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ABSTRACT

Asymptotic Scattering Wave Function for Three Charged Particles

and Astrophysical Capture Processes. (May 2005)

Fakhriddin Pirlepesov, Dipl., Tashkent State Pedagogical University

Chair of Advisory Committee: Dr. Robert E. Tribble

The asymptotic behavior of the wave functions of three charged particles has

been investigated. There are two different types of three-body scattering wave func-

tions. The first type of scattering wave function evolves from the incident three-body

wave of three charged particles in the continuum. The second type of scattering wave

function evolves from the initial two-body incident wave. In this work the asymp-

totic three-body incident wave has been derived in the asymptotic regions where two

particles are close to each other and far away from the third particle. This wave

function satisfies the Schrödinger equation up to terms O(1/ρ3
α), where ρα is the

distance between the center of mass of two particles and the third particle. The

derived asymptotic three-body incident wave transforms smoothly into Redmond’s

asymptotic incident wave in the asymptotic region where all three particles are well

separated. For the scattering wave function of the second type the asymptotic three-

body scattered wave has been derived in all the asymptotic regions. In the asymptotic

region where all three particles well separated, the derived asymptotic scattered wave

coincides with the Peterkop asymptotic wave. In the asymptotic regions where two

particles are close to each other and far away from the third one, this is a new expres-

sion which is free of the logarithmically diverging phase factors that appeared in the

Peterkop approach. The derived asymptotic scattered wave resolves a long-standing

phase-amplitude ambiguity. Based on these results the expressions for the exact prior
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and post breakup amplitudes have been obtained. The post breakup amplitude for

charged particles has not been known and has been derived for the first time directly

from the prior form. It turns out that the post form of the breakup amplitude is

given by a surface integral in the six dimensional hyperspace, rather than a volume

integral, with the transition operator expressed in terms of the interaction potentials.

We also show how to derive a generalized distorted-wave-Born approximation ampli-

tude (DWBA) from the exact prior form of the breakup amplitude. It is impossible

to derive the DWBA amplitude from the post form. The three-body Coulomb inci-

dent wave is used to calculate the reaction rates of 7Be(ep, e)8B and 7Be(pp, p)8B

nonradiative triple collisions in stellar environments.
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CHAPTER I

INTRODUCTION

A. Three-body scattering wave function in the presence of the Coulomb interactions.

General information

The inclusion of the Coulomb interaction into the scattering theory is a long stand-

ing and still unsolved problem in modern few-body physics. The simplicity of the

Coulomb potential and the possibility to get results analytically is one of the reasons

why the unscreened Coulomb interaction is preferable. However, the infinite range

of the Coulomb interaction causes problems for formal scattering and reaction theo-

ries. Introduction of the screened Coulomb potential does not help. The final result

should not depend on the screening radius. For the two-body scattering problem the

screening procedure does not cause any troubles: the screening factor is well known

analytically and can be easily singled out [1]. However, the effect of the screening

procedure on the observables for three-body cases is unknown.

The Coulomb modification of the wave operator theory has been realized by

Dollard [2]. He showed that the long range Coulomb interaction generates an ad-

ditional exponential factor in the wave operator, which depends logarithmically on

time. In the momentum space it means that interacting particles are never free, even

at infinity. Hence, a conventional scattering theory based on the concept of ”in” and

”out” asymptotic states should be modified in the presence of Coulomb interactions.

Eventually, the stationary scattering problem can be reduced to the calculation of

the differential Schrödinger equation or equivalent integral equations. The unique-

ness of the solution of the differential Schrödinger equation is provided by imposing

This dissertation follows the style of Physical Review A.
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proper boundary conditions. Since particles are not free even when they are far away

from each other the boundary conditions are Coulomb modified. Determination of

the proper boundary conditions became a main problem in the formulation of the

few-body scattering theory with Coulomb interations. The boundary conditions for

the three-body systems have not yet been found for all the cases. Under specific

conditions the asymptotic forms of the wave functions are enough to calculate the

amplitudes of different processes involving three particles in the initial or final states.

Examples of such conditions include triple collisions in a stellar medium or breakup

processes.

There are two different types of three-body scattering wave functions [3]. The

first type evolves from the initial three-body incident wave describing the collision of

three incident particles in the continuum. The second type evolves from the initial

two-body scattering wave describing the collision of the bound-state and the third

particle.

The first goal of this work is to find all the asymptotic terms of the three-body

incident wave of the scattering wave function of the first type in the presence of

the Coulomb interactions, up to highest order without explicit solution of the three-

body Schrödinger equation in the asymptotic regions where two particles are close

to each other and far away from the third particle. This derivation will provide

the asymptotic behavior of the three-body scattering wave function of the first type

in leading order without explicit solution of the Schrödinger equation, in all the

asymtotic regions where any two particles are close to each other and far away from

the third particle. There is another unsolved problem in the three-body scattering

theory with Coulomb interactions: the asymptotic behavior of the outgoing three-

body scattered wave describing breakup/ionization processes is not known in the

asymptotic regions where two particles are close to each other and far away from the
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third particle. This scattered wave is one of the asymptotic terms of the scattering

wave function of the second type. Knowledge of the three-body scattered wave is

imperative for a formulation and solution of the breakup problem in general, based

on the direct solution of the Schrödinger equation (so-called ”ab-initio” calculations

in the continuum).

The second goal of this work is to find the asymptotic behavior of the three-

body scattered wave in the asymptotic regions, where two particles are close to each

other and far away from the third particle. To solve this problem we use the spectral

decomposition of the three-body Green’s function in terms of the scattering wave

functions of the first type. This derivation will provide complete asymptotic behavior

of the three-body scattering wave function of the second type in the appropriate

asymptotic regions. The derived asymptotic wave function transforms smoothly into

the corresponding leading asymptotic term of the three-body scattered wave in the

asymptotic region where all particles are well separated.

The third goal of this work is to formulate the breakup reaction theory with

charged particles in terms of surface integrals. First of all the post form exact breakup

amplitude will be derived from the prior form. It will be demonstrated that to re-

formulate correctly the theory of the breakup reactions with charged particles one

needs to know the leading asymptotic terms of the three-body incident wave of the

scattering wave function of the first type and the three-body scattered wave of the

scattering wave function of the second type. These results pave the way for deter-

mination of the breakup amplitude using direct solution of the Schrödinger equation

(”ab-initio” calculations in continuum).

The fourth goal of this work is to apply the leading asymptotic term of the three-

body incident wave for the calculation of reaction rates of nonradiative triple collisions

in stellar matter. There are two essential differences between the nuclear reactions
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caused by binary and triple collisions. They can be considered as kinematical or

dynamical. The former are related to selection rules while the later come from the

inter-dependence of different nuclear processes. For example, some binary reactions

are suppressed by angular momentum, parity and isospin conservation laws. But

these suppression mechanisms can be modified by the presence of a third particle.

Therefore, the three-body mechanism which is less restricted kinematically, may play

a role in the nuclear burning in the stellar environment, when the probability of triple

collisions can be higher due to high density and high temperature. In this work we

have estimated the reaction rates of nonradiative triple collisions 7Be(ep, e)8B and

7Be(pp, p)8B in different stellar environments.

This thesis is organized as follows. General information about the three-body

scattering wave functions with Coulomb interactions is presented in Chapter II. In

Chapter III we give the derivation of the leading asymptotic terms of the three-body

incident wave in all the asymptotic regions. In Chapter IV the asymptotic scattered

wave, describing breakup processes of 2 particles → 3 particles for general masses

and charges, has been derived in all four asymptotic regions. In Chapter V a new

formulation of the theory of breakup processes is given. It includes also consideration

of the distorted wave Born approximation. Chapter VI is devoted to calculations of

reaction rates for the triple collisions 7Be(ep, e)8B and 7Be(pp, p)8B.
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CHAPTER II

GENERAL INFORMATION

In this Chapter we present general information on three charged particle scattering.

The Chapter is set as following. In Sec. A we give general information for the

three-body scattering wave function in the presence of the Coulomb interactions.

In Sections B and C we present general information on the three-body Coulomb

scattering wave functions evolved from the initial three-body and two-body incident

waves, respectively.

A. Three-body scattering wave function in the presence of the Coulomb interactions

The knowledge of the scattering wave function describing three charged particles is

important to reaction theory. There are two types of three-body scattering wave

functions: the wave function which evolves from the initial incident wave of the three

particles in the continuum, and the wave function which evolves from the initial two-

body scattering state [3]. Both types of wave functions satisfy the same three-body

Schrödinger equation and are orthogonal to each other. Hence to form a complete set

of wave functions describing the three-body system, we have to include the three-body

bound-state wave functions and all the types of scattering wave functions. In what

follows we will concentrate only on the scattering wave functions. To get a unique

solution to the Schrödinger equation, one has to impose proper boundary conditions.

The scattering wave function which evolves from the initial incident wave of the three

particles in the continuum is necessary for the analysis of reactions containing three

particles in the continuum of the initial or final states (prior form). As examples

we point to breakup/ionization processes or triple collisions in stellar or condensed

matter. However, the second type of wave function which evolve from the initial
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two-body scattering state also can be used for the analysis of breakup/ionization

processes (post form). In what follows we concentrate on the stationary approach,

which is equivalent to the nonstationary one.

For the three-body case the problem of imposing the proper boundary conditions

is not as straightforward as for the two-body problem. The reason is that there are

four different asymptotic regions for the three-body particles in the continuum in

contrast to the two-body case, where one has only one asymptotic region. Let us

introduce these asymptotic regions:

Ω0 : rα ∼ rβ ∼ rγ →∞; (2.1)

Ων : ρν →∞, rν/ρν → 0, ν = α, β, γ. (2.2)

Here (rα, ρα) is the set of two Jacobian variables: rα is the radius vector connecting

particles β and γ, and ρα is the radius vector connecting particle α and the center of

mass (c.m.) of the system β + γ. The set (kα, qα) is the set of Jacobian momenta

conjugate to the Jacobian coordinate set (rα, ρα). Evidently the three different Ja-

cobian sets with ν = α, β, γ are equivalent. kα is the relative momentum of particles

β and γ and is invariant under Galilean transformations:

kα =
mβ qγ −mγ qβ

mβ γ
. (2.3)

Besides in the c.m. of the three-body system

qα + qβ + qγ = 0. (2.4)

Here qν is the momentum of particle ν and mν is the mass of particle ν, mν σ =

mν +mσ.

In each asymptotic region with three particles in the continuum, the bound-



7

ary conditions are different. The existence of the four different asymptotic regions

does not allow us to replace one Schrödinger differential equation by one integral

Lippmann-Schwinger type equation. A possible solution of the problem lies in using

the coupled Faddeev equations [3]. But in the presence of Coulomb interactions, the

Faddeev integral equations approach leads to technical problems [4, 5], even for repul-

sive Coulomb interactions. The differential Schrödinger equation also can be rewritten

in the form of coupled Faddeev differential equations, which can be solved after im-

posing the proper boundary conditions in all the asymptotic regions [3]. However,

such boundary conditions until recently were known only in the asymptotic region Ω0,

where all three particles are well separated [3, 6, 7, 8]. We note that there is one more

important difference between the two- and three-body cases. In the two-body case

the energy spectrum consists of the negative discrete part, if it exists, corresponding

to the bound states and the positive continuum part. Thus the sign of the energy

uniquely determines the boundary conditions. This is not the case the three-body sys-

tems. A negative eigenvalue for three-body systems does not necessarily correspond

to the discrete spectrum. For example, consider a three-body system α+(β γ), where

(β γ) is a bound state of β and γ. The total energy of this system in the c.m. system

can be written as

E = Eα − εβ γ , (2.5)

where εβ γ is the binding energy of the bound state (β γ). Eα is the kinetik energy of

the three-body system α + (β γ) and given by

Eα =
q2
α

2Mα
, (2.6)

where Mα, and M are their reduced and total masses, respectively, given by

Mα =
mαmβ γ

M
, (2.7)
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M = mα +mβ +mγ. (2.8)

If Eα < εβ γ the total energy of the three-body system is negative. Thus the sign of

the total energy does not determine the state of the three-body system. For a given

total energy of the three-body system E, all three particles can be in the continuum

or any two particles can be in a bound state and the third particle in the continuum.

This results in the existence of four different energy spectra branches in the three-

body system. In the latter case we assume, for simplcity, that each bound pair (ν σ)

has only one bound state with the bindig energy εν σ.

B. Three-body Coulomb scattering wave function evolved from the three-body in-

cident wave

The first energy spectrum branch for the three-body scattering problem consists of

the discrete negative spectrum, corresponding to the bound states of the three-body

system, and the positive continuum (0,∞), corresponding to three particles in the

continuum. The scattering wave function corresponding to the continuum is the

scattering wave function of the first type. In leading orders asymptotically, it behaves

as [3, 9, 10, 11]

Ψ
(+)
kα,qα

= Ψ̃
(+)
kα ,qα

+
∑

ν=α, β, γ

Φ
(ν)(+)
two−body scatteredwave + Φthree−bodyscatteredwave. (2.9)

The first term in Eq. (2.9), Ψ̃
(+)
kα,qα

is the three-body incident Coulomb distorted wave.

The second term is given by the sum of the two-body Coulomb distorted outgoing

waves corresponding to all allowed processes for 3 particles → 2 particles.

Finally the third term describes the three-body Coulomb distorted outgoing

3 particle → 3 particle scattered wave.
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1. Leading asymptotic term of the incident wave in Ω0

The shape of the incident wave depends on the asymptotic region. The leading

asymptotic term of the three-body incident wave in the asymptotic region Ω0 has

been derived by Redmond [6, 7]:

Ψ
(0)(+)
kα,qα

(rα,ρα) = eikα ·rα eiqα·ρα
∏

ν=α, β, γ

ei ην ln ζν , (2.10)

where

ζν = kν rν − kν · rν . (2.11)

ηα =
zβ zγ e

2 µα

kα

(2.12)

is the Coulomb parameter of particles β and γ, zα e is the charge of particle α and µα

is the reduced mass of particles β and γ. In what follows we use the system of units

in which ~ = c = 1. Eq. (2.10) represents the three-body Coulomb distorted plane

wave. Since the Coulomb interaction is long range, charged particles are not free,

even asymptotically. Their asymptotic motion is distorted by the presence of other

charged particles. The Coulomb distortion is represented by the three exponential

logarithmic phase factors, one for each interacting pair. The asymptotic form (2.10) is

valid only in those directions of the asymptotic domain Ω0, where each |ζν | → ∞, ν =

α, β, γ. Directions, for which one or more |ζν | < C for rν → ∞, ν = α, β, γ, are

called singular directions. For practical applications Redmond’s three-body Coulomb

distorted plane wave is replaced by the Redmond-Merkuriev asymptotic term [3, 6, 7],

which is also known as 3C [12, 13]:

Ψ
(3C)(+)
kα,qα

(rα,ρα) = eikα·rα eiqα ·ρα
∏

ν=α, β, γ

Fν(ζν), (2.13)

where

Fν(ζν) = Nν 1F1(−i ην, 1; i ζν), (2.14)
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1F1(−i ην, 1; i ζν) is the confluent hypergeometric function and

Nν = e−π ην/2 Γ(1 + i ην) (2.15)

is the normalization factor containing a Gamma function. Note that

ψkα(rα) = eikα·rα Fν(ζν) (2.16)

is the Coulomb scattering wave function of particles β and γ moving with the relative

momentum kα.

