝑥)) + 𝐽(𝑥) + 𝐽1(𝑥),

via integration by parts (𝑔(𝑡) ≈ 1/𝑡 log 𝑡) and using

𝐽1(𝑥) ∶= ∫
∞

𝑥
𝑔(𝑡)𝑔′

1(𝑡) 𝑑𝑡. (26)

The right side of (24) becomes

∑
𝜌

(−𝑔(𝑥) 𝑥𝜌+1

𝜌(𝜌 + 1) − ∫
∞

𝑥
)
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via integration by parts, which can be simplified to

𝑔(𝑥) (𝜓1(𝑥) − 𝑥2

2 + 𝑔1(𝑥)) − ∑
𝜌

1
𝜌𝐹𝜌(𝑥).

Comparing both sides then yields

𝐽(𝑥) = − ∑
𝜌

1
𝜌𝐹𝜌(𝑥) − 𝐽1(𝑥); (27)

using (25) and (26), for 𝑥 ≥ 2,

0 ≤ 𝐽1(𝑥) ≤ log 2𝜋 ∫
∞

𝑥
𝑑 ( 1

log 𝑡) = log 2𝜋
𝑥 log𝑥. (28)

So, lemma 2.3.1 gives us

− ∑
𝜌

1
𝜌𝐹𝜌(𝑥) = ∑

𝜌

𝑥𝜌−1

𝜌(𝜌 − 1) log𝑥 − ∑
𝜌

𝑟𝜌(𝑥)
𝜌

= 1√𝑥 log𝑥 ∑
𝜌

𝑥𝑖ℑ𝜌

𝜌(𝜌 − 1) − ∑
𝜌

𝑟𝜌(𝑥)
𝜌 .

The first series is convergent;

∑
𝜌

1
𝜌(1 − 𝜌) = 2 + 𝛾 − log𝜋 − 2 log 2 ≤ 0.047.

We obtain then, using the bound on |𝑟𝜌| from lemma 2.3.1, that

∣∑
𝜌

1
𝜌𝐹𝜌(𝑥)∣ ≤ 0.047√𝑥 log𝑥 (1 + 5

log𝑥) ≤ 0.1√𝑥 log𝑥
for all 𝑥 ≥ 𝑒4.

Note. We believe that in the last line, although Nicolas’ claims the inequality holds for all 𝑥 ≥ 𝑒4,

that we may only obtain the desired bound for 𝑥 ≥ 84.265 > 𝑒4. However, in the proof of theorem

2.3.3 citing proposition 2.3.2, we only need 𝑥 ≥ 121, and so the argument is not substantially
impacted.

Theorem 2.3.3. If the Riemann Hypothesis is true, then

𝑁𝑘
𝜑(𝑁𝑘) > 𝑒𝛾 log log𝑁𝑘 (29)

for all 𝑘 ≥ 1.

Proof. For all 𝑥 ≥ 121,
𝜃(𝑥) ≤ 𝜓(𝑥) − 0.98√𝑥.
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[RS62, eq. 3.37]. Note that this inequality can be easily obtained using a worse coefficient since

𝜓(𝑥) − 𝜃(𝑥) ≥ 𝜃(√𝑥). In actuality, we can replace 0.98 with 0.998 [RS75, p. 265].
So 𝑆(𝑥) ≤ 𝑅(𝑥) − 0.98√𝑥 for 𝑥 ≥ 121, and via lemma 2.2.1,

log 𝑓(𝑥) ≤ 𝐾(𝑥) + 1
2(𝑥 − 1)

= ∫
∞

𝑥

𝑆(𝑡)
𝑡2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡 + 1
2(𝑥 − 1)

≤ ∫
∞

𝑥

𝑅(𝑡) − 0.98
√

𝑡
𝑡2 ( 1

log 𝑡 + 1
log2 𝑡

) 𝑑𝑡 + 1
2(𝑥 − 1)

= 𝐽(𝑥) − 0.98𝐹1/2(𝑥) + 1
2(𝑥 − 1). (30)

Via lemma 2.3.1,

𝐹1/2(𝑥) = 2√𝑥 log𝑥 + 𝑟1/2(𝑥),

and for 𝑥 ≥ 𝑒10, |𝑟1/2(𝑥)| ≤ 1/(√𝑥 log𝑥) which leads to

−0.98𝐹1/2(𝑥) + 1
2(𝑥 − 1) ≤ − 0.9√𝑥 log𝑥 (31)

for 𝑥 ≥ 3000.

Note. Here, Nicolas originally used 𝑒8, which we have changed to 𝑒10 due to a perceived typo-

graphic error as explained in the last note regarding the end of proposition 2.3.2.

Via equation (30) and proposition 2.3.2,

log 𝑓(𝑥) ≤ − 0.8√𝑥 log𝑥 < 0.

Hence 𝑓(𝑥) < 1 for large 𝑥, completing the proof when accounting for Rosser and Schoenfeld’s
calculations for low 𝑥.

2.4 If RH is False

We will prove that 𝑓(𝑥) is not always greater than or equal to 1 above any given 𝑥0. By

rearranging in the definition of 𝑓(𝑥), this implies the other half of Nicolas’ criterion, the first half
coming from theorem 2.3.3. With (30) and (31), it suffices to show that 𝐽(𝑥) is not always positive.
For this, we use Landau’s lemma:
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Lemma 2.4.1. Let ℎ ∶ [1, ∞] → ℝ be a piecewise continuous function. Consider the Mellin

Transform of ℎ, defined by
𝐻(𝑠) ∶= ∫

∞

1

ℎ(𝑥)
𝑥𝑠 𝑑𝑥.

If 𝜎0 is the abcissa of convergence of 𝐻(𝑠), then we know 𝐻(𝑠) is convergent for ℜ(𝑠) > 𝜎0.

If there exists an 𝑥0 ≥ 1 such that ℎ(𝑥) has constant sign for 𝑥 ≥ 𝑥0, then 𝐻(𝑠) cannot be

analytically continued to a neighborhood of 𝑠 = 𝜎0.

Theorem 2.4.2. 𝐽(𝑥) switches signs infinitely many times.

