
STREAMLINING TNS DATA COLLECTION FOR ML-BASED RTL QOR 

PREDICTION 

An Undergraduate Research Scholars Thesis 

by 

PRANAV JAIN1 AND KUNAL GUPTA2 

Submitted to the LAUNCH: Undergraduate Research office at 

Texas A&M University 

in partial fulfillment of requirements for the designation as an 

UNDERGRADUATE RESEARCH SCHOLAR 

Approved by 

Faculty Research Advisor: Dr. Aakash Tyagi 

May 2023 

Majors: Computer Science1,2 

Copyright © 2023. Pranav Jain1 and Kunal Gupta2.



RESEARCH COMPLIANCE CERTIFICATION 

Research activities involving the use of human subjects, vertebrate animals, and/or 

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory 

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement 

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M 

facilities or institutions. In both cases, students are responsible for working with the relevant 

Texas A&M research compliance program to ensure and document that all Texas A&M 

compliance obligations are met before the study begins. 

We, Pranav Jain1 and Kunal Gupta2, certify that all research compliance requirements 

related to this Undergraduate Research Scholars thesis have been addressed with our Faculty 

Research Advisor prior to the collection of any data used in this final thesis submission. 

This project did not require approval from the Texas A&M University Research 

Compliance & Biosafety office. 



TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................... 1 

ACKNOWLEDGEMENTS ............................................................................................................ 3 

NOMENCLATURE ....................................................................................................................... 4 

1. INTRODUCTION .................................................................................................................... 5 

1.1 Background ................................................................................................................... 5 
1.2 Inspiration ..................................................................................................................... 8 
1.3 Overview .................................................................................................................... 13 

2. METHODS ............................................................................................................................. 15 

2.1 Traditional Approach .................................................................................................. 15 
2.2 Base Design Approach ............................................................................................... 17 
2.3 Aggregated Approach ................................................................................................. 24 

3. EVALUATION....................................................................................................................... 30 

3.1 Efficiency .................................................................................................................... 30 
3.2 Accuracy ..................................................................................................................... 31 

4. CONCLUSION ....................................................................................................................... 34 

4.1 RTL_QoR_Predictor .................................................................................................. 35 

REFERENCES ............................................................................................................................. 36 



1 

 

ABSTRACT 

Streamlining TNS Data Collection for ML-Based RTL QoR Prediction 

Pranav Jain1 and Kunal Gupta2 

Department of Computer Science and Engineering1,2 

Texas A&M University 

Faculty Research Advisor: Dr. Aakash Tyagi 

Department of Computer Science and Engineering 

Texas A&M University 

Chip designs must meet several requirements before they are ready for fabrication. One 

of these requirements is achieving convergence on timing (frequency). Meeting this requirement 

is a time-consuming task for chip designers in the industry for two reasons. First, the standard 

approach to procuring this metric involves running logic synthesis and placement, both of which 

can take hours to weeks on larger RTL designs. Second, since the timing requirement is rarely 

met after one design iteration, these processes need to be rerun multiple times to recalculate the 

metric to ultimately converge on the design’s requirements. A critical measure of timing 

convergence is the total negative slack, commonly referred to by its acronym TNS. It indicates 

the sum of timing margins of all ‘negative slack’ paths that fail to meet the target clock cycle 

time. To expedite design convergence, our research team previously presented a machine 

learning-based approach to estimate the TNS values for chip designs expressed in Verilog 

hardware description language. This technique was orders of magnitude faster than running logic 

synthesis and placement on those same chips. In this work, we build on the previous approach by 

improving the initial data generation process. Getting “true” TNS values for training the machine 



2 

 

learning models involves running logic synthesis and placement with hundreds of synthesis 

recipes for each design, resulting in tens of thousands of synthesis and placement runs. Driven by 

the need to create a rich training data set, since new designs will be continuously added to the 

RTL developer’s set of training designs, it behooves to reduce the number of synthesis and 

placement runs necessary to generate machine learning (ML) training data. By taking advantage 

of similarities in the distributions of TNS values across chip designs, the number of required 

synthesis and placement runs for n Verilog RTL designs and m unique synthesis recipes can be 

reduced from 𝑂(𝑛𝑚) to 𝑂(𝑛 + 𝑚) without meaningfully compromising the integrity of the 

training data and the accuracy of ML predictions. We present two methods for achieving this, 

both of which involve finding the common TNS distribution, then normalizing and computing 

missing values in the data set. The discoveries made by our research team have the potential to 

drastically reduce the time to market for a variety of semiconductor computing products, 

including but not limited to graphics processors, motherboards, and flash memory. 

  



3 

 

ACKNOWLEDGEMENTS 

Contributors 

We would like to thank our faculty advisor, Dr. Aakash Tyagi, our doctoral student 

advisor, Prianka Sengupta, and Dr. Jiang Hu for their guidance and support throughout the 

course of this research. 

Thanks also go to our friends and colleagues and the department faculty and staff for 

making our time at Texas A&M University a great experience. 

The AST parsing algorithm used in STREAMLINING TNS DATA COLLECTION FOR 

ML-BASED RTL QOR PREDICTION was designed and initially implemented by Prianka 

Sengupta. 

All other work conducted for the thesis was completed by the students independently. 

Funding Sources 

This undergraduate research received no funding. 