The 3C function has been used in [12, 13, 14] for electron-atom ionization pro-

cesses. However it is important to underscore that Ψ
(3C)(+)
kα ,qα

satisfies the Schrödinger

equation only in the leading and the first order terms in the asymptotic region Ω0.

2. Leading asymptotic term of the incident wave in Ωα

An asymptotic wave function valid in Ωα has been proposed in [15], however, only for

partial waves, for monopole and monopole-plus-dipole electron-electron interactions.

A formal scheme which would yield the desired asymptotic solution of the Schrödinger

equation was suggested in [3] but no concrete realization leading to an analytical wave

function was attempted.

The asymptotic wave function for three charged particles in Ωα is well estab-

lished now. The decisive breakthrough to get the leading asymptotic term of the

incident wave function in the asymptotic domain Ωα, where the distance between

particles β and γ is much smaller than the distance from their c.m. to particle α, has

been achieved in [16] where the so-called local momentum has been introduced. This

asymptotic wave function smoothly transforms into Redmond’s three-body Coulomb

distorted plane wave [6, 7] which is valid in the Ω0 region where all three interparticle

distances are large. However, in [16] only the leading asymptotic term of the asymp-
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totic solution in Ωα was derived. This asymptotic term has been further improved

in [17]. Mukhamedzhanov and Lieber [17] derived all the terms of the asymptotic

solution in Ωα up to O(1/ρ2
α). The improved asymptotic wave function also smoothly

transforms into Redmond’s three-body Coulomb distorted plane wave [6, 7]. Accord-

ing to [3] the general asymptotic behavior of the three-body scattering wave function,

evolved from the initial three-body incident wave, has the following form, which can

be considered as a boundary condition:

Ψ(+) = Ψ̃(+) +
∑

ν=α, β, γ

ϕν(rν)
M(ν)

3→2

ρν
ei qν ρν−iην ln(2qν ρν)

+
M3→3

R5/2
eiκR−iΠ ln(2κ R)+iW . (2.17)

Here Ψ̃
(+)
kα ,qα

is the three-body incident wave. Its leading term in Ω0 is given by the

Redmond three-body Coulomb distorted plane wave [6, 7]. The leading asymptotic

terms of Ψ̃
(+)
kα,qα

in the asymptotic region Ων , ν = α, β, γ have been derived in [17]

up to order O(1/ρ2
α). These asymptotic terms contain the terms O(1) and O(1/ρα)

corresponding to plane and single scattering eikonals. However, terms of the next

order, O(1/ρ2
α), corresponding to double scattering eikonals, have not yet been found

in the asymptotic regions Ων. The second term in Eq. (2.17) describes the two-body

outgoing scattering wave and corresponds to the processes α + β + γ → two-body

state. M(ν)
3→2 is the 3 particle → 2 particle synthesis amplitude corresponding to

the process which is the inverse of the breakup process 2 → 3. For example, for

ν = α, M(α)
3→2 is the amplitude of the process α + β + γ → α + (β γ). There are

three different possible two-body final states: α+ (β γ), β + (α γ) and γ + (α β). We

note that, for simplicity, we allow only one bound state for each couple. Evidently

in the asymptotic region Ω0, where all the interparticle distances rν →∞ the second

term can be neglected in Ω0 due to the exponential decay of the bound-state wave



12

functions ϕν(rν) of the couple ν = (σ τ ). Finally the third term describing the

three-body outgoing scattering wave corresponds to the scattering process in the

system of three particles. In the third term, R is the hyperradius, Π is the Coulomb

parameter, and W is the phase-factor due to the Coulomb distortion. M3→3 is the

3 particle → 3 particle scattering amplitude.

It is evident from Eq. (2.17) that if we are able to find the next order terms,

O(1/ρ2
α), in the asymptotic behavior of the incident wave Ψ̃

(+)
kα ,qα

in Ων we will have

all available leading asymptotic terms of the three-body Coulomb scattering wave

function Ψ
(+)
kα,qα

in Ων up to terms O(1/ρ3
α). It does not make sense to find the

higher order terms in Ψ̃
(+)
kα ,qα

because they will be the next order terms compared to

the three-body outgoing scattered wave, which is O(1/R5/2). Derivation of all the

terms up to O(1/ρ3
α) in the incident three-body Coulomb wave Ψ̃

(+)
kα ,qα

in Ων is the first

main problem of this work. The derived incident wave will contain all the zeroth-,

first- and second-order terms and should satisfy the Schrödinger equation in Ωα up

to terms O(1/ρ3
α). We note that terms O(1/ρ2

α) are the highest order terms which

can be derived without a direct solution of the three-body Schrödinger equation. The

next order terms of the asymptotic solution in Ωα, including the outgoing three-

body scattered wave O(1/ρ
5/2
α ), and higher order terms can be found only by a direct

solution of the Schrödinger equation .

C. The three-body Coulomb scattering wave evolved from the inital two-body inci-

dent wave

The are three other energy spectra branches covering the intervals (−εβ γ, ∞), (−εαγ, ∞)

and (−εαβ, ∞). Each interval corresponds to the eigenfunctions which asymptoti-

cally behave as the incident two-body Coulomb distorted plane wave plus outgoing
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two-body scattering waves and three-body scattered wave. For example, the eigen-

function corresponding to the interval (−εβ γ , ∞) with the eigenvalue

E =
q2
i

2Mα
− εβ γ, (2.18)

where Ei = q2
i /(2Mα) is the relative kinetic energy of the scattering particles α and

(β γ) in the intial state, asymptotically behaves as

Ψ(+)
qi

= ϕα χ
(+)
qi

+
∑

ν=β, γ

ϕν(rν)
M(ν α)

ρν
ei qν ρν−iην ln(2qν ρν)

+
M2→3

R5/2
eiκR−iΠ ln(2κR)+i W (2.19)

in the leading orders. Here, ϕα is the bound-state wave function of the pair (β γ),

χ
(+)
qi is scattering wave function for particles α + (β γ) with the relative momentum

qi. The second term is the two-body outgoing scattered wave describing the rear-

rangement process α + (β γ) → β + (αγ) or α + (β γ) → γ + (αβ). M(ν α) is the

corresponding rearrangement reaction amplitude. The third term is the three-body

outgoing scattered wave describing the breakup process α+(β γ)→ α+β+γ. M2→3

is the corresponding breakup amplitude. ην and Π are Coulomb parameters. W is

the phase factor due to the Coulomb distortion of the outgoing three-body spherical

wave.

Determination of the phase factor in all the asymptotic regions has been the main

problem in the invesitgation of the asymptotic behavior of the three-body scattered

wave.

The asymptotic form of the three-body outgoing scattered wave was found more

than four decades ago by Peterkop for electron-impact ionization of hydrogen in the

case when all interparticle distances are large (asymptotic region Ω0) [8]. The knowl-

edge of the asymptotic form of the three-body scattered wave opens up the possibility
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to find the breakup/ionization amplitude by a direct numerical solution of the three-

body Schrödinger equation in the configuration space and matching the computer

output with the imposed boundary conditions or by using the integral representa-

tion of the breakup amplitude as a surface integral in the six-dimensional hyperspace

when the hyperradius R→∞ [18, 19, 20, 21, 22, 23, 24]. Such methods, in principle,

require knowledge of the asymptotic behaviour of the scattered wave function in all

asymptotic regions of the configuration space. This is because asymptotic wave func-

tions are used directly as boundary conditions in solving the differential equation, or

for extracting the scattering amplitudes from integral expressions involving the full

scattering wave function. Despite the progress in high-performance computing, this

approach has not yet been successfully implemented.

One reason is that Peterkop’s asymptotic wave function is invalid when the two elec-

trons are close to each other or when one of the electrons is close to the proton.

Thus Peterkop’s asymptotic wave function is invalid in the asymptotic regions Ων . In

these asymptotic regions the phase factor, W , found by Peterkop [8] logarithmically

diverges. For full-scale numerical calculations, an asymptotic representation of the

three-body scattered wave describing breakup/ionization in all the asymptotic regions

is necessary.

A second reason for the lack of implementation is the so-called phase-amplitude

ambiguity. Peterkop used six-dimensional hyperspherical coordinates, which effec-

tively transform the Schrödinger equation describing the development of the sys-

tem into a Hamilton-Jacobi type equation as the asymptotic motion of the particles

becomes classical. For this reason, the Peterkop asymptotic wave suffers from an

amplitude-phase ambiguity problem, since some part of the hyperspherical ionization

amplitude can be moved to the phase factor and the resulting wavefunction is still

a solution to the original Hamilton-Jacobi equation [8]. Accordingly, the remainder
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amplitude can equally well be called an breakup/ionization amplitude. Thus, gener-

ally speaking, the hyperspherical approach is not capable of uniquely identifying the

breakup/ionization amplitude. This amplitude-phase ambiguity has caused problems

in the formal theory of breakup reactions at a very fundamental level.

Finally, a full knowledge of the asymptotic behavior of the scattered wave forms

the basis for the Kohn variational approach to breakup scattering. Any trial func-

tion used in the variational approach should have currect asymptotic behavior in all

asymptotic regions. Thus a knowledge of the asymptotic behavior of the three-body

scattered wave in all regions of the configuration space is crucial in calculations of

atomic and nuclear breakup processes.

The second main problem, which is addressed in the present work, is the deter-

mination of the asymptotic behavior of the three-body scattered wave in Eq. (5.28)

in all the asymptotic regions for the general case of arbitrary masses and charges of

particles α, β and γ. The resulting phase factor should coincide with the phase factor

found by Peterkop in Ω0 [8] in the limiting case of electon-hydrogen ionization. A

general approach used in this work will allow us to resolve the phase-ambiguity prob-

lem. Knowledge of the asymptotic behavior of the three-body scattered wave allows

us to correctly formulate the breakup problem with Coulomb interactions and opens

up the possibility to apply a direct numerical solution of the Schrödinger equation to

determine the breakup problem.
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CHAPTER III

ASYMPTOTIC SCATTERING WAVE FUNCTION FOR THREE CHARGED

PARTICLES IN THE CONTINUUM

In this chapter we consider the asymptotic behavior of the three-body scattering

wave function, which evolves from the initial three-body incident wave describing

three incident particles in the continuum. The quantum mechanical dynamics of

three charged particles is described by Schrödinger’s equation which should be suple-

mented by proper boundary conditions. Merkuriev and Fadeev [3] claimed that the

solution of this equation exists and is unique if the boundary conditions are known

in all asymptotic regions. Three-body scattering theory introduces new challenges

compared to the two-body case.

The chapter is organized in the following way. In Sec. A, we introduce the three-

body nomenclature and the statement of the problem. In Sec. B we recall some of

the important relations from two-body scattering. In Sections C and D we present

asymptotic solutions of the three-body Schrödineger’s equation in all orders which

can be obtained with the asymptotic method. The last Section, E, concludes the

chapter.

A. Statement of the problem

We consider a nonrelativistic three-body problem for three charged particles of mass

mα and charge zα, α = 1, 2, 3 in the continuum state. We use the Greek letter α in

several ways, as any one of the three particles as in α = 1, 2, 3 or just the particle

α while we define the other two as β, γ. In the conventional few-body notation, α

stands for the pair of other two particles β, γ. The following conventional notations

for the two body quantities are used: Aα ≡ Aβγ, where α 6= β 6= γ. This will be clear
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from the context.

We use the Jacobi coordinates in Fig. 1. rα is the relative coordinate between

particles β and γ, and kα is its canonically conjugated momentum. µα =
mβmγ

mβ+mγ
is

their reduced mass. Similarly, ρα is the relative coordinate between the c.m. of the

pair (β, γ) and particle α, and qα is its canonically conjugated relative momentum.

Mα is given by Eq. (2.7), M =
3∑

ν=1

mν is total mass of the three-body system. There

are actually three sets of Jacobi coordinates rν,ρν , where ν = α, β, γ. We frequently

need the relations between the coordinates, and respective momenta for a channel

ν = β, γ and the corresponding α−channel variables. They are given by the following

relations



ρν

rν


 =



− mα

M−mν
ενα

µν

Mα

−ενα − mν

mβγ







ρα

rα


 (3.1)




qν

kν


 =



− mν

mβγ
ενα

−ενα
µα

Mν
− mα

M−mν







qα

kα


 (3.2)

where ν = β, γ and the antisymmetric symbol εαν = −ενα, with εαν = 1 for (α, ν)

being a cyclic permutation of (1, 2, 3), and εαα = 0. The motion of the three particles

is described by the Schrödinger equation in the configuration space

{E − Trα − Tρα − V }Ψ
(+)
kαqα

(rα,ρα) = 0, (3.3)

where V =
3∑

ν=1

Vν , Vν = V C
ν (rν)+V

N
ν (rν). V

C
ν is the Coulomb potential which is given

by V C
α (rα) =

zβzγ

rα
. Similarly, V N

ν is the nuclear potential between the particles of the

ν− pair, where ν = α, β, γ. Trα = −4rα

2µα
, is the kinetic energy operator for the relative

motion of particles β and γ, and Tρα = −4ρα

2Mα
is the kinetic energy operator for the

relative motion of particle α and the center of mass of the pair (β, γ), respectively.
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We are interested in the asymptotic solution of the Schrödinger equation (3.3) of the

three-body scattering wave function of the first type (see Chapter II, Sec. B).

These wave functions correspond to the energy spectrum (0, ∞) and evolve from

the initial three-body incident wave describing the three incident particles in the

continuum. The asymptotic behavior of the three-body scattering wave function of

the first type is given by Eq. (2.17) in the asymptotic region Ωα. It is not clear from

this equation how Ψ̃
(+)
kα ,qα

is determined. Formally we can determine the incident wave

as an asymptotic difference

Ψ̃
(+)
kα,qα

≈ Ψ
(+)
kα ,qα

−
∑

ν=α, β, γ

ϕν(rν)
M(ν)

3→2

ρν
ei qν ρν−iην ln(2qν ρν)

−M3→3

R5/2
eiκR−iΠ ln(2κ R)+i W (3.4)

From this equation it is clear that the three-body incident wave is the part of the full

wave function, which does not contain the outgoing two- and three-body waves. For

better understanding of the three-body incident wave we consider first the two-body

case.