Proof. Let ℎ(𝑥) be 𝐽(𝑥) for 𝑥 ≥ 2, and ℎ(𝑥) = 0 for 𝑥 ≤ 2. For ℜ(𝑠) > 1,

𝐺(𝑠) = ∫
∞

2

𝐽(𝑥)
𝑥𝑠 𝑑𝑥 = ∫

∞

2

1
𝑥𝑠 ∫

∞

𝑥

𝑅(𝑡)
𝑡2 ⋅ 1 + log 𝑡

log2 𝑡
𝑑𝑡 𝑑𝑥.

Via the PrimeNumber Theorem,𝑅(𝑡) = 𝑂 ( 𝑡
log 𝑡); the integrals are absolutely convergent. Fubini’s

Theorem tells us that

𝐺(𝑠) = ∫
∞

2

𝑅(𝑡)
𝑡2 ⋅ 1 + log 𝑡

log2 𝑡
∫

𝑡

2

𝑑𝑥
𝑥𝑠 𝑑𝑡

= ∫
∞

2

𝑅(𝑡)
𝑡2 ⋅ 1 + log 𝑡

log2 𝑡
⋅ 𝑥1−𝑠

1 − 𝑠∣
𝑡

2
𝑑𝑡

= 1
1 − 𝑠 ∫

∞

2

𝑅(𝑡)
𝑡1+𝑠 ⋅ 1 + log 𝑡

log2 𝑡
𝑑𝑡 − 21−𝑠

1 − 𝑠𝐽(2)

= 1
𝑠 − 1 (21−𝑠𝐽(2) − ∫

∞

2

𝑅(𝑡)
𝑡1+𝑠 ⋅ 1 + log 𝑡

log2 𝑡
𝑑𝑡) . (32)

At 𝑠 = 1, the expression in the parentheses is 20𝐽(2) − 𝐽(2) = 0. Via a classic result,

∫
∞

2

𝜓(𝑡)
𝑡𝑠+1 𝑑𝑡 = −1

𝑠 ⋅ 𝜁′

𝜁 (𝑠)

for ℜ(𝑠) > 1. We deduce

∫
∞

2

𝑅(𝑡)
𝑡𝑠+1 𝑑𝑡 = ∫

∞

2

𝜓(𝑡) − 𝑡
𝑡𝑠+1 𝑑𝑡 = ∫

∞

2

𝜓(𝑡)
𝑡𝑠+1 𝑑𝑡 − ∫

∞

2

1
𝑡𝑠 𝑑𝑡

= ∫
∞

2

𝜓(𝑡)
𝑡𝑠+1 𝑑𝑡 − ∫

∞

1

1
𝑡𝑠 𝑑𝑡 + ∫

2

1

1
𝑡𝑠 𝑑𝑡.

The third integral (which Nicolas calls 𝐸1(𝑠)) is an entire function. For ℜ(𝑠) > 1,

∫
∞

2

𝑅(𝑡)
𝑡𝑠+1 𝑑𝑡 = −1

𝑠 ⋅ 𝜁′

𝜁 (𝑠) − ∫
∞

1

1
𝑡𝑠 𝑑𝑡 + 𝐸1(𝑠). (33)
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We use the identity

(1 − 21−𝑠) 𝜁(𝑠) =
∞

∑
𝑛=1

(−1)𝑛−1

𝑛𝑠

to see that 𝜁 has no real zeros in the critical strip; otherwise the right side would be zero, which it is
not, as it is always a convergent alternating series that is lower bounded by 1 − 1

2𝑠 > 0 for 𝑠 > 0.
Since the first zero of 𝜁 on the critical line has imaginary part > 14 =∶ 𝛿, we know that there are

no zeros of 𝜁 in the region

𝑊 = {𝑠 ∶ ℜ(𝑠) > 1} ∪ {𝑠 ∶ 0 < ℜ(𝑠) ≤ 1, |ℑ(𝑠)| < 𝛿},

which is plotted below:

−𝛿

𝛿

10

Figure 1: The region 𝑊 .

The right side of (33) is holomorphic in a neighborhood of 𝑠 = 1 and in 𝑊 , and so admits

a primitive 𝐺1(𝑠) and second primitive 𝐺2(𝑠).
We then have

∫
∞

2

𝑅(𝑡)
𝑡1+𝑠 ⋅ 1

log 𝑡 𝑑𝑡 = −𝐺1(𝑠) + 𝜆
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and

∫
∞

2

𝑅(𝑡)
𝑡1+𝑠 ⋅ 1

log2 𝑡
𝑑𝑡 = 𝐺2(𝑠) + 𝜆𝑠 + 𝜇

for ℜ(𝑠) > 1 where 𝜆, 𝜇 are constants. Equation (32) also gives us that

𝐺(𝑠) = 1
𝑠 − 1 (𝐺1(𝑠) − 𝐺2(𝑠) + 𝐸2(𝑠)) , (34)

where 𝐸2(𝑠) is an entire function in 𝑠. The function in parentheses is a holomorphic function in
the region 𝑊 , with a zero at 𝑠 = 1 going back to equation (32). As such the whole function 𝐺 can

be holomorphically extended for 0 ≤ 𝑠 < 1, as 𝐺(𝑠) is a Mellin transform that is analytic on a

half-plane.

If 𝐽(𝑥) has a constant sign for 𝑥 > 𝑥0 sufficiently large, the contrapositive to Landau’s

Lemma tells us that the abcissa of comvergence is less than or equal to 0, and that 𝐺(𝑠) is able to
be holomorphically extended to ℜ(𝑠) > 0.

But this cannot be; from (34) it follows that𝐺1(𝑠)−𝐺2(𝑠) is holomorphic for the right half-
plane, as is 𝐺″

1(𝑠) − 𝐺″
2(𝑠). In a zero 𝜌 of 𝜁 with multiplicity 𝑚, by using the analytic continuation

of the integral in (33) as 1
𝑠−1 ,

𝐺″
2(𝑠) ∼ −𝜁′

𝜁 (𝑠) ∼ −1
𝜌 ⋅ 𝑚

𝑠 − 𝜌
and

𝐺″
1(𝑠) ∼ 𝐺(3)

2 (𝑠) ∼ 𝑚
𝜌(𝑠 − 𝜌)2 ,

which has a pole of order 2 at 𝑠 = 𝜌. Hence, by contradiction, our assumption was false; no such
𝑥0 may exist.