  



4 

 

NOMENCLATURE 

ML  Machine Learning 

RTL  Register-Transfer Level 

HDL  Hardware Description Language 

Verilog Most widely used HDL for modeling RTL electronic systems 

TNS  Total Negative Slack 

AST  Abstract Syntax Tree 

XGBoost Extreme Gradient Boost 

MSE  Mean Squared Error 

PnR  Placement & Routing  



5 

 

1. INTRODUCTION 

1.1 Background 

Chip designs need to meet several requirements before they are ready for fabrication. One 

of these requirements is convergence on timing (frequency), which can be measured by total 

negative slack, commonly referred to by its acronym TNS. TNS indicates the sum of timing 

margins of all ‘negative slack’ paths that fail to meet the target clock cycle time. For obvious 

reasons, a TNS of 0 is desired prior to sending the design for fabrication. Unfortunately, meeting 

the requirement of timing convergence is an effort intensive task for chip designers. Figure 1 

illustrates the process that chip designers follow to meet design convergence targets. After the 

register transfer level (RTL) code has been written by designers, logic synthesis and placement 

are run on the source code to determine its TNS. If the result does not meet the TNS constraints 

of the final product, the designers must update the Verilog code, which is then passed to the 

synthesis and placement tools once again to determine the new TNS. This process repeats until 

the RTL code’s TNS converges to the required value. Since running logic synthesis and 

placement often takes hours or even days on larger RTL designs, significant lengths of time are 

wasted between iterations, making the design convergence task a lengthy process. 



6 

 

 

Figure 1: Design Convergence 

To speed up the collection of TNS data in RTL chip designs, Sengupta introduced a 

machine learning-based approach that is orders of magnitude faster than running logic synthesis 

and placement [1]. The approach is illustrated in Figure 2. The technique starts by taking a 

Verilog RTL design and generating an Abstract Syntax Tree (AST) of the design using Verilator, 

a tool commonly used to convert RTL written in Verilog to a cycle-accurate behavioral model in 

C++ or SystemC. The generated AST is then passed through a novel parsing algorithm which 

examines several features of the AST and outputs the feature values. These values, along with 

several synthesis parameters, are formatted into a vector and used as inputs for machine learning 

models to predict TNS. The models used include linear regression, random forest, neural 

network, and XGBoost. The trained models achieve an average R-squared correlation value of 

95%, with XGBoost performing the best for TNS prediction. All these models predict TNS six 

orders of magnitude faster than the one otherwise achieved by running synthesis and placement 

to compute the values directly. Getting accurate feedback this quickly on RTL code enables chip 



7 

 

designers to iterate on their designs faster and reach design convergence sooner, which greatly 

reduces the time to market for new computing products. 

 

 

Figure 2: TNS prediction using Sengupta's ML-based process 

One bottleneck in Sengupta’s work is the preliminary time necessary to generate training 

data for the machine learning model. According to Sengupta’s approach, the following steps 

must be performed to generate the training data: 

1. Choose m synthesis recipes. 

a. A synthesis recipe is defined as the set of input parameters for the synthesis 

tool, excluding the clock period, to guide the process of netlist generation. 

2. Choose n benchmark Verilog designs expressed in a hardware description language 

(HDL) such as Verilog. 

3. Choose a clock period for each design. 

4. For each design, run logic synthesis and placement with each of the m synthesis 

recipes and the design’s chosen clock period. 



8 

 

This procedure involves performing 𝑛 ∗ 𝑚 synthesis and placement runs. Since each run 

takes hours to perform, the procedure—even when distributed across multiple machines—can 

take many days to complete, assuming that n and m are relatively large. In [1], 45 designs (𝑛 =

 45) and 416 synthesis recipes (𝑚 =  416) were used for training the model. Consequently, 𝑛 ∗

𝑚 =  45 ∗ 416 =  18720 synthesis and placement runs were performed to generate all the 

training data. The procedure, distributed across multiple machines, took approximately a week to 

complete. There is a great need for a technique that reduces the number of synthesis and 

placement runs needed to generate training data without negatively impacting the accuracy of 

TNS prediction. Facilitating the collection of training data will increase initial adoptions of 

Sengupta’s machine learning framework by users and organizations to predict the TNS of their 

designs without wasting valuable RTL developer time running logic synthesis and placement 

after each design iteration. 

1.2 Inspiration 

After discovering a remarkable relationship between the TNS values and synthesis 

recipes across the various designs in our data set of 29 different designs, a path for reducing 

synthesis and placement runs was revealed. Logic synthesis and placement were run on each 

design with 429 different synthesis recipes to collect the designs’ true TNS values. The clock 

period parameter was kept constant within each design depending on the requirements of that 

design. Figures 3 and 4 display the TNS values for 6 different designs – vga_lcd, des3_area, gfx, 

systemcdes, sasc, and des3_perf. Figure 3 displays the TNS values in a scatter plot format. The 

x-axis of each scatter plot corresponds to unique synthesis recipes, and the y-axis corresponds to 

the resulting TNS values. Although the range of the TNS values differs across designs, the shape 

of the distribution of the TNS values remains similar. More specifically, for each synthesis recipe 



9 

 

r, the point corresponding to r appears to remain in the same location relative to all the other data 

points on each scatter plot. Figure 4 displays the TNS values in a histogram format. Like the 

scatterplots, the histograms show that the distribution of TNS values across designs is similar. 

The other 20 not-pictured designs within the data set show similar TNS scatterplots and 

histograms. 