B. Asymptotic two-body scattering wave function

We will be referring to two body Coulomb scattering throughout this work. Therefore

we present here some important relations for two body scattering. Let us consider

two charged particles with masses m1 and m2 and charges z1, and z2 interacting

via the potential V = z1z2

r
+ V N (r). Scattering of two particles is described by the

Schrödinger equation

{E −H}ψ(+)
k (r) = 0, (3.5)
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Fig. 1. Jacobi coordinate system.
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where η = z1z2µ
k

is Coulomb parameter, E = k2

2µ
is the relative kinetic energy of the

interacting particles 1 and 2, H = −4r

2µ
+V is two body Hamiltonian, and µ = m1m2

m1+m2

is reduced mass of particles 1 and 2. For the pure Coulomb interaction case Eq. (3.5)

can be solved analytically in parabolic coordinates, ζ = kr − k · r. Substituting

ψ
(+)
k (r) = eik·rF (iζ), (3.6)

into Eq. (3.5) gives the differential equation for the confluent hypergeometric function

[
4r

2µ
+
ik · 5r

µ
− V ]F (iζ) = 0. (3.7)

which has the following solution

F (iζ) = N 1F1(−iη, 1, iζ), (3.8)

where N = e−πη/2Γ(1 + iη) is the normalization factor and 1F1(−iη, 1, iζ) is the

hypergeometric function. The confluent hypergeometric function can be written as a

sum of two Whittaker functions:

N F (−iη, 1, iζ) = F (1)(ζ) + F (2)(ζ). (3.9)

Here,

F (1)(ζ) = e
πη
2 (iζ)−

1
2 ei ζ

2Wiη+ 1
2
,0(iζ), (3.10)

F (2)(ζ) = −iΓ(1 + iη)

Γ(−iη) e
πη
2 (iζ)−

1
2 ei ζ

2W−iη− 1
2
,0(−iζ), (3.11)

Taking into account the asymptotic behaviour of the Whittaker function at ζ →∞

Wλ,0(iζ) = (iζ)λe−iζ/2

[
1− (λ − 1/2)2

iζ
+O(

1

iζ2
)

]
, (3.12)
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we derive the asymptotic behavior of the Whittaker functions F (i)(ζ), i = 1, 2:

F (1)(iζ)
ζ→∞
= eiη ln ζ

[
1 +O(

1

iζ
)

]
(3.13)

F (2)(iζ)
ζ→∞
= fC eiζ

r
e−iη ln 2kr

[
1 +O(

1

iζ
)

]
, (3.14)

where fC is the on-the-energy-shell Coulomb scattering amplitude:

fC = −η Γ(1 + iη)

Γ(1 − iη)(−i)
−iηeπη/2e

−iη ln sin2 θ
2

2k sin2 θ
2

. (3.15)

Taking into account Eqs. (3.6), (3.8), (3.9), (3.12) and (3.14) we get the asymptotic

behavior of the Coulomb scattering wave function for a system of two particles in the

coordinate space:

ψ
(+)
k (r)

r→∞
= eik·reiη ln ζ [1 +O(

1

iζ
)] + fC e

ikr

r
e−iη ln 2kr [1 +O(

1

iζ
)]. (3.16)

Note that this asymptotic behavior is valid only for |ζ| → ∞. For r →∞ it is valid

for all directions in the configuration space except for the so-called singular direction,

for which k̂ · r̂ = 1.

One can see a very interesting feature in the case of the two-body Coulomb

scattering. The asymptotic Coulomb scattering wave function consists of two terms.

The first one, eik·reiη ln ζ (1+O( 1
iζ

) is the asymptotic form of eik·rF (1)(iζ) and represents

the Coulomb distorted incident wave. The Coulomb distortion not only generates a

logarithmic phase factor η ln ζ as an additional phase factor to the plane wave phase

factor k·r, but it also generates an infinite series in powers of 1/ζ. This is in contrast to

the two-body scattering problem for particles interacting via short-range potentials,

where the incident wave is given just by the plane wave. The second term in Eq.

(3.16) is the asymptotic form for eik·rF (2)(iζ) and generates the outgoing two-body

spherical wave and also contains an asymptotic expansion in powers of 1/ζ.
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C. Asymptotic three-body incident wave of three charged particles in continuum

After an explanation of the incident wave for the two-body case, it is easier to proceed

to the incident wave for the three-body case. Our goal is to derive the asymptotic

incident three-body wave function in the leading orders O(1), O(1/ρν ), O(1/ρ2
ν ) in

the asymptotic region Ων , Eq. (2.2), where any two particles can be close to each

other and far away from the third particle. Terms of order O(1/ρ2
ν ) are leading

terms, which can be derived without explicit solution of the three-body Schrödinger

equation . The next order term is the outgoing three-body scattered wave which

is O(1/R5/2). To find the amplitude of this term corresponding to the scattering

process for 3 particles → 3 particles, one has to solve the three-body Schrödinger

equation . As an example, we consider the asymptotic region Ωα. Expressions for the

asymptotic incident three-body wave functions in two other asymptotic regions Ωβ

and Ων can be derived by simple cyclic permutation of indexes α, β, γ. As we have

mentioned earlier, the asymptotic incident three-body wave function is the part of

the total three-body scattering wave function of the first type, which does not contain

two- and three-body scattered waves. This wave function should smoothly transform

into the asymptotic incident three-body wave function in the asymptotic region Ω0.

This smooth matching is the part of the boundary conditions that provides for a

unique solution.

The leading asymptotic term of the three-body incident wave function in Ω0

derived by Redmond [6, 7] is given by Eq. (2.10). It is the three-body Coulomb dis-

torted plane wave. For practical applications Merkuriev [3], Garibotti and Miraglia

[13] extended the asymptotic Redmond’s term [6, 7] by substituting the confluent

hypergeometric functions for the exponential Coulomb distortion factors. This ex-

tended wave function, often called the 3C wave function, is given by Eq. (2.13) and



23

is well-behaved even in the singular directions (ζν < C for rν →∞) where the Red-

mond’s asymptotic term is not determined. If any of the particles is neutral, then

the resulting asymptotic solution becomes the plane wave for the neutral particle and

the exact two-body scattering wave function for the charged pair. However, neither

Redmond’s asymptotic term Ψ
(0)(+)
kα ,qα

(rα,ρα) nor the 3C wave function Ψ
(3C)(+)
kα ,qα

(rα,ρα)

are asymptotic solutions of the Schrodinger equation in the asymptotic domains Ων ,

ν = α, β, γ. Redmond’s asymptotic term, by construction, satisfies the asymptotic

Schrödinger equation up to terms O(1/r2
α, 1/r2

β, 1/r2
γ). However, in the asymptotic

region, Ων, the distance between the particles of pair ν is limited: rν < C ′. Hence the

terms O(1/rν ) are not small and the potential V C
ν in the Schrödinger equation has

to be compensated exactly rather than asymptotically as happens when we use Red-

mond’s asymptotic wave function in Ω0. In the 3C wave function two very important

effects are absent. Consider, for example, the asymptotic region Ωα. In this region

rα << ρα. Hence the two-body relative motion of particles β and γ is distorted by

the Coulomb field of the third particle α [16]. The second evident defect in the 3C

function is the absence of the nuclear interaction between particles β and γ which

can be close enough to each other in Ωα. Nevertheless, the 3C wave function can be

used as a starting point to derive the the leading asymptotic terms of the three-body

incident wave in Ωα [16, 17], because this asymptotic three-body incident wave should

match Redmond’s asymptotic term in Ω0. We will demonstrate now how important

the condition of the matching of the asymptotic wave functions is on the border of

different asymptotic regions [16].

Let us consider the asymptotic Schrödinger equation in Ωα. The asymptotic

Hamiltonian in Ωα can be written in leading order as

Has
α = lim

rα, ρα ∈Ωα

H = Trα + Tρα + Vα + υC
α (ρα). (3.17)
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Here

Vβ(rβ) + Vγ(rγ)
lim rα/ρα→0
≈ υC

α (ρα) +O(1/ρ2
α), (3.18)

υC
α (ρα) =

Zα(Zβ + Zγ) e
2

ρα
. (3.19)

Here, υC
α (ρα) is the Coulomb potential between the charge Zα and the total charge

(Zβ+Zγ) of the system β+γ concentrated in their center of mass. Then the asymptotic

Schrödinger equation in Ωα : ρα →∞, rα/ρα → 0 in leading order reduces to

{E −Has
α }Ψ

(as)
kαqα

(rα,ρα) = 0, (3.20)

where E = k2
α

2µ′
α

+ q2
α

2Mα
is the total energy of the three-body system. Since Has

α =

Hρα +Hrα is the sum of two sub-Hamiltonians

Hrα = Trα + Vα, (3.21)

Hρα = Tρα +
Zα(Zβ + Zγ) e

2

ρα
, (3.22)

one of the possible solutions is a trivial factorized one

Ψ
(α)(+)

kαqα
(rα,ρα) = ψ

(+)
kα

(rα)χ(+)
qα

(ρα). (3.23)

Here, ψ
(+)
kα

(rα) is the scattering wave function of particles β and γ satisfying Schrödinger

equation

{ k
2
α

2µα

−Hrα}ψ
(+)
kα

(rα) = 0. (3.24)

Correspondingly, χ
(+)
qα (ρα) is the Coulomb scattering wave function describing the

scattering state of particle α and the center of mass of the system β + γ satisfying

the Schrödinger equation

(
q2
α

2Mα
−Hρα)χ(+)

qα
(ρα) = 0. (3.25)
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Since χ
(+)
qα (ρα) satisfies the two-body Schrödinger equation with a pure Coulomb

interaction we can write down its solution:

χ(+)
qα

(ρα) = eiqα·ραNα F (−iηα, 1; ζα), (3.26)

where

ηα =
Zα (Zβ + Zγ) e

2Mα

qα
, (3.27)

ζα = qα ρα − qα · ρα, (3.28)

Nα = e−πηα/2Γ(1 + iηα). (3.29)

If the factorized solution (3.23) is a correct asymptotic solution in Ωα, it should match

Redmond’s asymptotic term (2.10). To check it we just consider the asymptotic

behavior of (3.23) in Ω0, where rα, ρα→∞. In leading order we get

ψ
(+)
kα

(rα)
rα→∞

= eikα ·rα eiηα ln ζα +O(1/rα), (3.30)

χ(+)
qα

(ρα)
ρα→∞

= eiqα ·ρα eiηα ln ζα +O(1/ρα). (3.31)

Then the factorized solution in leading order is

Ψkαqα(rα,ρα) = ψ
(+)
kα

(rα)χ(+)
qα

(ρα)

rα, ρα→∞
= eikα·rα eiqα·ρα eiηα ln ζα eiηα ln ζα +O(1/rα) +O(1/ρα). (3.32)

We can see that the leading asymptotic term of the factorized solution, Ψkαqα(rα,ρα)

in Ω0, has only two logarithmic phase factors in contrast to the three phase factors

in Redmond’s asymptotic term (2.10). Thus the factorized solution doesn’t satisfy

one of the important boundary conditions: it does not transform smoothly into the

asymptotic solution in Ω0. Hence, the factorized wave function, Ψkαqα(rα,ρα), is not

a solution of the asymptotic Schrödinger equation in Ωα. This failure is entirely due

to the long range of the Coulomb interactions. These Coulomb interactions cause
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Coulomb distortions of the plane waves and these distortions are different in Red-

mond’s asymptotic term in Ω0 and in the factorized wave function. In Redmond’s

asymptotic incident wave three logarithmic phase factors appear, one phase factor

for each pair, rather than the two phase factors in the factorized solution. It is a

very important conclusion. In all the conventional approaches for breakup processes,

including coupled channels codes like FRESCO, the three-body scattering wave func-

tion is approximated by the factorized one. From the consideration above, it is clear

that if Coulomb interactions are important, such an approximation is not accurate.

If the interactions are short-range, the factorized solution matches the asymptotic

solution in Ω0 and is justified in the asymptotic region Ωα.

It was shown in [16, 17] that the actual asymptotic solution of the asymptotic

Schrödinger equation Ψ
(as)
kαqα

(rα,ρα), which matches Redmond’s asymptotic term in

Ω0, cannot be written in a factorized form and has a quite complicated behav-

ior. In [16, 17] all the leading asymptotic terms up to O(1/ρ2
α) of the asymptotic

wave function Ψ
(as)
kαqα

(rα,ρα) have been derived in the asymptotic region Ωα. In this

work we will present a derivation of the expansion of the asymptotic wave function,

Ψ
(as)
kαqα

(rα,ρα), up to terms O(1/ρ3
α). The derived asymptotic expansion contains all

the terms O(1), O(1/ρα) and O(1/ρ2
α). Since we are looking for the terms O(1/ρ2

α),

including approximation (3.18) is not enough. We need to keep the terms O(1/ρ2
α)

and we should keep the higher order terms up to O(1/ρ3
α). Instead of the asymptotic

expansion of the Coulomb potentials V C
β (rβ) and V C

γ (rγ) in terms of 1/ρα, we will

start our derivation from the exact three-body Schrödinger equation (3.3). The terms

of O(1/ρ3
α) will be dropped later. The asymptotic wave function in Ωα should match

the asymptotic wave function in Ω0. The 3C wave function satisfies Eq. (3.3) up to

terms O(1/r2
α, 1/ρ

2
α) and we can use it as the initial wave function. However, this

wave function should be modified to satisfy the Schrödinger equation in Ωα.
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Note that usually in the literature it is assumed that Redmond’s asymptotic

term satisfies the Schrödinger equation in Ω0 in leading order only. First we will

show that the 3C wave function satisfies the Schrödinger equation in Ω0 up terms of

order O(1/r2
ν ). To this end we just substitute the 3C wave function (2.13) into the

Schrödinger equation (3.3):

(E − Trα − Tρα − V )[eikα·rα+iqα ·ρα ϕkα(rα)ϕkβ
(rβ)ϕkγ (rγ)]

= eikα·rα+iqα ·ραϕkβ
(rβ)ϕkγ (rγ)[

4rα

2µα
+
ikα · 5rα

µα
− Vα

+
4ρα

2Mα

+

i[qα − i
∑

ν=β,γ

5ρα lnϕkν ] · 5ρα

Mα

+
5rαϕkγ · 5rαϕkβ

µαϕkβ
ϕkγ

+
5ραϕkγ · 5ραϕkβ

Mαϕkβ
ϕkγ

]ϕkα(rα)

+eikβ ·rβ+iqβ ·ρβϕkα(rα)ϕkγ (rγ)[
4rβ

2µβ
+
ikβ · 5rβ

µβ
− Vβ

+
4ρβ

2Mβ
+

i[qβ − i
∑

τ=α,γ

5ρβ
lnϕkτ ] · 5ρβ

Mβ

+
5rβ

ϕkγ · 5rβ
ϕkα

µβϕkαϕkγ

+
5ρβ

ϕkγ · 5ρβ
ϕkα

Mβϕkαϕkγ

]ϕkβ
(rβ)

+eikγ ·rγ+iqγ ·ργϕkα(rα)ϕkβ
(rβ)[

4rγ

2µγ
+
ikγ · 5rγ

µγ
− Vγ

+
4ργ

2Mγ
+

i[qγ − i
∑

ω=α,β

5ργ lnϕkω ] · 5ργ

Mγ

+
5rγϕkβ

· 5rγϕkα

µβϕkαϕkβ

+
5ργϕkβ

· 5ργϕkα

Mγϕkαϕk̃β

]ϕkγ (rγ), (3.33)

where ϕkν (rν) = N F (−iην, 1; iζ) and taking into account

[
4rν

2µν

+
ikν · 5rν

µν

− Vν ]ϕkν (rν) = 0 (3.34)
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we derive

(E − Trα − Tρα − V )[eikα·rα+iqα ·ρα ϕkα(rα)ϕkβ
(rβ)ϕkγ (rγ)]

= O(1/r2
α, 1/r

2
β, 1/r

2
γ). (3.35)

In the Ω0 region the local momentum contributions dissappear, k̃ν = kν, as they are

much smaller than kν. We did not use any approximation to get equation 3.35. Thus

the 3C wave function indeed satisfies the Schrödinger equation in Ω0 up to the terms

O(1/r2
α, 1/r

2
β, 1/r

2
γ) and hence the 3C wave function can be used as a starting wave

function with proper modifications to look for an asymptotic solution in Ωα.