Remark. We did not use the Riemann Hypothesis here, and having 𝑓(𝑥) switch signs infinitely
many times does not contradict the results of the previous section. If 𝑅𝐻 is true, we proved that

𝑓(𝑥) < 1 for all 𝑥 > 0. What we proved in Theorem 2.4.2 was that 𝐽(𝑥) changed sign infinitely
many times, and therefore by equation (30), 𝑓(𝑥) cannot be eternally ≥ 1, which is in total accor-
dance with the previous section. In the coming theorem, we show that the falsehood of RH implies

that it cannot either be eternally < 1.
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Theorem 2.4.3. If𝑅𝐻 is false, for all 0 < 𝑏 < 1/2, 𝐽(𝑥) = Ω±(𝑥−𝑏), whence lim sup𝑥𝑏𝐽(𝑥) > 0
and lim inf𝑥𝑏𝐽(𝑥) < 0.

Proof. Suppose that there is a zero of the Riemann zeta function 𝜌 = 𝛽 + 𝑖𝛾, where 𝛽 > 1 − 𝑏 and
𝑏 satisfies 1 − Θ < 𝑏 < 1/2.

We will show that 𝐽(𝑥) ± 𝑥−𝑏 does not have a constant sign as 𝑥 → ∞. For this, we

calculate the Mellin Transform

∫
∞

2

𝐽(𝑥) − 𝑥−𝑏

𝑥𝑠 𝑑𝑥 = 𝐺(𝑠) − 1
𝑠 − 1 + 𝑏 + 𝐸3(𝑠)

where 𝐸3(𝑠) is an entire function, as it is a definite integral between 1 and 2 dependent on 𝑠 as

an exponent. The right side is a holomorphic function in 𝑊 ∩ {𝑠; ℜ(𝑠) > 1 − 𝑏}. If 𝐽(𝑥) − 𝑥−𝑏

has constant sign, the abcissa of convergence of the Mellin transform is ≤ 1 − 𝑏 < 𝛽, which is
impossible because 𝐺(𝑠) has a singularity at 𝛽 + 𝑖𝛾. The proof for 𝐽(𝑥) + 𝑥−𝑏 is very similar and

therefore omitted.

2.5 Proof of Theorem 1.3.2

Proof. By Prop 2.2.1, and (30) and (31), for 𝑥 ≥ 3000, we have log 𝑓(𝑥) ≤ 𝐽(𝑥), and Lemma
2.3.1 gives us that lim inf𝑥𝑏 log 𝑓(𝑥) < 0.

It remains to prove that log 𝑓(𝑥) = Ω+(𝑥−𝑏). For this, consider (16). Wewill study𝐾(𝑥)−
𝑆2(𝑥)/𝑥2 log𝑥. Consider [RS62, Theorem 13], that

𝜓(𝑥) − 𝜃(𝑥) < 1.42620√𝑥

for all 𝑥 > 0. It follows that

𝐽(𝑥) − 3
2𝐹1/2(𝑥) ≤ 𝐾(𝑥) ≤ 𝐽(𝑥).

The estimation of 𝐹1/2 provided by lemma 2.3.1 and theorem 2.4.2 indicates that𝐾(𝑥) = Ω±(𝑥−𝑏)
for all 𝑏 such that 1 − Ω < 𝑏 < 1/2.

Consider now the function 𝑦(𝑥) = 𝐾(𝑥) − 𝑥−𝑏. It is differentiable for all 𝑥 ≠ 𝑝 where 𝑝
is prime, and we have

𝑦′(𝑥) = −𝑆(𝑥)
𝑥2 ( 1

log𝑥 + 1
log2 𝑥

) + 𝑏
𝑥𝑏+1 .
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This derivative can change signs at 𝑥 = 𝑝, and the study of the equation (𝑥 − 𝑎)(log𝑥 + 1) +
𝑏𝑥1−𝑏 log2 𝑥 = 0 (which has no roots in [1, +∞)) for 𝑎 > 1 yields that 𝑦′(𝑥) vanishes once in the
interval [𝑝, 𝑝′] where 𝑝 and 𝑝′ are consecutive primes greater than 2.

The set of 𝑥 for which the sign of 𝑦′ changes is countable; index it as a sequence {𝑥𝑗}𝑗. If

RH is false, 𝑆(𝑥) = Ω± (𝑥(Θ+1−𝑏)/2) via [Ing64, Chapter V], so the sequence is infinite.
At a point 𝑥𝑖, 𝑦′ changes sign and so also

𝑆(𝑥) − 𝑏𝑥1−𝑏 log2 𝑥
log𝑥 + 1.

This means that the quantity is either 0 or log𝑥𝑖. In any case, 𝑆(𝑥𝑖) = 𝑂 (𝑥1−𝑏
𝑖 log𝑥𝑖) and

𝑆2(𝑥𝑖)
𝑥2

𝑖 log𝑥𝑖
= 𝑂 ( log𝑥𝑖

𝑥2𝑏
𝑖

). Now there are infinitely many values of 𝑖 such that 𝑦(𝑥𝑖) > 0. Effectively,
if the function 𝑦 were to be negative at all its local extrema, it would be negative everywhere, and
for all 𝑥, 𝐾(𝑥) ≤ 𝑥−𝑏 and we see that 𝐾(𝑥) = Ω+(𝑥𝑏′), where 𝑏′ < 𝑏.

This implies that log 𝑓(𝑥) = Ω+(𝑥−𝑏), as desired.
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3. ANALYSIS

3.1 Preliminaries

The following original lemma will form a basis for later work by transferring a question

about a single primorial number into a relation between subsequent prime numbers.

Lemma 3.1.1. Let 𝑁𝑘 be the 𝑘th primorial number, and 𝑝𝑘 the 𝑘th prime. Recall Euler’s totient

function 𝜑(𝑛) which counts the natural numbers under 𝑛 coprime to 𝑛. Then
1
2 = 𝜑 (𝑁𝑚+1)

𝑁𝑚+1
+

𝑚
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

(35)

for all 𝑚 ∈ ℕ.

Proof. We induct on 𝑚. For 𝑚 = 1, indeed
1
2 = 1

3 + 1
6 = (3 − 1)(2 − 1)

2 ⋅ 3 + 1
2 ⋅ 3 = 𝜑 (𝑁2)

𝑁2
+

1
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

.