Since the TNS values are similarly distributed for different designs, two distinct 

approaches for reducing the number of logic synthesis and placement runs are proposed. One 

method to generate training data with fewer runs is to scale and shift the TNS values of a 

carefully selected “base design” to generate the TNS values of other designs. The other method 

of constructing training data with minimal runs is the following. First, the synthesis recipes are 

divided among the designs, after which synthesis and placement are run to determine the TNS 

values. Then, these TNS values, after being scaled and shifted, are stored in a “base vector”, 

which is used to generate the TNS values of other designs. 

 

Figure 3: TNS scatter plots for 429 synthesis recipes and 6 designs 



10 

 

 

Figure 4: TNS histograms for 429 synthesis recipes and 6 designs 

While the scatter plots and histograms of TNS showed an interesting relationship 

between different designs, negating and applying the natural log function, ln(−𝑇𝑁𝑆), to each 

value produced particularly illuminating distributions. Since the TNS values have drastically 

different ranges for different designs, the natural log function was applied to the TNS values with 

the theory that the transformed TNS distributions would have similar ranges. TNS is negated 

before applying the natural log function because the TNS values in the data set are strictly 

negative and the function is defined only for positive values.  

Figures 5 and 6 show the transformed TNS values for 6 different designs. Figure 5 

displays the transformed TNS values in a scatter plot format. The x-axis of each scatter plot 

corresponds to unique synthesis recipes, and the y-axis corresponds to transformed TNS values. 

Like the TNS values in Figure 3, the transformed TNS values are distributed similarly across 

designs. Unlike the figure, however, the transformed TNS values have identical ranges across 

designs. For example, the transformed TNS values of des3_area vary approximately from 7.65 

to 8.15, which is a range of 0.5. The transformed TNS values of gfx vary approximately from 



11 

 

9.55 to 10.5, which is also a range of 0.5. The histograms in Figure 6 show this observation as 

well. Since the transformation procedure “normalizes” the TNS values, this process will be 

referred to as normalization. After normalization, the TNS distributions of each design are now a 

simple translation away from each other. 

We hypothesize that this normalization procedure can be used to scale the TNS values for 

the two previously mentioned approaches. The two approaches can now be described with more 

precision. In the first approach, a representative “base design” is chosen based on distribution 

sampling, then its full TNS distribution is normalized using the ln(−𝑇𝑁𝑆) function. For every 

other design, this normalized distribution is translated by a computed magnitude, and the inverse 

operations are applied to convert back to raw TNS, generating the values of that design. In the 

second approach, the synthesis recipes are divided among the designs, after which synthesis and 

placement are run to collect the TNS values. These TNS values, after being normalized and 

shifted, are pieced together to form an aggregated “base vector”. For every design, this base 

vector is translated by a computed magnitude, and the inverse operations are applied to convert 

back to raw TNS, generating the values of that design. Using these approaches has the potential 

to substantially reduce the number of synthesis and placement runs needed to train machine 

learning models to predict TNS. 

 

 

 



12 

 

 

Figure 5: Normalized scatter plots for 429 synthesis recipes and 6 designs 

 

Figure 6: Normalized TNS histograms for 429 synthesis recipes and 6 designs 

To ensure that these patterns are not a result of the designs themselves being similar to 

one another, the source of the designs and the code itself were further analyzed. The benchmark 

designs used in this research come from the International Workshop on Logic and Synthesis 

conference that took place in June 2005 [2]. The RTL code was written by various open-source 



13 

 

developers and compiled into a collection for public use during and after the conference. The 

chips were designed independently by experts in the field of logic synthesis, and each chip 

performs a unique and identifiable computing task. The chips also contain unique numbers of 

sequential and combinational cells. Further analysis revealed that variable names and coding 

styles in the Verilog code were unique, making it unlikely that the designs are copies of one 

another or chained together to make new designs in the same set. Finally, to generate the initial 

target data for our research and get the “true” TNS values for each design, logic synthesis was 

run using the Synopsys Design Compiler, and placement was run using the Cadence Innovus 

Implementation System. 

1.3 Overview 

In this paper, two different approaches to reducing synthesis and placement runs are 

described, both of which were inspired by the findings discussed in the prior section. Both 

approaches assume that the true TNS values, which are determined by running the synthesis and 

placement tools, are strictly negative (non-zero) for the training designs paired with synthesis 

recipes. The first approach is labeled as the “base design approach,” while the second approach 

is labeled as the “aggregated approach”. The number of RTL designs in the data set is denoted as 

n, and the number of unique logic synthesis recipes used for training is denoted as m. The base 

design approach requires 5𝑛 + 𝑚 − 5 total synthesis and placement runs, while the aggregated 

approach requires only 𝑛 + 𝑚 − 1 total synthesis and placement runs. The basis of these 

expressions is described in the next section. The approach requiring 𝑛 ∗ 𝑚 synthesis and 

placement runs is labeled as the “traditional approach” and serves as the control group for the 

experiment. The base design and aggregated approaches are tested to find whether they can 

reduce the number of runs without compromising the accuracy of the machine-learning models. 



14 

 

To analyze the results, the efficiency of training data generation and the accuracy of the resulting 

machine learning models for the traditional, base design, and aggregated approaches are 

compared against one another. 

  



15 

 

 

2. METHODS 

2.1 Traditional Approach 

The accuracy of machine learning models trained using the traditional approach serves as 

a control group for the experiment. The machine learning models chosen for testing are random 

forest and XGBoost because they are models used by [1], and the Scikit-learn library’s 

implementation of these models [3] is readily available. The configuration of the models is 

shown below: 

• Random Forest - 100 trees, max depth of 10, random state of 42 

• XGBoost - 80 trees, max depth of 7, random state of 42 

The above configurations are the same configurations used within [1], excluding the random 

state, which is not provided. 