Ψ
(3C)(+)
kαqα

(rα,ρα) = eikα·rα eiqα ·ρα

× [F (1)
α (iζα)F (1)

β (iζβ)F (1)
γ (iζγ) + F (2)

α (iζα)F (1)
β (iζβ)F (1)

γ (iζγ) (3.36)

+F (1)
α (iζα)F (2)

β (iζβ)F (1)
γ (iζγ) + F (1)

α (iζα)F (1)
β (iζβ)F (2)

γ (iζγ)],

where we kept only leading and the first order terms of the 3C function.

Let us rewrite Eq. (2.13) in a form which is suitable for consideration in the Ωα

asymptotic domain:

Ψ
(3C)(+)
kα ,qα

(rα,ρα) = eikα·rα eiqα·ρα

× [F (1)
β (iζβ)F (1)

γ (iζγ)NαFα(iζα) + F (2)
β (iζβ)F (1)

γ (iζγ)NαFα(iζα) (3.37)

+F (1)
β (iζβ)F (2)

γ (iζγ)NαFα(iζα) + F (2)
β (iζβ)F (2)

γ (iζγ)NαFα(iζα)].

We took into account that

ϕkν (, rν) = N F (−iην, 1; iζ) = F (1)(ζν) + F (2)(ζν). (3.38)

Here, asymptotically, for |ζν | → ∞, the first term F (1)(ζν) ∼ O(1) and the second

term F (2)(ζν) ∼ O(1/ζν ). Hence in the Ωα F (1)(ζν) and F (2)(ζν), ν = β, γ can
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be treated asymptotically while ϕkα(rα) should be considered explicitly, because Ωα

includes the region, where rα is limited. Moreover, in the asymptotic region Ωα the

reltive motion of particles β and γ is distorted by the third particle α due to the long-

range Coulomb interaction. It means that the wave function of the relative motion

of particles β and γ in Ωα will be different from the wave function eikα ·rα NαFα(iζα)

describing the relative motion of particles β and γ in the absence of the third particle.

Since interacting particles β and γ can be close to each other, their nuclear interaction

should also be taken into account. Following [17] we replace each Fα(iζα) in Eq. (3.38)

by the corresponding unknown function ϕ
(nm)
α (rα), n,m = 1, 2:

Ψ
(as)(+)
kα,qα

(rα,ρα) = eikα ·rα eiqα ·ρα

×[F (1)
β (iζβ)F (1)

γ (iζγ)ϕ
(11)
α (rα, ρα) + F (2)

β (iζβ)F (1)
γ (iζγ)ϕ

(21)
α (rα, ρα)

+F (1)
β (iζβ)F (2)

γ (iζγ)ϕ
(12)
α (rα, ρα) + F (2)

β (iζβ)F (2)
γ (iζγ)ϕ

(22)
α (rα, ρα)]. (3.39)

Derivation of ϕ
(nm)
α (rα), n,m = 1, 2 is our final goal. Now we substitute Eq. (3.39)

into the Schrödinger equation (3.3). When substittuting Eq. (3.39) into the Schrödinger

equation we assume that each term of the sum (3.39) satisfies the Schrödinger equa-

tion . Moreover, as we will see, each function ϕα(rα, ρα) depends on the preceding

functions F (n)
β (iζβ)F (m)

γ (iζγ) where n,m = 1, 2, i.e. for each term in (3.39) the modi-

fication is different. We also take into account that

(
1

2µν
∆rν + i

1

µν
kν·∇rν − V C

ν )F (1,2)
ν (iζν) = 0. (3.40)

Substitution of the first term of Eq. (3.39) into the Schrödinger equation generates
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the equation for ϕ
(11)
α (rα):

F (1)
β (iζβ)F (1)

γ (iζγ)[
1

2µα
∆rα +

1

2Mα
∆ρα + i

1

µα
kα·∇rα + i

1

Mα
qα·∇ρα +

1

µα

∑

ν=β,γ

∇rα lnF (1)
ν (iζν)·∇rα +

1

Mα

∑

ν=β,γ

∇ρα lnF (1)
ν (iζν)·∇ρα − Vα(rα) +

1

µα
∇rα lnF (1)

β (iζβ)·∇rα lnF (1)
γ (iζγ) +

1

Mα
∇ρα lnF (1)

β (iζβ)·∇ρα lnF (1)
γ (iζγ)]

×ϕ(11)
α (rα, ρα) = 0. (3.41)

Since particles β and γ are allowed to be close in Ωα their interaction potential

is given by the sum of the Coulomb and nuclear potentials. Now we will simplify

this equation by dropping all the terms O(1/ρ3
α) and explicitly compensate all the

terms O(1), O(1/ρα), O(1/ρ2
α). We consider only the nonsingular directions, i. e.

k̂ν ·̂rν 6= 1, ν = β, γ. To analyze the fifth term in the brackets we use equations

F (1)
ν (iζν) = F̃ (1)

ν (iζν)[1− i
η2

ν

ζν
+O(1/ζ2

ν )], (3.42)

F̃ (1)
ν (iζν) = ei ην ln ζν , (3.43)

∇rα lnF (1)
ν (iζν) = ∇rα ln F̃ (1)

ν (iζν)− i
mν

mβγ

η2
ν

kν r2
ν

r̂ν − k̂ν

(1 − k̂ν · r̂ν)2
+O(1/r3

ν ), (3.44)

∇rα ln F̃ (1)
ν (iζν) = ∇rαe

mν
mβγ

εν αrα·∇ρα ln F̃ (1)
ν (iζνα)

= εν α
mν

mβγ
∇ρα ln F̃ (1)

ν (iζν α) +
m2

ν

m2
β γ

(rα · ∇ρα)∇ρα
ln F̃ (1)

ν (iζν α), (3.45)

∇ρα ln F̃ (1)
ν (iζν α) = iην ενα

1

ρα

k̂ν − εανρ̂α

1− εανk̂ν · ρ̂α

+O(
1

ρ2
α

), (3.46)

∇rα[−i η
2
ν

ζν
] = i η2

ν

mν

mβ γ

1

kν ρ2
α

k̂ν − εανρ̂α

(1− εανk̂ν · ρ̂α)2
+O(

1

ρ3
α

). (3.47)
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To estimate the sixth and the ninth terms we use equations

∇ρα lnF (1)
ν (iζν) = iην

1

rν

ενα
k̂ν − r̂ν

1 − k̂ν · r̂ν

+O(
1

r2
ν

) (3.48)

= iην ενα
1

ρα

k̂ν − εανρ̂α

1− εανk̂ν · ρ̂α

+O(
1

ρ2
α

). (3.49)

To estimate the eighth term we use equation

∇rα lnF (1)
ν (iζν) = iην

mν

mβγ

1

rν

k̂ν − r̂ν

1− k̂ν · r̂ν

. (3.50)

Note that in Ωα radius rα is limited a priori (more strictly, it is allowed to grow

but slower than ρα). That is why we cannot use an asymptotic expansion in terms

of 1/ζα in the asymptotic region Ωα. Eqs (3.45), (3.47), (3.46) and (3.49) are valid

only in Ωα, while Eqs (3.44), (3.50) and (3.48) are valid both in Ω0 and Ωα.

Thus we reduced a three-body problem with Coulomb interactions to a two-body

problem: we need to find a solution of Eq. (3.41), which describes the relative motion

of particles β and γ in the presence of the third particle α, which is far away, but it

still distorts the relative motion of particles β and γ due to the long-range Coulomb

interaction. This distortion results in the dependence of ϕ
(11)
α (rα, ρα) on ρα. When ρα

increases this distortion should be weakened. Hence, ϕ
(11)
α (rα, ρα) actually depends

on 1/ρα and

∇ρα ϕ
(11)
α (rα, ρα) ∼ 1

ρ2
α

. (3.51)

Because of that we may drop the second and sixth terms in Eq. (3.41) and rewrite it
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in the form

[
1

2µα

∆rα + i
1

µα

kα·∇rα + i
1

Mα

qα·∇ρα +
1

µα

∑

ν=β,γ

∇rα lnF (1)
ν (iζν)·∇rα

−Vα(rα) +
1

µα
∇rα lnF (1)

β (iζβ)·∇rα lnF (1)
γ (iζγ)

+
1

Mα
∇ρα lnF (1)

β (iζβ)·∇ρα lnF (1)
γ (iζγ)]ϕ

(11)
α (rα, ρα) = 0. (3.52)

The last two terms are of O(1/ρ2
α). Note that to satisfy this equation up to terms

of O(1/ρ3
α) all the terms of O(1/ρ2

α) must be compensated. Taking into account Eqs

(3.45) and (3.47) we can rewrite Eq. (3.52) as

[
1

2µα

∆rα + i
1

µα

k(11)
α (ρα)·∇rα + i

1

Mα

qα ·∇ρα

+
1

µα

∑

ν=β,γ

m2
ν

m2
β γ

(rα ·∇ρα) (∇ρα ln F̃ (1)
ν (iζν α)·∇rα)− Vα(rα)

+(εβ α εγ α
1

mβ γ
+

1

Mα
)∇ρα lnF (1)

β (iζβ α)·∇ρα lnF (1)
γ (iζγ α)]

×ϕ(11)
α (rα, ρα) = O(1/ρ3

α). (3.53)

We introduced here a new local momentum

k(11)
α = kα − i

∑

ν=β,γ

mν

mβγ
[ εν α ∇ρα ln F̃ (1)

ν (iζν α) + i η2
ν

1

kν ρ2
α

k̂ν − εανρ̂α

(1− εανk̂ν · ρ̂α)2
]. (3.54)

Note that variables ∇rα and ∇ρα are mixed up only in the fourth term of Eq. (3.53).

We are looking for a solution in the form

ϕ(11)
α (rα, ρα) = ϕ

(11)
α (0)(rα, ρα) (1 +

χ(ρ̂α)

ρα
) +

ϕ
(11)
α (1)(rα, ρα)

ρ2
α

, (3.55)

where ϕ
(11)
α (0)(rα, ρα) is a solution of

[
1

2µα
∆rα + i

1

µα
k(11)

α (ρα)·∇rα − Vα(rα)]ϕ
(11)
α (0)(rα, ρα) = 0. (3.56)
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χ(ρ̂α) ∼ O(1) and is a solution of the first order differential equation

i
1

Mα

qα·∇ρα

χ(ρ̂α)

ρα

= −(εβ α εγ α
1

mβ γ
+

1

Mα
)∇ρα ln F̃ (1)

β (iζβ α)·∇ρα ln F̃ (1)
γ (iζγ α). (3.57)

Finally ϕ
(11)
α (1)(rα, ρα) ∼ O(1) is a solution of the inhomogemeous equation

[
1

2µα
∆rα + i

1

µα
k(11)

α ·∇rα − Vα(rα)]ϕ
(11)
α (1)(rα, ρα) = −i ρ

2
α

Mα
qα ·∇ρα ϕ

(11)
α (0)(rα)

−ρ
2
α

µα

∑

ν=β,γ

m2
ν

m2
β γ

(rα ·∇ρα)∇ρα
ln F̃ (1)

ν (iζν α)·∇rα ϕ
(11)
α (0)(rα, ρα). (3.58)

Note that all the equations (3.56), (3.57) and (3.58) are ”two-body” differential equa-

tions. On the left hand side they contain gradients and Laplacians over only one of

the variables, rα or ρα. These equations can be solved numerically.