So suppose (35) holds for 𝑚. Then

1
2 = 𝜑 (𝑁𝑚+1)

𝑁𝑚+1
+

𝑚
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

= 𝜑 (𝑁𝑚+1)
𝑁𝑚+1

(𝑝𝑚+2 − 1
𝑝𝑚+2

+ 1
𝑝𝑚+2

) +
𝑚

∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

= 𝜑 (𝑁𝑚+1)
𝑁𝑚+1

(𝜑 (𝑝𝑚+2)
𝑝𝑚+2

+ 1
𝑝𝑚+2

) +
𝑚

∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

.

Since 𝑁𝑚+1 and 𝑝𝑚+2 are coprime by definition, the totient function is multiplicative, and

1
2 = 𝜑 (𝑁𝑚+2)

𝑁𝑚+2
+ 𝜑 (𝑁𝑚+1)

𝑁𝑚+2
+

𝑚
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

= 𝜑 (𝑁𝑚+2)
𝑁𝑚+2

+
𝑚+1
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

,

as desired.

Corollary 3.1.2.
1
2 =

∞
∑
𝑘=1

𝜑 (𝑁𝑘)
𝑁𝑘+1

(36)
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Proof. Take 𝑚 → ∞ in lemma 3.1.1. The tail term 𝜑(𝑁𝑚)/𝑁𝑚 tends to zero;

lim
𝑚→∞

𝜑(𝑁𝑚)/𝑁𝑚 = ∏
p prime

(1 − 1
𝑝) ,

a product which diverges to 0 since the sum of prime reciprocals diverges.

3.2 RH True

As Nicolas’ Criterion describes the two cases of RH true versus RH false, we will consider

both cases. In the case of RH true, our aim to is provide mathematical (and later computational)

evidence for the Riemann Hypothesis using elementary computations and verification. In assuming

RH false, we do not aim to provide a contradiction; rather, we strive to underscore the difficulty

of the Riemann Hypothesis by showing how there is no contradiction to established results when

applying Nicolas’ Criterion to certain situations.

Regardless of the difficulty of the problem’s concrete solution, a large portion of the math-

ematical community is of the belief that the Riemann Hypothesis is probably true. Whole books

have been written assuming RH, and many known results were once formulated as consequences

of RH; the evidence is quite strong. Our goal is to provide more in the section that follows.

Rearranging (15), under RH we have

𝑒𝛾 𝜑 (𝑁𝑘)
𝑁𝑘

< 1
log log𝑁𝑘

for all 𝑘 ≥ 2 *. Dividing by 𝑝𝑘+1 on both sides, we obtain

𝑒𝛾 𝜑 (𝑁𝑘)
𝑁𝑘+1

< 1
𝑝𝑘+1 log log𝑁𝑘

.

In view of corollary 3.1.2, we sum over 𝑘 on btoh sides to obtain

𝑒𝛾

3 <
∞

∑
𝑘=2

1
𝑝𝑘+1 log log𝑁𝑘

. (37)

It is important to recognize that verifying (37) is not logically equivalent to verification of Nicolas’

Criterion and hence RH. While the truth of the Riemann Hypothesis would indeed imply that the

above holds, the converse is not true. We expect low values of 𝑘 to satisfy Nicolas’ criterion with

particular strength and be mostly responsible for overtaking the constant.

*The rearrangement does not hold for 𝑘 = 1 as it does for (15) because log log𝑁1 = log log2 < 0. Of course,
multiplication by a negative necessitates reversal of an inequality.
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Now note that we have said nothing of the convergence of the series on the right. The

divergence of the series would surely supply the evidence we desire, but we now show that the

series converges and so some computational checks are needed to verify (37).

Theorem 3.2.1. The series on the right side of (37) converges.

Proof. We will prove this using the Prime Number Theorem (theorem 1.1.2), which was proven

independently of RH at the turn of the 20th century.

Via PNT, 𝜋(𝑥) ∼ li(𝑥). We can integrate by parts and easily see

∫
𝑥

2

𝑑𝑡
log 𝑡 = 𝑥

log𝑥 − 2
log 2 + ∫

𝑥

2

𝑑𝑡
log2 𝑡

= 𝑥
log𝑥 − 2

log 2 + 𝑥
log2 𝑥

− 2
log2 2

+ ∫
𝑥

2

2
log3 𝑡

𝑑𝑡

= 𝑥
log𝑥 + 𝑂 ( 𝑥

log2 𝑥
) .

The 𝑘th prime occurs when 𝜋(𝑥) = 𝑘 for the first time. By the Prime Number Theorem and the

equation above, 𝑘 ∼ 𝑝𝑘/log 𝑝𝑘, which is to say 𝑝𝑘 ∼ 𝑘 log 𝑝𝑘.

Since 𝜃(𝑥) ∼ 𝑥 [RS62, (2.3)], log log𝑁𝑘 ∼ log 𝑝𝑘. The series is then on the order of

convergence of
∞

∑
𝑘=2

1
(𝑘 + 1) log(𝑝𝑘+1) log(𝑝𝑘).

But 𝑝𝑘 > 𝑘 for all 𝑘 ∈ ℕ; this follows from the existence of 4 as the first composite number. As

such, the series is bounded above by
∞

∑
𝑘=2

1
𝑘 log2(𝑘)

,

which converges via the integral test:

∫
∞

2

𝑑𝑥
𝑥 log2 𝑥

= ∫
∞

log2

𝑑𝑢
𝑢2 = −1

𝑢 ∣
∞

𝑢=log2
= 1

log 2 < ∞.

Hence the series in (37) converges, albeit rather slowly.

In the next chapter, we use this theorem to motivate discussion of this series and computa-

tions of partial sums for some specific values of 𝑘. While divergence of the series would trivially
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verify (37), we show that only very small values of 𝑘 are needed for the partial sum on the right to

overtake the constant on the left (𝑘 ≥ 12 specifically).

3.3 RH False

If the Riemann Hypothesis is untrue (however unlikely that may be), theorem 1.3.2 implies

that there are infinitely many 𝑘 such that
𝜑 (𝑁𝑘)

𝑁𝑘
< 𝑒−𝛾 1

log log𝑁𝑘
;

𝜑 (𝑁𝑘+1)
𝑁𝑘+1

> 𝑒−𝛾 1
log log𝑁𝑘+1

(38)

(inequality goes from true-false) and also infinitely many ℓ such that
𝜑 (𝑁ℓ)

𝑁ℓ
> 𝑒−𝛾 1

log log𝑁ℓ
;

𝜑 (𝑁ℓ+1)
𝑁ℓ+1

< 𝑒−𝛾 1
log log𝑁ℓ+1

(39)

(inequality goes from false-true). Under lemma 3.1.1, we can replace the left side of these with

some finite sums; (38) becomes

1
2 −

𝑘−1
∑
𝑛=1

𝜑(𝑁𝑛)
𝑁𝑛+1

< 𝑒−𝛾 1
log log𝑁𝑘

;

1
2 −

𝑘
∑
𝑛=1

𝜑(𝑁𝑛)
𝑁𝑛+1

> 𝑒−𝛾 1
log log𝑁𝑘+1

.