The data set used in the experiment contains 29 different designs. A mockup of this data 

set is shown in Table 1. 

Table 1: Example data set 

 
AST Feature 

Values 
Clock 
Period 

Synthesis Parameter 
Recipe 

TNS 
Value 

Design 1 [1, 2, 3, 4, 5] 1 [0 0 0 0] -20 

Design 1 [1, 2, 3, 4, 5] 1 [0 0 0 1] -25 

Design 1 [1, 2, 3, 4, 5] 1 [0 0 1 0] -30 

Design 1 [1, 2, 3, 4, 5] 1 [0 0 1 1] -35 

Design 1 [1, 2, 3, 4, 5] 1 [0 1 0 0] -40 



16 

 

Design 2 [2, 3, 4, 5, 6] 2 [0 0 0 0] -200 

Design 2 [2, 3, 4, 5, 6] 2 [0 0 0 1] -250 

Design 2 [2, 3, 4, 5, 6] 2 [0 0 1 0] -300 

Design 2 [2, 3, 4, 5, 6] 2 [0 0 1 1] -350 

Design 2 [2, 3, 4, 5, 6] 2 [0 1 0 0] -400 

 

For each of the 29 designs, the design was converted into an AST using Pyverilog [4], then 

certain features were extracted from the AST using the algorithm designed by Sengupta. This is 

shown in the AST Feature Values column. A clock period was also chosen for each design based 

on individual requirements, shown in the Clock Period column. Logic synthesis and placement 

were run on each design for 429 different synthesis recipes. These recipes are shown in the 

Synthesis Parameter Recipe column. The designs were randomly partitioned into a training and 

test set. The training set contains 70% of the designs, while the test set contains 30% of the 

designs. In other words, twenty randomly chosen designs are labeled for training, while the 

remaining nine are labeled for testing. 

2.1.1 Results 

The correlation coefficient R-squared (defined in Equation 1) measures the accuracy of 

the machine learning models on the training and test sets. 

 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

=
𝑀𝑆𝐸(𝑚𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙)  −  𝑀𝑆𝐸(𝑛𝑒𝑤 𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝑚𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙)
 (1) 

 

The correlation coefficient is interpreted as the percentage decrease in the mean squared 

error from using the mean model (a model that only returns the average result) to using the new 

model (our machine learning model). R-squared will have a low value of 0 if the new model has 



17 

 

a mean squared error equivalent to that of the mean model, meaning that the new model 

performs no better than picking the average TNS value in the data set each time. R-squared will 

have a high value of 1 if the new model has a mean squared error of 0, meaning that the model 

perfectly predicts every TNS value in the data set. R-squared will have a value of less than 0 if 

the new model has a larger mean squared error than the mean model. 

Table 2: R-squared of machine learning models trained using the traditional approach 

 
Training R-squared Testing R-squared 

Random Forest 0.999 0.844 

XGBoost 0.999 0.912 

 

Table 2 shows the results of training machine learning models using the traditional 

approach. Both random forest and XGBoost have a very high training R-squared of 0.999. The 

testing R-squared of random-forest is relatively high at 0.844, and the training R-squared of 

XGBoost is much higher at 0.912.  Because the training R-squared is very high and the testing 

R-squared is much lower for both models, the models could be overfitting to the training data set. 

2.2 Base Design Approach 

 The first approach to reducing synthesis and placement runs is the base design approach. 

At a high level, the base design approach performs the following steps. To begin, five synthesis 

recipes are chosen at random, and logic synthesis and placement are performed using those 

recipes on all n designs. The TNS values generated by these 5 “common” synthesis and 

placement runs across all n designs are analyzed to determine an ideal “base design” whose 

distribution matches most of the designs in the data set. On this base design, the remaining 𝑚 −

5 synthesis and placement runs are performed to generate the base design’s complete set of TNS 



18 

 

values. This completed distribution is used along with one of the 5 common synthesis and 

placement runs to generate the TNS values of all other designs by normalizing and shifting the 

base design’s TNS distribution. The base design approach requires 5𝑛 + 𝑚 − 5 total synthesis 

and placement runs, and machine learning models trained using this approach perform with 

similar accuracy to those using the traditional approach. Algorithm 1 describes the procedure for 

selecting a base design and generating the complete training data set from a set of n Verilog 

designs and m unique synthesis recipes using the base design approach. 

Algorithm 1: Base Design Approach 

 Input: 

  designs (a list of n designs) 

  synth_recipes (a list of m synthesis recipes) 

 Output: 

  gen_tns (a table containing the generated TNS values) 

   

1 true_tns ← an empty table with the rows designs and columns synth_recipes 

2 rrecipes ← 5 randomly chosen synthesis recipes from synth_recipes  

3  

4 for d in designs 

5  for r in rrecipes  

6   run logic synthesis and placement on d using r 

7   true_tns[d][r] ← the run’s TNS value  

8  end 

9 end   

10  

11 std_devs ← an empty list 

12 for d in designs 

13  append the standard deviation of ln(-true_tns[d][rrecipes]) to std_devs 

14 end   

15  

16 create a plot of std_devs vs designs 

17 // on the plot, most designs lie along a horizontal line denoted as the “majority line” 

18 bdesign ← a design on the majority line with a small synthesis and placement runtime 