Now we consider the second term of Eq. (3.39). It satisfies the equation

F (2)
β (iζβ)F (1)

γ (iζγ)[
1

2µα
∆rα +

1

2Mα
∆ρα + i

1

µα
kα·∇rα + i

1

Mα
qα·∇ρα +

1

µα
[∇rα lnF (2)

β (iζβ) + ∇rα lnF (1)
γ (iζγ)]·∇rα

+
1

Mα
[∇ρα lnF (2)

β (iζβ) + ∇ρα lnF (1)
γ (iζγ)]·∇ρα − Vα(rα) +

1

µα
∇rα lnF (2)

β (iζβ)·∇rα lnF (1)
γ (iζγ) +

1

Mα
∇ρα lnF (2)

β (iζβ)·∇ρα lnF (1)
γ (iζγ)]

×ϕ(21)
α (rα, ρα) = O(1/ρ3

α). (3.59)

Here, in the nonsingular directions (k̂ν · r̂ν 6= 1, ν 6= α)

F (2)
ν (iζν)

ζν→∞
= ην

Γ(1 + i ην)

Γ(1 − i ην)

e−i ην ln ζν

ζν
ei ζν [1 +O(

1

ζν
)]. (3.60)
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Also, in the nonsingular directions for ν 6= α

∇rα ln F (2)
ν (i ζν) = i∇rα ζν +O(1/rν ) = i

mν

mβ γ

kν(k̂ν − r̂ν) +O(1/rν ) (3.61)

= i
mν

mβ γ
kν (k̂ν − εαν ρ̂α) +O(1/ρα) (3.62)

and

∇ρα lnF (2)
ν (iζν) = i∇ραζν +O(1/rν ) = iενα(−kν r̂ν + kν) +O(1/rν ) (3.63)

= i kν (ρ̂α − εαν k̂ν) +O(1/ρα). (3.64)

When deriving (3.59) we took into account that

(
1

2µν
∆rν + i

1

µν
kν·∇rν − V C

ν )F (2)
ν (iζν) = 0. (3.65)

To get an asymptotic equation from Eq. (3.59) which is valid up to O(1/ρ3
α), all the

coefficients of O(1), O(1/ρα) and O(1/ρ2
α) should be kept in the left-hand-side of the

equation. Since in the nonsingular directions in Ωα region, F (2)
β (iζβ) ∼ O(1/ρα) only

coefficients of O(1) and O(1/ρα) in the brackets of Eq. (3.59) should be left. Taking

into account Eqs (3.45), (3.62) and (3.64) we get

[
1

2µα

∆rα + i
1

µα

k(21)
α (ρα)·∇rα − Vα(rα)

+i
1

µα

m2
β

m2
β γ

kβ
1

ρα
(rα − ρ̂α (ρ̂α·rα))·∇rα + i

1

Mα
q(21)

α ·∇ρα (3.66)

−i εαβ
1

mα
kβ (k̂β − εαβ ρ̂α) ·∇ρα ln F̃ (1)

γ (iζγ α)]ϕ(21)
α (rα, ρα) = O(1/ρ2

α).

Here ∇ρα ln F̃ (1)
γ (iζγ α) is given by Eq. (3.46). We also introduced new local momenta

k(21)
α (ρα) = kα +

mβ

mβ γ
kβ (k̂β − εαβ ρ̂α) + i (i ηβ + 1)

mβ

mβ γ

1

ρα

k̂β − εαβρ̂α

1− εαβk̂β · ρ̂α

, (3.67)

and

q(21)
α (ρα) = qα + kβ (ρ̂α − εαβ k̂β). (3.68)
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We also took into account that for ν 6= σ 6= τ, ν 6= τ , εν τ , εν σ = −1, and

−εαγ
1

mβ γ

(k̂β − εαβ ρ̂α) +
1

Mα

(ρ̂α − εαβk̂β) = −εαβ
1

mα

(k̂β − εαβ ρ̂α). (3.69)

We are looking for a solution of Eq. (3.67) in the form

ϕ(21)
α (rα,ρα) = ϕ

(21)
α (0)(rα,ρα) +

ϕ
(21)
α (1)(rα, ρα)

ρα
, (3.70)

where ϕ
(21)
α (0)(rα, ρα) satisfies

[
1

2µα
∆rα + i

1

µα
k(21)

α (ρα)·∇rα − Vα(rα)]ϕ
(21)

α (0)(rα, ρα) = 0. (3.71)

Finally ϕ
(21)
α (1)(rα, ρα) ∼ O(1) is a solution of equation

[
1

2µα
∆rα + i

1

µα
k(21)

α (ρα)·∇rα − Vα(rα)]ϕ
(21)

α (1)(rα, ρα)

= −[i
1

µα

m2
β

m2
β γ

kβ (rα − ρ̂α (ρ̂α·rα))·∇rα]ϕ
(21)
α (0)(rα, ρα)

−i ρα

Mα
q(21)

α ·∇ραϕ
(21)

α (0)(rα, ρα)

+i εαβ
ρα

mα
kβ (k̂β − εαβ ρ̂α) ·∇ρα ln F̃ (1)

γ (iζγ α)ϕ
(21)

α (0)(rα, ρα). (3.72)

Since in Eq. (3.72) we keep only terms of order O(1/ρα) local momentum k
(21)
α (ρα)

can be replaced by

k
(21)
α(0)(ρα) = kα +

mβ

mβ γ

kβ (k̂β − εαβ ρ̂α). (3.73)
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A formal solution of Eq. (3.72) is

ϕ
(21)
α (1)(rα, ρα) = ϕ

(21)
α (0)(rα, ρα) + e−k

(21)
α (ρα)·rα

∫
d r′αG(rα, r

′
α) ek

(21)
α (ρα)·r′α

[−[i
1

µα

m2
β

m2
β γ

kβ (r
′

α − ρ̂α (ρ̂α·r
′

α))·∇rα]ϕ
(21)
α (0)(r

′

α, ρα)

−i 1

Mα
q(21)

α (ρα) ·∇ρα ϕ
(21)
α (0)(r

′

α, ρα)

−i εαβ
1

mα
kβ (k̂β − εαβ ρ̂α) ·∇ρα ln F̃ (1)

γ (iζ
′

γ α)ϕ
(21)
α (0)(r

′

α, ρα)], (3.74)

Here ϕ
(21)
α (0)(rα, ρα) is the solution of the homogeneous Eq. (3.71). G(rα, r

′
α) is Green’s

function describing the relative motion of particles β and γ.

The third equation for ϕ
(12)
α (rα, ρα) is obtained by substituting the third term

in (3.39) to (3.3). Following the same steps, which we used to derive the second

equation, or just interchanging β ↔ γ in (3.59) we find ϕ
(12)
α (rα, ρα) in the following

form:

ϕ(12)
α (rα,ρα) = ϕ

(12)
α (0)(rα,ρα) +

ϕ
(12)

α (1)(rα, ρα)

ρα

, (3.75)

where ϕ
(12)

α (0)(rα, ρα) is a solution of

[
1

2µα

∆rα + i
1

µα

k(12)
α (ρα)·∇rα − Vα(rα)]ϕ

(12)
α (0)(rα, ρα) = 0. (3.76)

We can derive a similar equation to Eq. (3.72) for ϕ
(12)

α (1)(rα, ρα) which has a formal

solution

ϕ
(12)

α (1)(rα, ρα) = ϕ
(12)

α (0)(rα, ρα) + e−k
(12)
α (ρα)·rα

∫
d r′αG(rα, r

′
α) ek

(12)
α (ρα)·r′α

[−[i
1

µα

m2
γ

m2
β γ

kγ (r
′

α − ρ̂α (ρ̂α·r
′

α))·∇rα]ϕ
(12)
α (0)(r

′

α, ρα)

−i 1

Mα
q(12)

α (ρα) ·∇ρα ϕ
(12)
α (0)(r

′

α, ρα)

−i εαγ
1

mα
kγ (k̂γ − εαγ ρ̂α) ·∇ρα ln F̃ (1)

β (iζ
′

β α)ϕ
(12)
α (0)(r

′

α, ρα)]. (3.77)
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The fourth equation can be derived after substituting the last term of Eq. (3.39) into

Eq. (3.3) and it is automatically satisfied up to the terms of order O(1/ρα
3) in Ωα

because the product F (2)
β (iζβ)F (2)

γ (iζγ) = O(1/ρα
2). The fourth term in Eq. (3.39)

leads to an equation for ϕ
(22)
α (rα, ρα):

F (2)
β (iζβ)F (2)

γ (iζγ)[
1

2µα
∆rα +

1

2Mα
∆ρα + i

1

µα
kα·∇rα + i

1

Mα
qα·∇ρα

+
1

µα
[∇rα lnF (2)

β (iζβ) + ∇rα lnF (2)
γ (iζγ)]·∇rα

+
1

Mα
[∇ρα lnF (2)

β (iζβ) + ∇ρα lnF (2)
γ (iζγ)]·∇ρα

−Vα(rα) +
1

µα
∇rα lnF (2)

β (iζβ)·∇rα lnF (2)
γ (iζγ) (3.78)

+
1

Mα
∇ρα lnF (2)

β (iζβ)·∇ρα lnF (2)
γ (iζγ)]× ϕ(22)

α (rα,ρα) = O(1/ρ3
α)

Using the same arguments we have used before, we may drop all the terms containing

derivatives over ρα when looking for a solution in leading order. Then the equation

for ϕ
(22)
α reduces to

[
1

2µα
∆rα + i

1

µα
k(22)

α (ρα)·∇rα − Vα(rα)]ϕ(22)
α (rα, ρα) = 0, (3.79)

with a local momentum

k(22)
α (ρα) = kα +

∑

ν=β,γ

mν

mβ γ
kν (k̂ν − εαν ρ̂α). (3.80)

If Vα is a pure Coulomb potential, Vα = V C
α , then Eqs (3.56), (3.71), (3.76), (3.79)

have the following solution

ϕ(ij)
α (rα, ρα) = N (ij)

α (ρα)F (−iη(ij)
α (ρα), 1; iζ(ij)(ρα)), (3.81)

Here, i = 1, 2; j = 1, 2 and N
(ij)
α (ρα) is defined as

N (ij)
α (ρα) = e−πη

(ij)
α (ρα)/2Γ(1 + iη(ij)

α (ρα)), (3.82)
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where η
(ij)
α (ρα) =

zβzγ e2µα

k
(ij)
α ( ρα)

, and ζ(ij)(ρα) = k
(ij)
α (ρα)rα − k

(ij)
α (ρα) · rα.

If Vα is not a pure Coulomb potential, then the differential equations above, which

parametrically depend on ρα, should be solved numerically. Since all equations are of

the two-body type, numerical methods are well developed and have been in use for a

long time. They can be applied to solve the differential equations above as well. All

the solutions found this way are valid in all directions of the asymptotic region Ωα

except for singular directions.

Thus, returning to Eq. (3.39) we can claim that, after derivation of all four wave

functions ϕ
(ij)
α (1)(rα, ρα), i, j = 1, 2, we know the asymptotic solution of the three-body

scattering wave function up to terms O(1/ρ3
α). This asymptotic solution represents

the incident three-body wave of the scattering wave function of the first type.

D. Generalized asymptotic scattering wave function valid in all regions Ων , where

ν = α, β, γ

Now we are in position to present a generalized asymptotic scattering wave function

which satisfies the Schrödinger equation up to second order and which is valid in all

the asymptotic regions:

Ψ
(αβγ)(+)
kαqα

(rα,ρα) ≡ eikα·rα+iqα ·ραϕk̃α
(rα)ϕk̃β

(rβ)ϕk̃γ
(rγ). (3.83)
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After substituting (3.83) into (3.3) and dropping the higher order terms we get,

{E − Trα − T~ρα − V }[eikα·~rα+iqα ·ραϕk̃α
(rα)ϕk̃β

(rβ)ϕk̃γ
(rγ)]

= eikα·rα+iqα ·ραϕk̃α
(rα)ϕk̃γ

(rγ)[
4rα

2µα
+
ik̃α · 5rα

µα
− Vα]ϕk̃α

(rα) (3.84)

+eikβ ·rβ+iqβ ·ρβϕk̃α
(rα)ϕk̃γ

(rγ)[
4rβ

2µβ
+
ik̃β · 5rβ

µβ
− Vβ]ϕk̃β

(rβ)

+eikγ ·rγ+iqγ ·ργϕk̃α
(rα)ϕk̃β

(rβ)[
4rγ

2µγ
+
ik̃γ · 5rγ

µγ
− Vγ ]ϕk̃γ

(rγ)

=





O( 1
r2
α
, 1

r2
β
, 1

r2
γ
), rα, rβ, rγ ∈ Ω0

O( 1
r2
β
, 1

r2
γ
), rβ, rγ ∈ Ωα

O( 1
r2
α
, 1

r2
γ
), rα, rγ ∈ Ωβ

O( 1
r2
α
, 1

r2
β
), rα, rβ ∈ Ωγ

, (3.85)

where the local momentum is given by

k̃ν = kν − i
∑

τ=α,β,γ

(1 − δν,τ)5rν lnϕk̃τ
. (3.86)

In the asymptotic region Ω0, each local momentum, k̃ν, can be replaced by the corre-

sponding asymptotic momentum, kν. In the asymptotic region Ωα, Eq. (3.85) reduces

to the quasi-two-particle differential equation:

[
4rα

2µα
+
ik̃α · 5rα

µα
− Vα]ϕk̃α

(rα) = O(
1

rβ
,

1

rγ
). (3.87)

The solution of this equation is evident and provides the Coulomb-nuclear scattering

wave function with the local momentum k̃α. Similarly we can get the asymptotic

solution in leading order in the other two asymptotic regions Ωβ and Ωγ .
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E. Conclusion

In this chapter we derived the three-body asymptotic incident wave, which satis-

fies the Schrödinger equation up to terms of order 1/ρ3
ν in the asymptotic region

Ων , ν = α, β, γ. This asymptotic incident wave gives the leading asymptotic terms

of the three-body scattering wave function of the first type and is an extention of the

asymptotic wave function derived in [16, 17]. It is worth mentioning that the asymp-

totic solution satisfying the Schrödinger equation in the asymptotic region Ων up to

the O(1/ρ2
ν ) can be found analytically [16, 17]. To find an asymptotic solution satisfy-

ing the Schrödinger equation in Ων up to terms of O(1/ρ3
ν ) we need to solve two-body

type differential equations numerically. The next order term in the asymptotic three-

body scattering wave function represents the outgoing 3 particles → 3 particles

scattered wave and can be found only by a numerical solution of the three-body

Schrödinger equation or Faddeev equations.

The resulting asymptotic solution provides extended boundary conditions in

all the asymptotic regions and can be used in the direct numerical solution of the

Schrödinger equation or in practical calculations as a leading asymptotic term of the

three-body scattering wave function.
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CHAPTER IV

ASYMPTOTIC BEHAVIOR OF THE THREE-BODY SCATTERED WAVE FOR

THREE CHARGED PARTICLES *

A. Introduction

1 In the previous chapter we derived the leading asymptotic terms of the three-body

Coulomb scattering wave function of the first type. These terms actually represent the

leading asymptotic terms of the three-body Coulomb distorted incident wave and are

valid in all four asymptotic regions. As has been indicated in Chapters I and II, there

is a second type of three-body Coulomb scattering wave functions which are evolved

from the two-body incident wave. These wave functions are orthogonal to the scatter-

ing wave functions of the first type and correspond to the three branches of the energy

spectrum. Each of these branches begins from the −εν, ν = α, β, γ, where εν is the

ground-state binding energy of the pair ν. Knowledge of the asymptotic behavior of

the scattering wave functions of the second type is extremely important for a solu-

tion of the three-body problem with the Coulomb interaction and correct formulation

of the breakup reaction theory in the presence of the Coulomb interactions, espe-

cially taking into account the progress in high-performance computing. In particular,

the most advanced computers allow for a direct numerical solution of the Schrödinger

equation [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. This method has emerged

as a powerful technique to analyze scattering processes with three charged particles.