We can condense this into one line, as the left side of the second line is always less than the left

side of the first line (each summand is positive). This leads us to

𝑒−𝛾 1
log log𝑁𝑘+1

< 1
2 −

𝑘
∑
𝑛=1

𝜑(𝑁𝑛)
𝑁𝑛+1

< 1
2 −

𝑘−1
∑
𝑛=1

𝜑(𝑁𝑛)
𝑁𝑛+1

< 𝑒−𝛾 1
log log𝑁𝑘

.

Consider any chain of inequalities 0 < 𝑎 < 𝑏 < 𝑐 < 𝑑 for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ. In such a progression of
positive real numbers, 𝑐 − 𝑏 < 𝑑 − 𝑎. This implies

𝜑(𝑁𝑘)
𝑁𝑘+1

< 𝑒−𝛾 ( 1
log log𝑁𝑘

− 1
log log𝑁𝑘+1

) (40)

Similarly, (39) becomes

𝜑(𝑁ℓ)
𝑁ℓ+1

> 𝑒−𝛾 ( 1
log log𝑁ℓ

− 1
log log𝑁ℓ+1

) (41)

under Lemma 3.1.1 and a similar rearrangement process.

27



Equations (40) and (41) were derived in the hopes of showing that the falsehood of Nicolas’

criterion may lead to a new arithmetic implication for the falsehood of RH. We derived the above

equations by applying lemma 3.1.1 to the specific inequality switching points predicted by Nicolas’

criterion.

We will now show that (unfortunately) neither (40) nor (41) contradicts the Prime Number

Theorem, insofar as the current literature can demonstrate. Rearranging, we obtain

𝑒𝛾 𝜑(𝑁𝑘)
𝑁𝑘

< 𝑝𝑘+1
log log𝑁𝑘

− 𝑝𝑘+1
log log𝑁𝑘+1

𝑒𝛾 𝜑(𝑁ℓ)
𝑁ℓ

> 𝑝ℓ+1
log log𝑁ℓ

− 𝑝ℓ+1
log log𝑁ℓ+1

.

From (11), this becomes

𝑒𝛾
𝑘

∏
𝑛=1

(1 − 1
𝑝𝑛

) < 𝑝𝑘+1
log log𝑁𝑘

− 𝑝𝑘+1
log log𝑁𝑘+1

𝑒𝛾
ℓ

∏
𝑛=1

(1 − 1
𝑝𝑛

) > 𝑝ℓ+1
log log𝑁ℓ

− 𝑝ℓ+1
log log𝑁ℓ+1

.

Via (12) (Mertens’ Third Theorem), the left side is asymptotic to 1/ log 𝑝𝑘 and 1/ log 𝑝ℓ. As such,

the limiting behavior of the right side must also follow this trend; we can now forgo the definitions

of 𝑘 and ℓ as specific numbers such that (38) and (39) hold respectively, and consider the inequalities
above in the context of all natural numbers:

Theorem 3.3.1. Unconditionally, we have

lim
𝑘→∞

𝑝𝑘+1 log 𝑝𝑘 ( 1
log log𝑁𝑘

− 1
log log𝑁𝑘+1

) = 1. (42)

Remark. We provide code and plots illustrating this limit in the following chapter. Note that this

theorem is not contingent upon either the truth or falsehood of RH. Ideally, one wishes to show that

by assuming that RH is false, something strange happens. This theorem shows that one usually

obtains things you would expect to see in regards to patterns in arithmetic functions.
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Proof. Via (7),

𝑝𝑘+1 log 𝑝𝑘 ( 1
log log𝑁𝑘

− 1
log log𝑁𝑘+1

) = 𝑝𝑘+1 log 𝑝𝑘 ( 1
log(𝜃(𝑝𝑘)) − 1

log(𝜃(𝑝𝑘+1)))

= 𝑝𝑘+1 log 𝑝𝑘
log(𝜃(𝑝𝑘+1)) − log(𝜃(𝑝𝑘))
log(𝜃(𝑝𝑘)) log(𝜃(𝑝𝑘+1))

= 𝑝𝑘+1 log 𝑝𝑘
log(𝜃(𝑝𝑘)) log(𝜃(𝑝𝑘+1)) log(1 + log 𝑝𝑘+1

𝜃(𝑝𝑘) ) .

Via the Taylor Series expansion for log(1 + 𝑥) about 𝑥 = 0, log(1 + 1/𝑥) ≈ 1/𝑥 as 𝑥 → ∞. The

Prime Number Theorem implies that 𝜃(𝑝𝑘) ∼ 𝑝𝑘 and also that 𝑝𝑘/ log 𝑝𝑘 ∼ 𝑘 (see the proof of

theorem 3.2.1). In the limit, we can combine these facts to observe

𝑝𝑘+1 log 𝑝𝑘 ( 1
log log𝑁𝑘

− 1
log log𝑁𝑘+1

) ∼ 𝑝𝑘+1
log(𝑝𝑘+1) log(1 + log 𝑝𝑘+1

𝑝𝑘
) ∼ 𝑝𝑘+1

𝑝𝑘
.

A final application of a corollary of the prime number theorem yields the desired result.

We now remark on the meaning of theorem 3.3.1 in terms of the distribution of prime num-

bers. Firstly, we already remarked on the independence of the theorem from RH. If indeed there

are infinitely many 𝑘 and ℓ such that (40) and (41) hold, neither one may contradict established
results or even the Riemann Hypothesis itself. This implies that the process used to obtain these

equations from (38) and (39) is not totally reversible; (38) implies (40) and (39) implies (41) but

the reverse implications may not be true.
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4. COMPUTATIONS

The goal of our computations was to verify, explain, and evidence phenomenon explained

in the previous two chapters. We explain here our process for computation and plots design, and ex-

plore some behaviors we notice. We computed and plotted values of 3 arithmetic-valued functions

based on the expressions in (37), (42), and (43).