19  

20 for r in synth_recipes excluding rrecipes 

21  run logic synthesis and placement on bdesign using r 

22  true_tns[bdesign][r] ← the run’s TNS value 

23 end   

24  

25 rrecipe ← a randomly chosen synthesis recipe from rrecipes 



19 

 

26 gen_tns ← a copy of true_tns 

27  

28 for d in designs excluding bdesign 

29  run logic synthesis and placement on d using rrecipe 

30  true_tns[d][rrecipe] ← the run’s TNS value 

31  shift ← ln(-true_tns[d][rrecipe]) - ln(-true_tns[bdesign][rrecipe]) 

32  gen_tns[d][synth_recipes]) ← -exp(ln(-true_tns[bdesign][synth_recipes]) + shift) 

33 end   

34  

35 return gen_tns 

 

2.2.1 Choosing the base design 

The majority of the 29 designs in the data set had identical TNS distributions. This can be 

observed by examining the similarity between the plots of the following designs in Figures 3 and 

4: des3_area, systemcdes, and sasc. Several other designs had similar, but slightly different 

distributions. Examples of these can be visualized by examining the plots of the following 

designs in the same figures: vga_lcd, gfx, and des3_perf. In the base design algorithm, a “base 

design” is chosen by finding a design with a TNS distribution that most closely matches the TNS 

distributions of the majority of the designs. From Figures 3 and 4, des3_area, systemcdes, and 

sasc are base design candidates. The base design’s TNS values are scaled and shifted to produce 

the TNS values of other designs using the normalization technique described earlier. Because the 

base design has a distribution shared by the majority of the designs, it can accurately 

approximate the TNS distribution of other designs. Moreover, since even outlier distributions, 

such as gfx’s distribution, are similar but not identical to the majority distribution, the base 

design’s distribution is still an adequate approximation. 

The base design approach chooses a base design in lines 1 through 18 of Algorithm 1. 

The algorithm starts by randomly choosing 5 synthesis recipes, which are used to run logic 

synthesis and placement on all the designs. The 5 TNS values for each of the designs are 



20 

 

normalized and their standard deviation is plotted on a scatterplot. The majority of the designs lie 

along a horizontal line denoted as the “majority line”. The base design is determined by choosing 

a design on the majority line with a small synthesis and placement runtime. 

To choose a base design without running 𝑛 ∗ 𝑚 synthesis and placement runs and then 

comparing the TNS distributions of designs, the base design approach makes use of the 

following fact. Given two different designs and a few random synthesis recipes, if the 

normalized TNS values for the designs using those recipes have identical standard deviations, 

then the two designs likely have similar normalized TNS distributions, meaning that their raw 

TNS distributions are also similar. In practice, the standard deviation of 5 random synthesis 

recipes is sufficient to determine whether the TNS distributions of two designs are similar. Since 

a majority of the designs have the same TNS distribution, the majority of TNS standard 

deviations of designs for 5 common synthesis recipes are the same. This produces a horizontal 

line, known as the “majority line,” on the scatterplot of each design and the standard deviation of 

its 5 TNS values as shown in Figure 7. Any of the designs with points along the majority line are 

adequate candidates for the base design since a design lying on the majority line implies that the 

design has the majority distribution. However, since 𝑚 − 5 synthesis and placement runs are 

performed on the base design later in the procedure, choosing a model on which logic synthesis 

and placement run quickly helps to save time in the long run. For example, if given the choice 

between a small design and a large design as the base design, the smaller design is chosen 

because running synthesis and placement 𝑚 − 5 times will finish sooner. 



21 

 

 

Figure 7: Standard deviation of normalized TNS values generated from 5 random synthesis recipes 

In the data set of 29 designs, the same training set of 20 designs used to test the 

traditional approach was used to test the base design approach. 5 synthesis recipes were 

randomly chosen, logic synthesis and placement were run with those recipes on each design, and 

the resulting TNS values were normalized and recorded. Figure 7 graphs the standard deviation 

of these normalized distributions on the y-axis, and the corresponding design on the x-axis. The 

majority line on which most of the data points lie can be seen at 0.172, and only three designs 

deviate from this majority line. Any of the points on the majority line can be selected as the base 

design, but for this experiment, the design corresponding to the first point on the majority line, 

systemcdes, was chosen. This design’s TNS distribution can be observed in Figures 3 and 4. 

2.2.2 Using the base design 

Once the base design has been chosen, logic synthesis and placement must be performed 

on the design multiple times to collect its TNS values. These TNS values, along with the TNS 



22 

 

values of one of the 5 runs already performed on all the other designs, can be used to generate 

the TNS values of all other designs once normalized. 

 The base design approach generates TNS values by making use of the base design in 

lines 20 through 35 of Algorithm 1. The algorithm starts by performing synthesis and placement 

runs on the base design using all the synthesis recipes (excluding the 5 common synthesis 

recipes). Then, one random recipe is chosen from the common synthesis recipes. For each design 

(excluding the base design), the TNS value for the random recipe is collected and normalized. 

This normalized TNS value is subtracted by the normalized TNS value of the base design for the 

random recipe and stored in the shift symbol. The shift symbol is used to translate the normalized 

TNS values of the base design, which are then transformed using the negative exponential 

function generate the design’s TNS values. 