1* Reprinted with permission from ”Asymptotic behavior of the Coulomb three-

body scattered wave” by A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Stelbovics,

I. Bray and F. Pirlepesov, Physical Review A 68, 022703 (2003). Copyright 2003 by

the American Physical Society.

pirlepesov
1

pirlepesov
1*
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However, such methods require knowledge of the asymptotic behaviour of the scat-

tered wave function corresponding to the proccess of 2 particles → 3 particles in

all asymptotic regions of the configuration space. This is because the asymptotic

wave functions are used directly as boundary conditions in solving the differential

Schrödinger equation or Faddeev type equations, or for extracting the scattering am-

plitudes from integral expressions involving the full scattering wave function. Below

the three-body breakup threshold when only two-cluster channels are open, there is

no difficulty with the application of the aforementioned approaches in combination

with some additional, but reasonable, approximation schemes. However, it should

be emphasised that attempts to follow exact algorithms have thus far limited these

approaches to essentially model problems [32, 33, 34, 35, 36, 37, 38]. To get a unique

solution to the Schrödinger’s equation above the breakup threshold, one must impose

the boundary conditions in the regions where all three particles are ”asymptotically

free”. The most studied system of this type is that of electron-hydrogen scattering.

No success has been achieved in the analysis of nuclear breakup processes for charged

particles. The methods mentioned above provide an accurate three-body scattering

wave function in an ”internal” region in coordinate space and the ionization amplitude

is extracted by matching to ionization boundary conditions in the asymptotic region.

In each method, the extraction process relies on approximate ionization boundary

conditions. For example, in the close-coupled-channel (CCC) method [39, 40], the

ionization flux is initially obtained by discretizing the target continuum. The ion-

ization amplitude is then constructed by means of a renormalization of the square-

integrable positive-energy target states with the true target continuum. Implicit in

this approach is the representation of the three-body continuum states as a product

of plane and Coulomb waves without electron-electron correlation. In the T-matrix

[19], R-matrix [24], and exterior complex scaling (ECS) [26] methods, an integral
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representation of the ionization amplitude is used but again the three-body contin-

uum states are approximated, this time by a product of two fixed-charge Coulomb

waves for the two free electrons. This yields an ionization amplitude with a divergent

phase as a function of matching radius, although the magnitude of the amplitude

converges. Thus, due to the necessity to eventually calculate the flux at infinity, none

of these methods can really avoid the asymptotic form of the scattered wave, rather

they approximate it. Despite some success of these practical approaches in providing

accurate electron-hydrogen ionization cross sections, a formal theory of breakup with

charged particles remains incomplete. The formal theory given over thirty years ago

[8, 41, 42] is still considered the state of the art. The first and the only attempt to

solve the Schrödinger equation for electron-impact ionization of hydrogen by directly

matching to exact ionization boundary conditions is limited to the S-wave model

[43]. Though an asymptotic form of the scattered wave for electron-impact ionization

of hydrogen for the case when all interparticle distances are large was obtained by

Peterkop [44, 45, 46] four decades ago, it has not been successfully implemented in

the approaches mentioned above.

One reason is that a direct numerical solution of the Schrödinger equation for

the full hydrogen-ionization problem requires a partial-wave analysis of the asymp-

totic wave function and a suitable partial-wave decomposition of the Peterkop wave

function does not exist. The problem with the partial-wave decomposition is that

Peterkop’s asymptotic wave function is invalid when the two electrons are close to

each other. In the general case any extension of the Peterkop wave function will be

invalid in the asymptotic regions Ων , where two particles are close to each other and

far away from the third particle. Thus, for full-scale numerical calculations a rep-

resentation of the wave function describing breakup/ionization in all the asymptotic

regions is necessary.
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In addition, Peterkop used six-dimensional hyperspherical coordinates which ef-

fectively transform the Schrödinger equation describing the development of the system

into the Hamilton-Jacobi type equation as the asymptotic motion of the particles

becomes classical. For this reason, the Peterkop asymptotic wave suffers from an

amplitude-phase ambiguity problem, since some part of the hyperspherical ionization

amplitude can be moved to the phase factor and the resulting wavefunction is still

a solution to the original Hamilton-Jacobi equation [8]. Accordingly, the remainder

amplitude can equally well be called an ionization amplitude. Thus, generally speak-

ing, the hyperspherical approach is not capable of uniquely identifying the ionization

amplitude. This amplitude-phase ambiguity has caused problems in the formal theory

of breakup at a very fundamental level.

Finally, a full knowledge of the asymptotic behavior of the scattered wave forms

the basis for the Kohn variational approach to breakup scattering [47, 48, 49, 50,

51]. Due to the absence of the asymptotic wave function for breakup scattering of

three charged particles, the validity of the variational approach to such processes was

shown [6, 7] only in the region Ω0 where distances between all particles are large.

For the case of proton-deuteron breakup, for example, the validity of the variational

principle is yet to be proven when all three particles in the final state are in the

continuum but the neutron is close to one of the protons and the other proton is far

away. Therefore, in order for the recent Kohn variational proton-deuteron scattering

calculations [50, 51] to be extended to calculations of the deuteron breakup amplitude,

an unambiguous asymptotic form of the total scattered wave is necessary. In this case

it is expected that the proton, which is far away, distorts the relative motion of the

other proton and neutron due to the long range Coulomb interaction between the

protons. Thus the knowledge of the asymptotic behavior of the three-body scattered

wave in all regions of the configuration space is crucial in calculations of atomic and



45

nuclear breakup processes.

In Ref. [52] a relationship between the total wave function describing ionization in

the electron-hydrogen system and the one representing scattering of three particles of

the system in the continuum was established. On the basis of this relationship, forms

for the scattered wave for breakup/ ionization valid in all asymptotic domains relevant

to ionization were obtained and the amplitude-phase ambiguity of the Peterkop wave

function was resolved [53]. This removed the above-mentioned problems in practical

calculations and made the correct extraction of observables possible.

The aim of this chapter is to derive the asymptotic three-body scattered wave

in the asymptotic regions Ων , where two particles are close to each other and far

away from the third particle for an arbitrary system of three charged particles. The

asymptotic wave obtained here should match smoothly with the Peterkop asymptotic

wave in the asymptotic region Ω0 in the case of electron-hydrogen ionization. To

derive the asymptotic three-body scattered wave we applied the Green’s function

formalism [54]. Introducing the spectral decomposition of the three-body Green’s

function we can connect the first and second type scattering wave functions. A similar

technique is applied to obtain asymptotic forms of the three-body Coulomb Green’s

function. The latter are important in the formulation of the three-body problem

[55, 56]. Asymptotic forms of the three-particle Green’s function also play a central

role, for instance, when calculating the optical potentials [16, 57, 58] and the non-

perturbative calculations of the dynamical dipole polarization terms [59]. Spectral

decomposition of the Green’s function also is given in [3]. The Green’s function

formalism allows us to resolve the phase-amplitude ambiguity, which has been an

unresolved problem in the Peterkop approach.

The Chapter is set out as follows. In Sec. B we give a relationship between

the total wave function of a breakup process in two-cluster collisions taking place
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in an arbitrary three charged particles system and the wave function of the process

of scattering of all three particles of the system in the continuum. Calculations of

asymptotic forms of the scattered wave based on this relationship will be presented

in Sec. C. Asymptotic forms of the three-body Green’s function are given in Sec. D.

Finally, in Sec. E we summarize the results of the present work and discuss their

possible applications.

B. Derivation of the intergral representation of the scattering wave in a Coulomb

three body system

Let us consider a system of three particles of mass mα and charge zα, α = 1, 2, 3. We

use a system of Jacobian variables: rα is the relative coordinate and kα is the relative

momentum between particles β and γ; ρα is the relative coordinate of the c.m. of the

pair (β, γ) and particle α, with qα being the canonically conjugate relative momentum.

The corresponding reduced masses are denoted by µα = mβmγ/(mβ +mγ) and Mα =

mα(mβ +mγ)/(mα +mβ +mγ). Here β, γ = 1, 2, 3, and α 6= β 6= γ.

For further reference we note that

rν = − mν

mβγ
rα − εναρα , ρν = ενα

µν

Mα
rα −

mα

M −mν
ρα (4.1)

and

kν = − mα

M −mν
kα − ενα

µα

Mν
qα , qν = εναkα −

mν

mβγ
qα, (4.2)

Consider a scattering of particle α with incident momentum qi off a bound pair (β, γ)

in the initial ground state φ0(rα) with a bound state energy E0α = −εα. Assume

that the energy of the projectile q2
i /2Mα is enough to break up the target. The total

three-body wave function describing this process satisfies the Schrödinger equation

(E −H)Ψ(+)
qi

(rα,ρα) = 0, (4.3)
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where H = −∆rα/2µα−∆ρα/2Mα +Vα +Vβ +Vγ is the three-body Hamiltonian and

E = E0α + q2
i /2Mα = k2

α/2µα + q2
α/2Mα is the total energy of the system.

Vα = V C
α + V S

α , V C
α =

zβzγ

rα
, (4.4)

V C
α (V S

α ) is the Coulomb (short-range) interaction between particles β and γ. The

wave function Ψ(+) consists of the incoming initial-channel wave Φ(i) and outgoing

scattered wave Φ(sc)(+):

Ψ(+)
qi

(rα,ρα) = Φ(i)
qi

(rα,ρα) + Φ
(sc)(+)
kα ,qα

(rα,ρα), (4.5)

where Φ
(i)
qi (rα,ρα) is separable and is given by

Φ(i)
qi

(rα,ρα) = χqi(ρα)φ0(rα) (4.6)

With Eq. (4.5) the Schrödinger equation Eq. (4.3) can be rewritten as

(E −H)Φ
(sc)(+)
kα ,qα

(rα,ρα) = V αΦ(i)
qi

(rα,ρα), (4.7)

where V α = Vβ + Vγ is the interaction of the projectile particle with the target

particles. Then applying the three-body Green’s function G+ = (E −H + i0)−1 to

both sides of Eq. (4.7) we get

Φ
(sc)(+)
kα ,qα

(rα,ρα) =

∫
dr′

αdρ
′
αG

(+)(rα,ρα; r′
α,ρ

′
α;E + i0)V αΦ(i)

qı
(r′

α,ρ
′
α). (4.8)

Next we apply a spectral decomposition for the Green’s function. To this end we

consider another scattering process within the same three-body system but one where

all three particles in the initial channel are in the continuum (the so called, 3 → 3

scattering as opposed to 2→ 3 breakup scattering in two-cluster collisions). We take

the boundary condition for the wave function Ψ(−) describing this process in the form

of a Coulomb-distorted three-body plane wave and incoming scattered wave. This



48

wave function is also an eigenstate of the same Hamiltonian H, i.e.

(E −H)Ψ
(−)
kα,qα

(rα,ρα) = 0. (4.9)

Therefore, it is well suited for our purposes.

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0) =

∫
dk′

α

(2π)3

dq′
α

(2π)3

Ψ
(−)
k′

α ,q′
α
(rα,ρα)Ψ

(−)∗
k′

α ,q′
α
(r′

α,ρ
′
α)

E − k′2α/2µα − q′2α/2Mα + i0

+
∑

ν=β,γ

∫
dq′

i,ν

(2π)3

Ψ
(−)

q′
i,ν

(rν ,ρν)Ψ
(−)∗
q′

i,ν
(r′

ν ,ρ
′
ν)

E −E0ν − q′2i,ν/2Mν + i0
+ · · · , (4.10)

As will become clear below, the reason for choosing this form of the total wave

function as the basis for the decomposition rather than Ψ(+), which consists of the

Coulomb-distorted three-body plane wave and outgoing scattered wave, is twofold.

First, Ψ(+) would eventually lead to the incoming scattered wave Φ(sc)(−) instead of

the outgoing Φ(sc)(+) which is inconsistent with the scattering boundary condition

Eq. (4.5). Second, we are not able to introduce the breakup amplitude in a standard

form using Ψ(+).

Thus by using the spectral decomposition for the three-body Green’s function

G(+) in Eq. (4.8) in terms of the three-body scattering wave functions Ψ(−), we ar-

rive at

Φ
(sc)+
kα ,qα

(rα,ρα) =

∫
dr′

αdρ
′
α

dk′
α

(2π)3

dq′
α

(2π)3

Ψ
(−)
k′

α ,q′
α
(rα,ρα)Ψ

(−)∗
k′

α ,q′
α
(r′

α,ρ
′
α)

E − k′2α/2µα − q′2α/2Mα + i0
V αΦ(i)

qi
(r′

α,ρ
′
α)

+
∑

ν=β,γ

∫
dr′

αdρ
′
α

dq′
i,ν

(2π)3

Ψ
(−)

q′
i,ν

(rν ,ρν)Ψ
(−)∗
q′

i,ν
(r′

ν ,ρ
′
ν)

E − E0ν − q′2i,ν/2Mν + i0

×V αΦ(i)
qi

(r′
α,ρ

′
α) + · · · . (4.11)

Here Ψ
(−)
qi,ν (rν ,ρν) is a wave function of a two cluster channel ν = β, γ, where particles

in the ν pair are bound in a ground state with energy E0ν and particle ν is travelling

free with momentum qi,ν. The dots indicate that all other contributions, such as
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excitations are not shown explicitly. These contributions represent all possible three-

body bound states of the Hamiltonian H and the two-cluster-channels. The latter

case will be discussed later on.

Defining an amplitude for the breakup α + (β, γ)→ α + β + γ and

Mkα,qα;qi =

∫
drαdραΨ

(−)∗
kα,qα

(rα,ρα)V αΦ(i)
qi

(rα,ρα), (4.12)

and an amplitude for particle transfer

Mqi,ν ;qi =

∫
drαdραΨ(−)∗

qi,ν
(rα,ρα)V αΦ(i)

qi
(rα,ρα), (4.13)

we rewrite Eq. (4.11) in the form leaving only the scattered wave for the breakup

Φ
(sc)(+)
kα ,qα

(rα,ρα) =

∫
dk′

α

(2π)3

dq′
α

(2π)3

Mk′
α,q′

α;qiΨ
(−)
k′

α,q′
α
(rα,ρα)

E − k′2α/2µα − q′2α/2Mα + i0
+ · · · . (4.14)

We shall show in the Chapter V that Eq. (4.12) is the desired breakup amplitude.