4.1 Computational Strategy

All of our computations were done on a 2019 MacBook Air with 1.6 GHz Dual-Core Intel

Core i5 processor. We used in Python 3.10.6 and the matplotlib, sympy, and numpy libraries.

The numpy and sympy libraries were used to retrieve prime numbers and natural constants such

as Euler’s constant 𝛾 ≈ 0.577215665. As for the prime numbers, the sympy function prime(i)

yields the 𝑖th prime number with prime(1) = 2. Initially, we defined a primorial(k) function

recursively, and then input it into our formulas as follows:

Algorithm 1 Initial Computational Strategy
𝑁 ← user input
while 𝑘 ≤ 𝑁 do

if 𝑘 == 1 then ▷ base case for recursion
primorial(𝑘) = 2
EulerPhiPrimorial(𝑘) = 1

else
primorial(𝑘) = primorial(𝑘 − 1) × prime(𝑘)
EulerPhiPrimorial(𝑘) = EulerPhiPrimorial(𝑘 − 1) × (prime(𝑘) - 1)

end if

loglog = np.log(np.log(primorial(𝑘)))
—perform desired computation depending on expression—

end while

Due to the large size of the primorial numbers, algorithm 1 worked extremely slowly and
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was unable to compute 𝑘 values even as low as 100. The philosophy behind improving this is that

while the primorial produces an extremely large value, we did not actually need to compute the

primorial itself; rather, we needed to compute a rational expression that was 1) low in magnitude,

and 2) changed little between different values of 𝑘. As such, we realized that our general strategy
could be modified to accommodate much larger values of 𝑘.

We would define a new value called OurQuotient(k) or our_sum(k) that incrementally

changed by multiplying by a small ratio or incrementally adding a small summand. Similarly, the

value of loglog was changed by using logarithm rules; namely,

log log𝑁𝑘+1 = log (log𝑁𝑘 + log 𝑝𝑘+1) .

With this is mind, we developed a new computational strategy.

Algorithm 2 Later Computational Strategy
𝑁 ← user input
while 𝑘 ≤ 𝑁 do

if 𝑘 == 1 then ▷ base case for recursion
logp = np.log(2)

else
logp = logp + np.log(prime(𝑘 − 1))
summand/factor = —perform desired computation based on expression—

end if

loglog = np.log(logp)
new value = old value +/× summand/factor

end while

Using this process, we were able to compute for very high values of 𝑘 in minutes. Given

the machinery used, we do not believe that our computations needed to be or could be streamlined

much more than this. For the purposes of plotting, we selected 𝑁 = 10, 000 as the upper limit.
The matplotlib library was used to seamlessly create plots of different functions and in-

equalities using large lists of data.
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4.2 The Nicolas Criterion Inequality

Recall theorem 1.3.2, which states that the Riemann Hypothesis is equivalent to

𝑁𝑘
𝜑 (𝑁𝑘) > 𝑒𝛾 log log𝑁𝑘

holding for all 𝑘 ∈ ℕ. Rearranging, the inequality becomes

𝑒−𝛾 𝑁𝑘
𝜑 (𝑁𝑘) log log𝑁𝑘

> 1. (43)

Denote by 𝐴(𝑘) the expression on the left. Using the general process outlined by algorithm 2, we

plotted this value for 𝑘 = 2 … 10, 000, as well as the horizontal line 𝑦 = 1 for comparison.

Figure 2: Plot of the Equation (43) Expression for 𝑘 = 1 … 104

Based on initial observations of this graph, the expression seems to be decreasing at a near-

negative exponential rate; given the logarithmic scale, however, the true rate of decrease is much

slower in 𝑘. Note that if the red line dips below the blue line, the inequality switches direction

and the Riemann Hypothesis must be false. We do not observe this here and would be unlikely to
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observe it even for large values of 𝑘.
It is important to discuss monotonicity of this expression. Since the limit of 𝐴(𝑘) is 1 by

equation (13), if the expression is indeed monotone, then this would verify Nicolas’ criterion.

4.3 RH True (Equation (37))

Next, we turn to the infinite series from (37). We computed the partial sums for 𝑘 up to

10, 000. We proved this series converged in theorem 3.2.1 and showed in (37) that if RH is true

then the value of the series is greater than 𝑒𝛾
3 . Our purpose was to both verify the inequality in (37)

itself (independent of assuming RH) as well as obtain a sense of the convergence rate of the series.

Figure 3: Plot of the Partial Sums in (37) for 𝑘 = 1 … 104

First, note that the series overtakes the required constant value at a low 𝑘 = 11. This does
nothing to prove the Riemann Hypothesis but does provide weak evidence for it.

The rate of convergence is extremely slow, and has a concave down curve pattern on a

logarithmic scale. At 𝑘 = 10, 000, the partial sums reach ≈ 0.6997652.
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4.4 RH False (Equation (42))

In section 3.3, we showed that we can use the falsehood of the Riemann Hypothesis to show

lim
𝑘→∞

𝑝𝑘+1 log 𝑝𝑘 ( 1
log log𝑁𝑘

− 1
log log𝑁𝑘+1

) = 1,

which is equation (42). We then proved that this result is actually independent of the Riemann

Hypothesis. The proof relies on some analysis and repeated application of the Prime Number

Theorem to transfer arithmetic functions into continuous growth rates.

Figure 4: Plot of the Equation (42) Expression for 𝑘 = 1 … 104

The main observation here is the jagged nature of the graph. The expression is clearly not

monotonic, but does converge to 1 as proven in theorem 3.3.1. We can see this behavior reflected

as the red plot approaches the blue line as 𝑘 increases. One thing to note is how the expression does

not seem to dip below 1 for low values of 𝑘.
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5. CONCLUSION

Studying the Riemann Zeta-Function gives the mathematical community insights into the

most basic building blocks of integers, the prime numbers. The power and consequences of the

Riemann Hypothesis have placed it among the most pressing unsolved problems in mathematics.

Indeed, many would argue it is the singular most important unsolved problem. Studying the Rie-

mann Hypothesis through incremental, complex analysis methods is the most common method,

and Nicolas’ proof is no different.