Since the base design’s TNS values are distributed identically to the majority of the 

designs, the base design approach collects them by performing 𝑚 − 5 synthesis and placement 

runs so they can be used to generate the TNS values of other designs. Since normalized TNS 

values of different designs have the same range, the normalized TNS values only need to be 

translated by a certain magnitude to generate the normalized values of other designs. The 

algorithm determines this magnitude for each design by performing the following steps. First, 

one synthesis recipe is randomly chosen from the 5 common synthesis recipes. Then, the 

magnitude for a design is calculated by taking the difference between the design’s normalized 

TNS value and the base design’s normalized TNS value at the chosen synthesis recipe. After 

applying the appropriate translations to all the data points, the normalized TNS values for that 

design are generated. To get the raw TNS from the normalized ln(−𝑇𝑁𝑆) value, the inverse 

operations are applied for each data point, as shown in Equation 2. 



23 

 

 
𝑇𝑁𝑆 = −𝑒ln(−𝑇𝑁𝑆) (2) 

 

Using our base design systemcdes, for which TNS values corresponding to 429 different 

synthesis recipes had already been collected, the TNS values of the other 19 designs within the 

training data set were generated. One of the 5 common synthesis recipes was chosen randomly 

and used to translate the normalized values of systemcdes to generate the normalized values of 

the other designs. These normalized values were transformed back to raw TNS values using 

Equation 2. 

2.2.3 Results 

Table 3: R-squared of machine learning models trained using the base design approach 

 Training R-squared Testing R-squared 

Random Forest 0.999 0.805 

XGBoost 0.999 0.897 

 

After generating the TNS values of 19 designs using the TNS values of the base design, 

systemcdes, the training data set contained 429 TNS values for each of the 20 designs. To 

understand how the accuracy of machine learning models would be affected by training with the 

base design approach as opposed to the traditional approach, machine learning models were 

trained on the generated data set, and their accuracy was measured using the R-squared 

correlation coefficient defined in Equation 1. The same data that was used in the traditional 

approach’s testing data set was used for the testing data set. Table 3 shows the results of training 

machine learning models using the base design approach.  Both random forest and XGBoost 



24 

 

have very high training R-squared of 0.999. The testing R-squared of random forest is relatively 

high at 0.805, while the testing R-squared of XGBoost is significantly higher at 0.897. There is a 

small decrease in R-squared from the traditional approach to the base design approach for both 

random forest and XGBoost, but both decreases are less than 0.05. 

 

2.3 Aggregated Approach 

 The second approach to reducing synthesis and placement runs is the aggregated 

approach. At a high level, the aggregated approach performs the following steps. To begin, the m 

synthesis recipes are randomly distributed to the n designs. Logic synthesis and placement are 

then performed on each design with all the synthesis recipes assigned to it. Then, one “common” 

synthesis recipe is chosen at random, and logic synthesis is performed using that recipe on all 

designs. For each design, the normalized TNS values for the assigned synthesis recipes are 

shifted by the normalized TNS value for the common synthesis recipe, which are then stored in 

an aggregated “base vector.” Finally, the base vector is shifted by the TNS values generated 

using the common synthesis recipe to generate the TNS values of all designs. The aggregated 

approach requires 𝑛 + 𝑚 − 1 synthesis and placement runs. When training machine learning 

models using the aggregated approach, one of them has similar accuracy to those trained using 

the traditional approach. Algorithm 2 describes the procedure for generating a base vector and 

the complete training data set from a set of n Verilog designs and m unique synthesis recipes 

using the aggregated approach. 

Algorithm 2: Aggregated Approach 

 Input: 

  designs (a list of n designs) 

  synth_recipes (a list of m synthesis recipes) 

 Output: 

  gen_tns (a table containing the generated TNS values) 

   



25 

 

1 true_tns ← an empty table with the rows designs and columns synth_recipes 

2 shuffled_recipes ← a randomly shuffled copy of synth_recipes  

3 recipe_chunks ← a list of n equal chunks of shuffled_recipes 

4 chunk_dict ← an empty dictionary 

4  

6 for i in 1 to n 

7  chunk_dict[designs[i]] ← recipe_chunks[i] 

8 end   

9  

10 for d in designs 

11  chunk ← chunk_dict[d] 

12  for r in chunk 

13   run logic synthesis and placement on d using r 

14   true_tns[d][r] ← the run’s TNS value 

15  end 

16 end   

17  

18 rrecipe ← a randomly chosen synthesis recipe from synth_recipes 

19 base_vector ← an empty one-dimensional table with columns synth_recipes 

20  

21 for d in designs 

22  chunk ← chunk_dict[d] 

23  if rrecipe is not in chunk 

24   run logic synthesis and placement on d using rrecipe 

25   true_tns[d][rrecipe] ← the run’s TNS value 

26  end 

27  base_vector[chunk] ← ln(-true_tns[d][chunk]) – ln(-true_tns[d][rrecipe]) 

28 end   

29  

30 gen_tns ← an empty table with the rows designs and columns synth_recipes 

31  

32 for d in designs 

33  gen_tns[d][synth_recipes]) ← -exp(base_vector + ln(-true_tns[d][rrecipe])) 

34 end   

35  

36 return gen_tns 

 

2.3.1 Generating the base vector 

In the base design algorithm, 5𝑛 initial synthesis runs were required to choose a base 

design. Since the aggregated approach does not need to choose a base design, these initial 

synthesis and placement runs are not needed. Instead of choosing a base design, the aggregated 



26 

 

approach uses a “base vector”. The base vector has a distribution that is similar to the normalized 

distributions of the majority of the designs, meaning that it can accurately approximate the TNS 

distributions of other designs. 

The aggregated approach constructs the base vector in lines 1 through 28 of Algorithm 2. 