Eq. (4.14) establishes a relationship between the scattered part of the total wave

functions of the second type, which describes any 2 → 3 breakup process in a three

charged-particle system, and the scattering wave function of the first type, which

describes the 3 → 3 process for scattering with all three particles of the system in

the continuum, through the corresponding breakup amplitude. We introduce the

following notations for asymptotic forms of Φ(sc)(+) and Ψ(−) in Ων, ν = 0, α:

Φ
(sc)(+)
kα ,qα

(rα,ρα)
Ων−→ Φ

(sc,ν)(+)
kα,qα

(rα,ρα), (4.15)

Ψ
(−)
kα,qα

(rα,ρα)
Ων−→ Ψ

(ν)(−)
kα,qα

(rα,ρα), (4.16)

Since in the Ω0 domain all components of Ψ(−) involving two-body and three-

body bound states have an exponentially decreasing contribution, all the contribution

to Φ(sc)(+) comes from the continuum part of Ψ(−). Therefore, we get from Eq. (4.14)
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a fundamental asymptotic relationship

Φ
(sc,0)(+)
kα ,qα

(rα,ρα) =

∫
dk′

α

(2π)3

dq′
α

(2π)3

Mk′
α,q′

α;qiΨ
(0)(−)
k′

α ,q′
α
(rα,ρα)

E − k′2α/2µα − q′2α/2Mα + i0
. (4.17)

Here, Ψ
(0)(−)
k′

α,q′
α
(rα,ρα) is the Redmond asymptotic wave function in Ω0 given by Eq. (2.10).

Let us turn now to the case when particles β and γ remain close to each other. All

components of Ψ(−) involving three-particle bound states and two-cluster states with

non-α partition decrease exponentially in the Ωα domain as well. Thus one can write

from Eq. (4.14) another asymptotic relationship

Φ
(sc,α)(+)
kα,qα

(rα,ρα) =

∫
dk′

α

(2π)3

dq′
α

(2π)3

Mk′
α,q′

α;qiΨ
(α)(−)
k′

α ,q′
α

(rα,ρα)

E − k′2α/2µα − q′2α/2Mα + i0
. (4.18)

Different approximate relationships resembling Eq. (4.18) have been in use, e.g., in

the close-coupling formalism, for a long time. However, we emphasise that Eqs. (4.17)

and (4.18) are exact.

C. Asymptotic forms of the scattered wave for the breakup channel

1. Asymptotic scattered wave in Ω0 region

In this section we investigate the asymptotic behavior of the scattered wave Φ(sc)(+) for

a system of three arbitrary charged particles and calculate its leading-order terms in

Ω0 and Ωα based on the relationships (4.17) and (4.18). Below we refer to asymptotic

wave functions Φ(sc,ν)(+) and Ψ(ν)(−), ν = 0, α, to denote the leading order terms of

the relevant wave functions.

To this end we need leading-order asymptotic terms of Ψ(−). For Ω0 in non-

singular directions (k̂ν · r̂ν 6= −1, ν = α, β, γ) this term is the Redmond asymptotic

three-body Coulomb distorted plane wave given by Eq. (2.10). For Ωα the leading
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asymptotic terms were obtained in [16]:

Ψ
(α)(−)
kα,qα

(rα,ρα) = eikα·rα+iqα ·ραϕk̃α
(rα)

∏

ν=β,γ

e−iην ln ζ(kν ,rν). (4.19)

The wave function ϕk̃α
(rα) satisfies the equation

[
1

2µα

∆rα + i
1

µα

k̃α ·∇rα − Vα

]
ϕk̃α

(rα) = 0 (4.20)

with the incoming-wave boundary condition and describes the relative motion of

particles β and γ, interacting via the potential given by the sum of the Coulomb and

short-range potentials Vα = V C
α + V S

α . If Vα is pure Coulomb potential, Vα = V C
α ,

then ϕk̃α
(rα) is given by

ϕk̃α
(rα) = Γ(1 − iη̃α) exp(−πη̃α/2) 1F1(iη̃α, 1;−iζ(k̃α, rα)), (4.21)

η̃α =
zβzγµα

k̃α

, (4.22)

where 1F1 is the confluent hypergeometric function. The relative local momentum

k̃α of particles β and γ in the Coulomb field of the third particle is given by

k̃α = kα +
∑

ν=β,γ

mν

mβγ
ην

k̂ν + r̂ν

1 + k̂ν · r̂ν

1

rν
. (4.23)

Thus, the relative motion of particles β and γ is correlated by particle α at infinity due

to the long-range nature of the Coulomb interaction. The importance of this three-

body effect was first demonstrated [52] in the case of electron-impact ionization. The

effect provided a consistency in the underlying scattering theory, for instance, when

two electrons are close to each other. When Ωα → Ω0 the function (4.19) smoothly

transforms to the Redmond function as the local corrections in momentum k̃α become

negligible. All second-order terms of Ψ(−) in Ωα have been found by [17]. However,
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as we are interested here in the main leading-order terms of the scattered wave, the

wave function derived in Ref. [16] is sufficient for our purposes.

Let us proceed now to the asymptotic behavior of the scattered wave Φ(sc)(+). The

standard procedure, due to Peterkop [44, 45], is to write Eq. (4.3) in 6-dimensional

hyperspherical coordinates. Then in Ω0 the Schrödinger equation (4.3) transforms

into a Hamilton-Jacobi type equation as the motion of the particles becomes classical.

The Peterkop wave function was originally given for the case of two light particles in

the Coulomb field of an infinitely heavy third particle. For further reference here we

give a similar wave function for the case of three arbitrary Coulomb particles. Thus,

following Peterkop’s procedure, we get, in leading order,

Φ
(sc,0)(+)
kα ,qα

(rα,ρα) = A(ω̂)R−5/2eiκR−iλ0 ln(2κR), (4.24)

where

R =

(
µα

m
r2
α +

Mα

m
ρ2

α

)1/2

(4.25)

is a hyperradius, m is an arbitrary mass constant introduced for convenience so that

the hyperradius has units of length2, which can be chosen as m =
√
µνMν ,

ω̂ = (r̂α, ρ̂α, φα) is a 5-dimensional hyperangle, with

φα = arctan

[(
µα

Mα

)1/2
rα

ρα

]
, 0 ≤ φα ≤ π/2, (4.26)

κ = (2mE)1/2 and the Coulomb parameter λ0 is given by

λ0 =
∑

ν=α,β,γ

ην . (4.27)

2As it will be seen later, the final results do not depend on this complementary
constant.
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A(ω̂) is the breakup amplitude. From Eq. (5.7) Note that hyperangles φν, ν = β, γ

are related to φα as

sinφν =

[
µν

Mα
cos2 φα +

m2
ν

m2
βγ

µν

µα
sin2 φα + ενα

µνmν

mβγ

√
µαMα

sin 2φαr̂α · ρ̂α

]1/2

. (4.28)

Eq. (4.27) explicitly shows that the generalized Peterkop wave function given by

Eq. (4.24) is not valid in the regions where φν → 0, i.e. when any two particles of

the system are close to each other and far from the third one. The main drawback

of the Peterkop asymptotic form, however, is that there exists an amplitude-phase

ambiguity problem, i.e. some part of A(ω̂) can be moved to the phase factor and the

resulting wave function is still a solution to the original Hamilton-Jacobi equation [8].

Accordingly, the remainder A′(ω̂) can equally well be called a breakup amplitude.

Thus, generally speaking, the hyperspherical approach is not capable of uniquely

identifying the breakup amplitude. Our approach will enable us to fix this problem,

unambiguously, relating the ‘hyperspherical’ definition of the breakup amplitude to

its standard quantum-mechanical one given by Eq. (4.12).

Let us now calculate the same wave function Φ(sc,0)(+) using the relationship

(4.17) and noting the leading-order asymptotic term given in Eq. (2.10)). Using the

asymptotic forms makes it possible to evaluate Eq. (4.17). To this end we consider

first the integral over k′
α:

Ikα,qα(rα,ρα,q
′
α) =

∫
dk′

α

(2π)3

Mk′
α ,q′

α;qie
ik′

αrαe−iη′
α ln ζ(k′

α,rα)

E − k′2α/2µα − q′2α/2Mα + i0

×
∏

ν=β,γ

exp [−iη′ν ln ζ(k′
ν , rν)] , (4.29)

where k′
ν = −µν/mγ k′

α − εναµα/Mν q′
α, ν = β, γ.

We take advantage of the fact that in the Ω0 domain rα→∞ and use an asymptotic
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form of the plane wave

eikr r→∞∼ 2π

ikr

[
δ(k̂− r̂)eikr − δ(k̂ + r̂)e−ikr

]
, (4.30)

which can be obtained from the asymptotic form of the partial wave expansion of the

plane wave (see, e.g., [60]). Then we get (in leading order)

Ikα,qα(rα,ρα,q
′
α) =

1

(2π)2

1

irα

∫ ∞

−∞
dk′α

k′αMk′
α r̂α,q′

α;qie
ik′

αrαe−iη′
α ln ζ(k′

αr̂α,rα)

E − k′2α/2µα − q′2α/2Mα + i0

×
∏

ν=β,γ

exp [−iη′ν ln ζ(k′
ν, rν)] , (4.31)

where k′
ν = −mα/(M −mν) k

′
αr̂α − εναµα/Mν q′

α.

The integrand has two simple poles. Apart from that it is an analytic function on the

complex energy plane. Therefore, we can calculate this integral closing the integration

contour, e.g. in the upper-half of the complex plane (a semi-circular complex contour

of infinite radius does not contribute to the integral due to the eik′
αrα factor). Using

the Cauchy theorem to take the residue at the pole singularity (ps) gives:

Ikα,qα(rα,ρα,q
′
α) = −µα

2π

eik
(ps)
α rα

rα
M

k
(ps)
α r̂α,q′

α;qi
e−iη

(ps)
α ln ζ(k

(ps)
α r̂α,rα)

×
∏

ν=β,γ

exp
[
−iη(ps)

ν ln ζ(k(ps)
ν , rν)

]
, (4.32)

where k
(ps)
ν = −mα/(M −mν) k

(ps)
α r̂α − εναµα/Mν q′

α. This brings energy conserva-

tion into play and the magnitude of k′α is now fixed at

k(ps)
α =

(
2µαE −

µα

Mα

q′
2
α

)1/2

. (4.33)
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Thus, we have

Φ
(sc,0)+
kα ,qα

(rα,ρα) =

∫
dq′

α

(2π)3
eiq′

αραIkα,qα(rα,ρα,q
′
α)

= − µα

(2π)3

1

irαρα

∫ (2MαE)1/2

0

dq′αq
′
αe

−iη
(ps)
α ln ζ(k

(ps)
α r̂α,rα)

×
{
eik

(ps)
α rα+iq′αραM

k
(ps)
α r̂α,q′αρ̂α ;qi

∏

ν=β,γ

exp
[
−iη(ps(+))

ν ln ζ(kps(+)
ν , rν)

]

− eik
(ps)
α rα−iq′αραM

k
(ps)
α r̂α,−q′αρ̂α ;qi

∏

ν=β,γ

exp
[
−iηps(−)

ν ln ζ(kps(−)
ν , rν)

]
}
. (4.34)

Here for simplicity we define k
ps(+)
ν = −mα/(M −mν) k

(ps)
α r̂α − εναµα/Mν q

′
αρ̂α,

and k
ps(−)
ν = −mα/(M −mν) k

(ps)
α r̂α + εναµα/Mν q

′
αρ̂α.

At this stage we have no information about the individual physical momenta

kα and qα but their values will become apparent upon evaluating the integral us-

ing asymptotic techniques. In Ω0, where rα and ρα are asymptotically large, the

integrand is extremely oscillatory. For this reason one should only expect significant

contribution to the integral from the neighborhood of stationary-phase (sp) points if

there are any. One can verify that the first term of the integrand in Eq. (4.34) has a

single stationary-phase point at

q(sp)
α =

Mα

m

κ

R
ρα (4.35)

while the second one does not have any. This is why a contribution to the integral

from the second term in curly brackets is negligibly small. In Eq. (4.39) we used the

fact that at the stationary-phase point Eq. (4.33) is written as

k(sp)
α =

µα

m

κ

R
rα, (4.36)
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and consequently

− µν

mγ

k(ps)
α r̂α − ενα

µα

Mν

q(sp)
α ρ̂α =

µν

m

κ

R
rν , ν = β, γ. (4.37)

We also note that the physical momenta kα and qα are given by

kα =
µα

m

κ

R
rα, qα =

Mα

m

κ

R
ρα. (4.38)

Evaluating the remaining integral by means of the stationary-phase method [61], we

obtain

Φ
(sc,0)(+)
kα ,qα

(rα,ρα) =
(2πi)1/2

(2π)3
Mkα ,qα;qi

(µαMα)3/2

m2

κ3/2

R5/2
eiκR

×
∏

ν=α,β,γ

exp

[
−iην ln

(
2µν

m

κ

R
r2
ν

)]
. (4.39)

In terms of hyperangles φν, ν = α, β, γ we finally have

Φ
(sc,0)(+)
kα ,qα

(rα,ρα) =
(2πi)1/2

(2π)3
Mkα,qα;qi

×(µαMα)3/2

m2

κ3/2

R5/2
eiκR−iλ0 ln(2κR)−iσ0 , (4.40)

with the additional phase

σ0 = 2
∑

ν=α,β,γ

ην ln(sinφν). (4.41)

Thus the asymptotic form of Φ(sc)(+) in Ω0 comes as a result of the fundamental

relationship between the total wave functions describing two different scattering pro-

cesses within the same three-body system. Most importantly, our derivation leads

to an unambiguous amplitude-phase form, which allows us to uniquely express the

‘hyperspherical’ breakup amplitude A(ω̂) in terms of the standard definition of the
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breakup amplitudeMkα,qα;qi given by Eq. (4.12):

A(ω̂) =
(2πi)1/2

(2π)3

(µαMα)3/2

m2
κ3/2Mkα,qα;qnα

e−iσ0. (4.42)

2. Asymptotic scattered wave in the Ωα region

Having completed the derivation of the asymptotic form of Φ
(sc,0)(+)
kα ,qα

(rα,ρα) in Ω0,

it remains to proceed to Ωα and evaluate the integrals contained in (4.18). To start

with we emphasize that the calculation of the second term of Eq. (4.14) is trivial for

large ρα and leads to a well known scattered wave in two-cluster channels.

Consider now the Eq. (4.18). By definition here rα is limited as compared to ρα.

Therefore, it cannot, strictly speaking, be used as an asymptotic parameter alongside

ρα. However, the other two pairs of Jacobian variables (rν ,ρν), ν = β, γ, constitute

suitable pairs of asymptotically large parameters should we represent the integral in

terms of relevant canonical conjugate momentum space variables (kν ,qν). Below we

use the (kβ,qβ) space. Then

Φ
(sc,α)(+)
kα ,qα

(rα,ρα) ∼
∫

dk′
β

(2π)3

dq′
β

(2π)3

Mk′
α,q′

α;qie
ik′

βrβ+iq′
β ρβϕα(k̃α, rα)

E − k′2β/2µβ − q′2β/2Mβ + i0

×
∏

ν=β,γ

e−iην ln ζ(kν ,rν). (4.43)

In the equation above, rν , ρν , k′
ν and q′

ν, ν = γ, α, are kept as short-hand notation.