Our translation and expansion of Nicolas’ original proof, while retaining much of the main

notation, is aimed at adding clarity to Nicolas’ work. Much of the literature surrounding the Rie-

mann Hypothesis focuses on incremental improvements to the complex analytic properties of the

zeta function, and this is reflected in Nicolas’ original proof. Common techniques of the residue

theorem and integral transform identities can be seen in equation (23) and lemma 2.4.1, respec-

tively. In terms of errata and corrections, our review of Nicolas’ work found no substantial issues,

but did notice an issue in the last inequality of proposition 2.3.2; namely we believe the lower bound

of 𝑥 for which it holds is slightly higher.

This thesis presents a novel approach to the study of Nicolas’ criterion for the Riemann

Hypothesis through the use of lemma 3.1.1 and the corresponding corollary 3.1.2. In particular,

corollary 3.1.2 seems to be a new identity and did not appear in the author’s review of current

literature. We then synthesized our original work in lemma 3.1.1 with Nicolas’ Criterion in theorem

1.3.2. The analysis performed underscores the difficulty of analyzing the Riemann Hypothesis. In

particular, in subsection 3.3, assuming the falsehood of RH allowed led us to equation (42). But

we were able to prove this unconditionally in the proof of theorem 3.3.1. The precision of RH here

is visited, in that even the tightest of bounds may not be contradicted by RH.

Our computations were performed with the intent of exploring patterns in arithmetic func-

tions and identities related to Nicolas’ proof. We discussed how we originally designed our algo-
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rithms, then how we were able to improve them when they failed to perform well within an allotted

time frame. We eventually reduced our runtime to a few minutes with the cutoff of 𝑘 = 10, 000 for
calculations. Our plots of these values showcase interesting trends in certain arithmetic expressions.

An important clarification is the difference between mathematics and the natural sciences

in that rigorous, total proof is necessary for usage of a statement as fact. In other disciplines, it is

common for proposed theories to be mainstream accepted and used in engineering, education, and

research purposes. In mathematics, one need only look to the case of Skewes’ Number to see why

this does not hold. The quantity 𝜋(𝑥) − li(𝑥) is negative for all 𝑥 up to very high values [Ske33],

so it was conjectured that it must remain so. However, Littlewood proved that it actually switches

signs infinitely many times [Lit14]; the lower bound for the first crossing was taken to be less than

the gargantuan 10101034
by Skewes [Ske33]. To this day, no one has found the first crossing from

𝜋(𝑥) − li(𝑥) < 0 to 𝜋(𝑥) − li(𝑥) > 0. The difference switches signs infinitely many times but the
first time it does is so large that one can easily see why mathematicians believed it never happened

at all.

It is in view of this that we view our own computations, performed only up to 𝑘 = 10, 000,
as an exploratory and expository exercise. Intuition gained from observing figures 2, 3, and 4 is

valuable for noticing patterns and formulating conjectures, but provides no rigorous proof of any

unanswered questions.
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APPENDIX A: CODE

Computations for Section 4.2

Code A.1: Computing and Plotting (43)

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import csv

4 from sympy import prime

5

6 def writeToTable(N): # creates a table with k in one column, and our quotient

in the next column

7 our_file = "NicolasCriterionTable.csv"

8 with open(our_file , 'w') as file:

9 writefile = csv.writer(file)

10 for i in range(1, N + 1):

11 if (i == 1):

12 logp = np.log(2)

13 loglog = np.log(logp)

14 denominator = 1 / (1 * loglog * np.e ** (np.euler_gamma))

15 ourQuotient = 2 * denominator

16 else:

17 logp = logp + np.log(prime(i))

18 loglog = np.log(logp)

19 old_denominator = 1 / denominator

20

21 primes_fraction = (prime(i)) / (prime(i) - 1) # integers

become too big to calculate fraction all at once- better to multiply

separately

22 denominator = 1 / (loglog * np.e ** (np.euler_gamma))

23
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24 ourQuotient = ourQuotient * primes_fraction * old_denominator

* denominator

25

26 writefile.writerow([i, ourQuotient])

27

28 file.close()

29

30 def plotter(N):

31 our_file = "NicolasCriterionTable.csv"

32 x_data = [i for i in range(2, N + 1)]

33 y_data = []

34

35 with open(our_file , 'r') as file:

36 readfile = csv.reader(file, delimiter=',')

37 counter = 0

38 for row in readfile:

39 counter = counter + 1

40 if (counter >= N + 1):

41 exit

42 else:

43 y_data.append(float(row[1]))

44

45

46 file.close()

47 del y_data[0]

48

49 plt.title(f"A(k) for k from 2 to {N}")

50 plt.plot(x_data, y_data, color="r", marker="None")

51 plt.axhline(y = 1, color = 'b', linestyle = '-')

52 plt.ylabel("Nicolas Criterion Quotient of k")

53 plt.xlabel("log_10(k)")

54 plt.xscale("log")

55 plt.yticks([0,1,2,3,4])
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56 plt.show()

57

58 # writeToTable(10000)

59 plotter(10000)

Computations for Section 4.3

Code A.2: Computing and Plotting (37)

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import csv

4 from sympy import prime

5

6 constant = np.e ** (np.euler_gamma) / 3

7

8 def infinite_summer(N): # creates a table with k in one column, and the sum of

the series up to k in the next

9 our_file = "NicolasCriterionSeries.csv"

10 with open(our_file , 'w') as file:

11 writefile = csv.writer(file)

12

13 for i in range(2, N + 1):

14 if (i == 2):

15 our_sum = 0

16 i = 2

17 logp = np.log(6)

18 loglog = np.log(logp)

19 summand = 1 / (prime(i + 1) * loglog)

20

21

22

23 else:

24 oldloglog = loglog
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25 logp = logp + np.log(prime(i))

26 loglog = np.log(logp)

27 primfrac = prime(i - 1) / prime(i)

28

29 summand = (summand * oldloglog * primfrac) / loglog

30

31 our_sum = our_sum + summand

32 writefile.writerow([i, our_sum])

33

34 file.close()

35

36

37

38 def plotter(N):

39 our_file = "NicolasCriterionSeries.csv"

40 x_data = [i for i in range(2, N + 1)]

41 y_data = []

42

43 with open(our_file , 'r') as file:

44 readfile = csv.reader(file, delimiter=',')

45 counter = 1

46 for row in readfile:

47 counter = counter + 1

48 if (counter >= N + 1):

49 exit

50 else:

51 y_data.append(float(row[1]))

52

53

54 file.close()