The algorithm starts by randomly shuffling the synthesis recipes and splitting them into n equal 

chunks. Each chunk is assigned to a design by initializing the dictionary chunk_dict. For each 

design, synthesis and placement are run using the synthesis recipes of the design’s corresponding 

chunk. A random recipe is then chosen from the synthesis recipes. For each design, synthesis and 

placement are run using the random recipe. The normalized TNS value of this recipe is 

subtracted from the normalized TNS values for the chunk of the design. The result is saved to the 

base vector. Once this procedure has been completed for each of the designs, the base vector is 

created. 

The reasoning for why the base vector’s distribution is similar to the normalized 

distributions is as follows. After synthesis and placement are run for each design on its 

corresponding chunk, the resulting values, when normalized and stored together, do not form a 

distribution similar to the majority normalized TNS distribution. This is because the normalized 

TNS distributions of different designs are translations away from one another. The translation 

between normalized distributions of different designs can be removed by subtracting each 

design’s normalized distributions by the design’s normalized TNS value for a common synthesis 

recipe. Consequently, the aggregated approach shifts the resulting values for each design by a 

normalized TNS value determined by the running synthesis and placement using a common 

synthesis recipe. 



27 

 

 

Figure 8: Shifted and normalized TNS histogram and scatterplot of the base vector 

The same training set of 20 designs that was used to test the traditional and base design 

approaches was used to test the aggregated approach. The 429 synthesis recipes were distributed 

evenly among the 20 designs, logic synthesis and placement were run for each recipe on the 

design it was assigned to, and the resulting TNS values, after being shifted and normalized, were 

recorded in the base vector. Figure 8 illustrates the values in the base vector. The scatter plot 

shows the shifted and normalized TNS values for different synthesis recipe. Each color 

corresponds to a chunk of synthesis recipes assigned to a particular design. The histogram shows 

the base vector’s overall distribution. The similarity between the base vector’s distribution and 

the majority normalized TNS distribution can be seen by comparing the base vector’s histogram 

with Figure 5.  

2.3.2 Using the base vector 

Once the base vector has been constructed, one synthesis recipe is chosen, and the 

corresponding TNS value is collected for all n designs using logic synthesis and placement. The 

aggregated approach generates the TNS values of all designs in lines 30 through 36 of Algorithm 

2. 



28 

 

The shifted, normalized TNS values of the base vector are distributed similarly to the 

majority of the designs and can be used to generate the normalized TNS values of other designs. 

Since the base vector’s values were determined by subtracting the normalized TNS value from a 

common synthesis recipe, a normalized TNS value from the common synthesis recipe must be 

added back to generate the normalized TNS values of any design. The negative exponential 

function is then applied to generate the actual TNS values. 

2.3.3 Results 

Table 4: R-squared of machine learning models trained using the aggregated approach 

 Training R-squared Testing R-squared 

Random Forest 0.999 0.775 

XGBoost 0.999 0.922 

 

After generating the TNS values of 19 designs using the TNS values of the base vector, 

the training data set contained 429 TNS values for each of the 20 designs. To understand how the 

accuracy of machine learning models would be affected by training with the aggregated 

approach as opposed to the traditional approach, machine learning models were trained on the 

generated data set and their accuracy was measured using the R-squared correlation coefficient 

defined in Equation 1. The same data that was used in the traditional approach’s testing data set 

was used for the testing data set. Table 4 shows the results of training machine learning models 

using the aggregated approach.  Both random forest and XGBoost have very high training R-

squared of 0.999. The testing R-squared of random forest is relatively low at 0.775, while the 

testing R-squared of XGBoost is much higher at 0.922. There is a large decrease in the R-

squared from the traditional approach to the aggregated approach for random-forest. 



29 

 

Surprisingly, there is a small increase in the R-squared from the traditional approach to the 

aggregated approach for XGBoost.  



30 

 

3. EVALUATION 

3.1 Efficiency 

To better visualize the reduction in synthesis and placement runs that the novel 

approaches produce when generating training data for the machine learning models, Figure 9 

displays how the total number of required synthesis and placement runs changes with either the 

number of benchmark designs or the number of unique synthesis recipes in the data set. The 

formulas are shown below, where n represents the number of benchmark designs and m 

represents the number of unique synthesis recipes. 

• Traditional Approach  𝑛 ∗ 𝑚 

• Base Design Approach 5𝑛 + 𝑚 − 5 

• Aggregated Approach  𝑛 + 𝑚 − 1 

 

Figure 9: Relationship between # of benchmark designs/synthesis recipes and total synthesis & placement runs 

When either the number of unique synthesis recipes or the number of benchmark designs 

is kept constant (at arbitrary values of 𝑚 = 100 and 𝑛 = 10 respectively) and the other is varied, 

the effect on the total required synthesis and placement runs is the same. The base design 



31 

 

approach requires slightly more synthesis and placement runs than the aggregated approach. On 

the other hand, the traditional approach requires an order of magnitude more synthesis and 

placement runs for a data set of the same size, which translates to significantly more time 

running synthesis and placement. As the size of the data set increases, the difference in time 

spent generating the training data set for the traditional and novel approaches increases 

quadratically. 

The next section evaluates whether the novel approaches compromise machine learning 

model accuracy to achieve this time reduction. 

3.2 Accuracy 

Random forest and XGBoost machine learning models were trained on the training data 

generated by each approach to evaluate their performance. The outcomes of each approach 

(traditional, base design, and aggregated) on the accuracy of the machine learning models are 

summarized in Figure 10. 