55 # del y_data[0]

56

57 plt.title(f"kth Partial Sum for k from 2 to {N}")
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58 plt.plot(x_data, y_data, color="r", marker="None")

59 plt.axhline(y = constant , color = 'b', linestyle = '-')

60 plt.ylabel("Sum up to k")

61 plt.xlabel("log_10(k)")

62 plt.xscale("log")

63 plt.yticks([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])

64 plt.show()

65

66 # infinite_summer(10000)

67 plotter(10000)

Computations for Section 4.4

Code A.3: Computing and Plotting (42)

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import csv

4 from sympy import prime

5

6 constant = np.e ** (np.euler_gamma) / 3

7

8 def limiter(N): # creates a table with k in one column, and the limit to be

investigated in the next column

9 our_file = "PrimeNumberLimit.csv"

10 with open(our_file , 'w') as file:

11 writefile = csv.writer(file)

12

13 for i in range(1, N + 1):

14 if (i == 1):

15 outside = prime(2) * np.log(prime(1))

16 logp = np.log(prime(1))

17 loglog = np.log(np.log(prime(2)))

18 oldloglog = np.log(np.log(prime(1)))
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19

20

21 else:

22 outside = prime(i + 1) * np.log(prime(i))

23 oldloglog = loglog

24 logp = logp + np.log(prime(i + 1))

25 loglog = np.log(logp)

26

27 expression = outside * (1/oldloglog - 1/loglog)

28 writefile.writerow([i, expression])

29

30 file.close()

31

32

33

34 def plotter(N):

35 our_file = "PrimeNumberLimit.csv"

36 x_data = [i for i in range(10, N + 1)]

37 y_data = []

38

39 with open(our_file , 'r') as file:

40 readfile = csv.reader(file, delimiter=',')

41 counter = 0

42 for row in readfile:

43 counter = counter + 1

44 if (counter >= N + 1 or counter < 10):

45 exit

46 else:

47 y_data.append(float(row[1]))

48

49

50 file.close()

51 # del y_data[0]
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52

53 plt.title(f"Convergence of the Expression (41) for k from 10 to {N}")

54 plt.plot(x_data, y_data, color="r", marker="None")

55 plt.axhline(y = 1, color = 'b', linestyle = '-')

56 plt.ylabel("Value at k")

57 plt.xlabel("log_10(k)")

58 plt.xscale("log")

59 plt.yticks([1,1.1,1.2,1.3,1.4,1.5,1.6])

60 plt.show()

61

62 # limiter(10000)

63 plotter(10000)

Compiling into a Single Table

Code A.4: Compiling all codes into table B.1

1 import csv

2

3 x = [i for i in range(1,10001)]

4 y = [x, [],["N/A"],[]]

5

6 def first_column():

7 our_file = "NicolasCriterionTable.csv"

8 with open(our_file , 'r') as file:

9 readfile = csv.reader(file, delimiter=',')

10 for row in readfile:

11 y[1].append(row[1])

12

13 file.close()

14

15 def second_column():

16 our_file = "NicolasCriterionSeries.csv"

17 with open(our_file , 'r') as file:
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18 readfile = csv.reader(file, delimiter=',')

19 for row in readfile:

20 y[2].append(row[1])

21

22 file.close()

23

24 def third_column():

25 our_file = "PrimeNumberLimit.csv"

26 with open(our_file , 'r') as file:

27 readfile = csv.reader(file, delimiter=',')

28 for row in readfile:

29 y[3].append(row[1])

30

31 file.close()

32

33 def writer():

34 our_file = "Combined_Table.csv"

35 with open(our_file , 'w') as file:

36 writefile = csv.writer(file)

37 for i in range(10000):

38 writefile.writerow([y[0][i], y[1][i], y[2][i], y[3][i]])

39

40 file.close()

41

42 def main():

43 first_column()

44 second_column()

45 third_column()

46 writer()

47

48 main()
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APPENDIX B: TABLES

For all of our computations, we computed large data sets up to 𝑘 = 10, 000. However, for the
purposes of this thesis, the plots given suffice to show specific and general patterns. Special values

of 𝑘 are filtered and provided below on a semi-logarithmic scale.

Table B.1: Various Computed Ratios for Special Values of 𝑘

𝑘 Expression in (43) Expression in (37) Expression in (42)
10 1.1402406262386682 0.5790491875667372 1.5684549205643685
20 1.0662325172364193 0.6135723330609899 1.2462282451157856
30 1.046765498419316 0.6280968654702005 1.222392650295349
40 1.0353257175752242 0.6364076023824977 1.175775916494441
50 1.0288911204706348 0.6421178223965565 1.1360580756034977
60 1.0248448189011035 0.6463779750602363 1.078503511363428
70 1.021771235035628 0.6497008437641283 1.1145636914343355
80 1.0192813330384016 0.6523889165883965 1.1163431627083857
90 1.017421265385679 0.6546453539672944 1.0627006115006792
100 1.016083538058004 0.656587025629315 1.1009558159263888
200 1.00916846163601 0.6675658453338982 1.0494203204650374
300 1.0067638839867616 0.6727777449579299 1.0480572589637984
400 1.0053872364632739 0.6760754871162583 1.0241228213810183
500 1.0045424989546716 0.678441150548779 1.0276821000815306
600 1.0040195921244364 0.6802652163312078 1.0253911748627176
700 1.0035750472287517 0.6817304362319196 1.0241276658385197
800 1.0032262675787578 0.6829489725706738 1.019850459114365
900 1.0029764083761066 0.6839889829885671 1.0136312343914724
1000 1.0027560178265813 0.6848904817240918 1.0173328009313347
2000 1.0016823077302714 0.690243400796409 1.011219149877978
3000 1.0012730263850966 0.6929756528131495 1.009521251234111
4000 1.001039476967349 0.694763395850174 1.0063679438360345
5000 1.000891444705131 0.6960731191121894 1.007839587005128
6000 1.0007884821706678 0.6970970934575601 1.003476206884238
7000 1.0007127067854389 0.6979324406965518 1.0065000672059805
8000 1.0006487941997149 0.698634356199228 1.0043296128855104
9000 1.0005987554810265 0.6992377455758454 1.0036854862163047
10000 1.0005637964079455 0.6997652012840407 1.003878619123719
∞ (expected/proven) 1 ∞ > 𝑥 > 𝑒𝛾/3 1
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