 

Figure 10: Accuracy of ML models after using different approaches to generate their training data 



32 

 

The effect of each approach differs for random forest and XGBoost machine learning 

models. For random forest models, the traditional approach to generating the training data—

where logic synthesis and placement were run for all 𝑛 ∗ 𝑚 combinations of synthesis recipe and 

Verilog design—had the best performance, with an R-squared of 0.844. As the number of 

synthesis runs to generate training data decreased, the accuracy of random forest models also 

decreased. The base design approach, which required 5𝑛 + 𝑚 − 5 total logic synthesis and 

placement runs, resulted in a random forest R-squared of 0.805, while the aggregated approach 

required 𝑛 + 𝑚 − 1 total logic synthesis and placement runs and resulted in a random forest R-

squared of 0.775. Both are a significant decrease in accuracy from the traditional approach. This 

pattern lines up with intuition because when the training set contains more “artificial” data, the 

accuracy of the resulting predictions is diminished. 

XGBoost models displayed more unpredictable behavior with the varying number of 

synthesis runs. The base design approach resulted in the lowest XGBoost R-squared at 0.897, 

while the traditional approach had an XGBoost R-squared of 0.912. Unexpectedly, the XGBoost 

model performed with higher accuracy when trained on data generated from the aggregated 

approach as opposed to data generated from the traditional approach. This outcome is surprising 

because, as mentioned previously, the aggregated approach training data contains the highest 

percentage of “artificial” data out of the three approaches tested. Theoretically, this should have 

resulted in the lowest accuracy since the training data set looked the most different from the test 

data set. 

Overall, the base design and aggregated approaches did not produce great results for the 

random forest machine learning models. The base design and aggregated approaches reduced the 

number of synthesis and placement runs necessary to generate training data compared to the 



33 

 

traditional approach, but this reduction caused a tradeoff with the random forest model’s 

prediction accuracy and compromised its performance. The XGBoost machine learning models, 

on the other hand, displayed promising results with the two novel approaches to generating 

training data. The base design approach caused a minimal decrease in the model’s prediction 

accuracy, but the aggregated approach caused a slight increase in prediction accuracy over the 

traditional approach. 

  



34 

 

4. CONCLUSION 

While conducting this research, our team had the opportunity to learn more about the 

hardware design process and the challenges it faces in the industry. We experienced firsthand 

how time-consuming the logic synthesis and placement & routing processes are and how we 

could apply machine learning and data analysis techniques to streamline them. Receiving instant 

feedback on RTL code using machine learning enables chip designers to work several times 

more efficiently because longer sprints of development without running the full synthesis and 

PnR processes are possible within a design iteration. 

This research focused on simplifying the setup phase of the machine learning models by 

reducing the number of synthesis and placement runs necessary to generate training data from a 

set of benchmark RTL designs. Previous work required running synthesis on every single 

design/synthesis recipe combination to find the correct TNS, which quickly grew to tens of 

thousands of synthesis and placement runs for just a handful of designs in the data set. By taking 

advantage of similarities in the TNS distributions of each design across the set of common 

synthesis recipes, we were able to reduce the number of synthesis and placement runs from 

𝑂(𝑛𝑚) in the traditional approach to 𝑂(𝑛 + 𝑚) with near-perfect accuracy of prediction in most 

cases. The two methods we analyzed were the “base design” and “aggregated” approaches. In the 

base design approach, 5 synthesis recipes are chosen to run on all the designs in the data set 

except one chosen base design, with which all m synthesis recipes are run to compute the full 

TNS distribution. In the aggregated approach, each synthesis recipe is randomly assigned to one 

of the benchmark designs to run synthesis on, generating a base vector that serves as the 

reference distribution used to make predictions. 



35 

 

The progress made in this research will assist users of Sengupta’s AST parsing algorithm 

[1] with training their machine-learning models by streamlining the process of adding new 

designs to their data set. Adding new designs to the data set sooner results in more 

comprehensive and accurate models, which are beneficial for providing RTL designers with 

precise metrics to converge on design requirements in fewer design iterations. 

4.1 RTL_QoR_Predictor 

The RTL_QoR_Predictor is a product of our research that allows any stakeholders or 

interested parties in academia or industry to use the AST parsing engine (designed by Sengupta 

[1] and implemented by us) and some sample pre-trained machine learning models on their own 

Verilog RTL code to see it in action, as well as provide feedback on bugs or other potential 

improvements. 

The RTL_QoR_Predictor was written in Python and packaged into a UNIX executable 

with Pyinstaller for public use. 

 

 

 

  



36 

 

REFERENCES 

[1]    P. Sengupta, A. Tyagi, Y. Chen, and J. Hu, “How Good Is Your Verilog RTL Code?: A 

Quick Answer from Machine Learning,” in Proceedings of the 41st IEEE/ACM 

International Conference on Computer-Aided Design (ICCAD ’22), San Diego, 

California, December 2022, pp. 1–9. Available: 

https://doi.org/10.1145/3508352.3549375. 

[2]    C. Albrecht, "IWLS 2005 Benchmarks," in Proc. IWLS '05, June 2005. 

[3]    F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine 

Learning Research, vol. 12, pp. 2825–2830, 2011. 

[4]    S. Takamaeda-Yamazaki, “Pyverilog: A Python-Based Hardware Design Processing 

Toolkit for Verilog HDL”, in Applied Reconfigurable Computing, 2015, vol. 9040, pp. 

451–460. Available: http://doi.org/10.1007/978-3-319-16214-0_42. 

 

 