As functions of β-space variables they are given by Eqs. (5.7) and (5.8). Taking into

account that

µβ

m
r2
β +

Mβ

m
ρ2

β =
µα

m
r2
α +

Mα

m
ρ2

α and
m

µβ
k2

β +
m

Mβ
q2
β =

m

µα
k2

α +
m

Mα
q2
α (4.44)

we can calculate the above integral in analogy with the procedure we used in Ω0. We

therefore omit the details. Evaluating the integrals and transforming the answer back
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to the variables rα and ρα we arrive at the final result

Φ
(sc,α)(+)
kα,qα

(rα,ρα) =
(2πi)1/2

(2π)3
Mkα,qα;qi

(µαMα)3/2

m2

κ3/2

R5/2

×ϕα

(
kα, rα

)
eiκR−iλα ln(2κR)−iσα, (4.45)

where

λα =
∑

ν=β,γ

ην (4.46)

and

σα = 2
∑

ν=β,γ

ην ln(sinφν). (4.47)

The local momentum entering in the scattered wave (4.45) takes the form

kα =
µα

m

κ

R
rα +

∑

ν=β,γ

µα

mγ

ην

µν

R

κr3
ν

rν , (4.48)

If we take into account that the second term in Eq. (4.48) becomes negligible as rα

becomes large, then

ϕα

(
kα, rα

) rα→∞∼ exp
[
−iηα ln

(
2κR sin2 φα

)]
. (4.49)

This means that Eq. (4.45) smoothly transforms to Eq. (4.40) when Ωα → Ω0.

It is now also not difficult to verify that the final results for the scattered wave

are independent of the complementary mass constant m which we introduced earlier.

Our final note concerns the asymptotic domains Ων, where ν 6= α. In this case

the result given by Eq. (4.45) remains unchanged, the only difference being that Φ(ν)+,

ν 6= α, denotes the asymptotic form of the total 2 → 3 wave function as there is no

incident wave in the non-α channels.
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3. Generalized three-body scattered wave valid in all the asymptotic regions

Having completed the derivation of the asymptotic form of Φ
(sc,ν)(+)
kα ,qα

(rα,ρα) in Ων ,

where ν = 0, α it remains to generalize the result. The leading asymptotic term of

the three-body incident wave, valid in all the asymptotic regions, was obtained in [16]

and in Chapter III:

Ψ
(αβγ)(−)
kα,qα

(rα,ρα) = eikα·rα+iqα·ρα
∏

ν=α,β,γ

ϕ
(−)

k̃ν
(rν). (4.50)

The wave function ϕ
(−)

k̃ν
(rν) satisfies the two-body equation similar to Eq. (4.20) with

the local momentum:

k̃ν = kν +
∑

τ=α,β,γ

mτ

M −mτ
ητ

k̂τ + r̂τ

1 + k̂τ · r̂τ

1− δν,τ

rτ
. (4.51)

The general expression for the asymptotic three-body scattered wave valid in all

four asymptotic regions can be derived from Eq. (4.14). After integration we have

Φ
(αβγ)(+)
kα ,qα

(rα,ρα) =
(2πi)1/2

(2π)3
Mkα,qα;qi

(µαMα)3/2

m2

κ3/2

R5/2

×eiκR+iπ/4
∏

ν=α,β,γ

ϕ
(−)

kν
(rν). (4.52)

where the asymptotic local momentum kα entering in the scattered wave Eq. (4.52) is

found similarly to Eq. (4.48) from Eq. (4.51). If we take into account that the second

term in Eq. (4.51) becomes negligible as rν becomes large, then

ϕkν
(rν)

rν→∞∼ exp
[
−iην ln

(
2κR sin2 φν

)]
. (4.53)

This means Eq. (4.52) smoothly transforms to Eq. (4.40) when rν → ∞, where

ν = α, β, γ.
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D. Asymptotic forms of the Coulomb three-body Green’s function

In this section the derivation of the asymptotic forms of the Green’s function for a

system of three charged particles is presented. Because the methods used earlier form

the basis of the derivations, we will omit technical details of the calculations. The

asymptotic forms of the three-body Green’s function are important in the formulation

of the three-body problem [55, 56], in calculating the optical potentials [16, 57, 58]

and for non-perturbational calculations of dynamical dipole polarization terms [59].

Thus, using a similar technique we can get leading-order terms of the three-body

Green’s function in the asymptotic domains Ω0 and Ωα. When (rα, ρα) ∈ Ω0, from

the spectral decomposition, we can write

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα,ρα)∈Ω0−→
∫

dk′
α

(2π)3

dq′
α

(2π)3
(4.54)

×
Ψ

(0)(−)
k′

α,q′
α
(rα,ρα)Ψ

(−)∗
k′

α,q′
α
(r′

α,ρ
′
α)

E − k′2α/2µα − q′2α/2Mα + i0
.

Calculating the integrals we get

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα,ρα)∈Ω0−→ (2πi)1/2

(2π)3

(µαMα)3/2

m2

κ3/2

R5/2
Ψ

(−)∗
µα
m

κ
R

rα, Mα
m

κ
R

ρα
(r′

α,ρ
′
α)

×eiκR−iλ0 ln(2κR)−iσ0. (4.55)

More interesting is the case when both (rα, ρα) and (r′α, ρ
′
α) ∈ Ω0. Then we have

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα, ρα) ∈ Ω0

(r′α, ρ′α) ∈ Ω0−→ (2πi)1/2

(2π)3

(µαMα)3/2

m2

κ3/2

R5/2

×eiκR−iκR′(sinφα sinφ′
α r̂αr̂′

α+cosφα cosφ′
α ρ̂αρ̂′

α)

× exp

[
− i
κ

∑

ν=α,β,γ

(
m

µν

)1/2
ην

sinφν

ln
2rν

r′ν(1 + r̂ν r̂′
ν)

]
,

(4.56)

with the condition that R′ ≤ R, otherwise the boundary condition for G(+) is violated.
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The R′ > R case defines G(−).

When (rα, ρα) ∈ Ωα, we can write

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα,ρα)∈Ωα−→
∫

dk′
α

(2π)3

dq′
α

(2π)3
(4.57)

×
Ψ

(α)−
k′

α ,q′
α
(rα,ρα)Ψ

(−)∗
k′

α,q′
α
(r′

α,ρ
′
α)

E − k′2α/2µα − q′2α/2Mα + i0
+ . . .

Calculating the integrals we arrive at

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα,ρα)∈Ωα−→ (2πi)1/2

(2π)3

(µαMα)3/2

m2

κ3/2

R5/2
Ψ−∗

µα
m

κ
R

rα, Mα
m

κ
R

ρα
(r′

α,ρ
′
α)

×ψα

(
kα, rα

)
eiκR−iλα ln(2κR)−iσα + . . . (4.58)

If both (rα, ρα) and (r′α, ρ
′
α) ∈ Ωα we have

G(+)(rα,ρα; r′
α,ρ

′
α;E + i0)

(rα, ρα) ∈ Ωα

(r′α, ρ′α) ∈ Ωα−→ (2πi)1/2

(2π)3

(µαMα)3/2

m2

κ3/2

R5/2

×ϕ∗
k
′
α
(r′

α)ϕkα
(rα) eiκR−iκR′(sinφα sinφ′

α r̂αr̂′
α+cosφα cos φ′

α ρ̂αρ̂′
α)

× exp

[
− i
κ

∑

ν=β,γ

(
m

µν

)1/2
ην

sinφν
ln

2rν

r′ν(1 + r̂ν r̂′
ν)

]
(4.59)

From Eq. (4.59) one can get an asymptotic Green’s function for the case when

(rα, ρα) ∈ Ω0 but (r′α, ρ
′
α) ∈ Ωα. Clearly, in this case bound states do not contribute.

The leading order asymptotic terms of the Green’s function for three-particles inter-

acting via short-range potentials were given by [62].

E. Conclusion

Summarizing, the asymptotic behavior of the scattered wave function describing

breakup processes in a system of three arbitrary charged particles has been inves-

tigated. Leading-order terms of the scattered wave are given for asymptotic domains

where all three particles are widely separated and when any two are close to each
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other but far from the third particle. The derivations are based on the relationship

between the scattered part of the scattering wave functions of the second type, which

describes a breakup process in a three charged-particle system and the wave func-

tion of the first type which describes the scattering with all three particles of the

system in the continuum. The asymptotic three-body wave that is derived is free

of the logarithmically diverging phase factors in the asymptotic regions where two

particles are close to each other and far away from the third particle. Another impor-

tant consequence of the derivation presented here is that the forms obtained in this

work are free of the phase ambiguities that are a feature of the previously derived

Peterkop asymptotic form. A similar technique is used to obtain asymptotic forms of

the three-body Coulomb Green’s function.

The derived wave functions are suitable for use in calculations of ionization in

electron/positron-atom and ion-atom collisions, double-photo ionization of helium

and similar breakup processes in nuclear physics. For instance, the breakup amplitude

can be extracted by direct comparison of the numerically calculated wave function for

sufficiently large hyperradius with its analytic asymptotic forms given in the present

work.
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CHAPTER V

COULOMB BREAKUP: FROM EXACT TO DWBA AMPLITUDES

A. Introduction

Breakup processes have become an important tool in modern nuclear physics pro-

viding valuable information for topics ranging from nuclear structure to nuclear as-

trophysics [63, 64, 65, 66]. However, the theory of breakup reactions lags behind

experiments. A treatment of breakup processes is always complicated due to the

presence of the three-body final-state. It is even more complicated if Coulomb in-

teractions are not negligible, as happens when the Coulomb parameters are large.

Evidently, this is the case when the breakup reaction occurs at energies close to the

breakup threshold or when the charges of the interacting nuclei are high [67, 68].

Until now there has been only one exact three-body calculation of the elemen-

tary process p + d→ p + p + n [69]. Although only two particles are charged in this

process, the inclusion of the Coulomb interaction created significant difficulties and

a special technique, the so-called screening procedure, has been applied. The correct

formulation of the Faddeev integral equations in momentum space when all three

particles are charged is still an open problem [4, 5]. Moreover, in the presence of the

Coulomb interaction the exact post form of the breakup amplitude, which is seem-

ingly more convenient than the prior form, has not been derived until recently [70].

The calculation of the exact breakup matrix element is very difficult. Therefore,

in practice the amplitude is often taken in the distorted-wave Born approximation

(DWBA) [71, 72, 73]. However, in all the formulations of the DWBA the long-range

nature of the Coulomb interaction in the continuum has not been properly taken

into account. Besides, in conventional approaches the final-state wave function is
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written in a factorized form as a product of the wave function of the relative motion

of two fragments and the wave function of the relative motion of the c.m. of two

fragments and the third particle. At the same time, it is known that such a factor-

ized form does not possess the correct asymptotic behavior in any asymptotic region,

whether two particles are close to each other and far away from the third particle or

all three final-state particles are well separated (see [16, 17] and Chapter III). Since

the final-state wave function in the conventional approach has the wrong asymptotic

behavior, the conventional DWBA amplitude turns out not to be a first-order term

in the Born series expansion for the transition operator. In other words, it is not

straightforward that the distorted-wave Born series is convergent. This calls for a

revision of the derivation of the DWBA breakup amplitude in the presence of the

Coulomb interaction.

The aim of this work is to present correct expressions for the exact prior and post

forms of the breakup amplitude in terms of the three-body wave functions which have

correct asymptotic behavior when Coulomb interactions are taken into account. In

contrast to the electron-impact ionization of hydrogen [70], here we consider nuclear

breakup processes and transition from exact to DWBA amplitude. We demonstrate

that the post form exact breakup amplitude can be derived from the exact prior ampli-

tude in the form of a surface integral in the six-dimensional configuration hyperspace.

At the hyperradius R →∞, the functions in the integrand can be replaced by their

leading asymptotic terms. In particular, we need to use the asymptotic form of the

three-body scattered wave in the intial state which has been found in Chapter IV.

This surface integral representation sets the stage for ”ab-initio” (direct) calculations

of the Schrödinger equation in the configuration space with subsequent substitution

into the surface integral to get the breakup amplitude. The derivation of the post

form exact breakup amplitude for charged particles is one of the main goals of this
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work.

We demonstrate also that in the presence of Coulomb interactions the transition

to the DWBA from the exact amplitudes is not a straightforward procedure. The tran-

sition operator which defines the breakup amplitude plays a central role in few-body

formalism and it is customary to consider it carefully when doing approximations. In

particular, it is well known that the long-range nature of the Coulomb interaction is

the main reason why the integral Faddeev equations for charged particles have not

yet been solved above the breakup threshold [3]. The expressions suggested in this

work will be useful not only for DWBA calculations but also for the most advanced

methods to calculate the breakup amplitudes, like the continuum-discretized coupled-

channel method (CDCC) (see [67] and references therein), especially when analyzing

reactions at energies near the breakup threshold. A similar method has been used

very successfully in electron-atom scattering by Bray and Stelbovics (see [28, 39, 40])

and is known as the convergent close coupling (CCC) method.

The Chapter is set as following way. In section B a conventional approximation

to treat the three-body final-state scattering wave function in breakup processes is

discussed. In section C the exact prior and post form breakup amplitudes are derived

and the flaws of the conventional approach are shown. In section D we derive the

DWBA type amplitudes. Finally, section E concludes the Chapter.

B. Final-state three-body wave function in continuum

Let us consider the following breakup process

α + (β γ)→ α+ β + γ. (5.1)
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where (β γ) is the bound state of particles β and γ. The total wave function describing

process (5.1) in initial state satisfies the Schrödinger equation

(E −H)Ψ(+)
qi

(rα,ρα) = 0, (5.2)

The total wave function describing process (5.1) in the final state satisfies the Schrödinger

equation

(E −H)Ψ
(−)
kα ,qα

(rα,ρα) = 0, (5.3)

where

E = εnα + q2
nα
/2Mα = k2

α/2µα + q2
α/ 2Mα (5.4)

is the total energy of the system, H = T + V is the three-body Hamiltonian,

T = Trα + Tρα = −(1/2µα)∆rα − (1/2Mα)∆ρα (5.5)

is the kinetic energy operator,

V (rα,ρα) =
∑

ν=α,β, γ

Vν(rν) (5.6)

is the full interaction, with Vν = V C
ν +V N

ν , where V C
ν (V N

ν ) is the Coulomb (nuclear)

interaction potential between the particles in ν pair, where ν = α, β, γ. Also here rα is

the radius-vector connecting particles β and γ and ρα is the radius-vector connecting

particle α and the c.m. of the system (β γ), qi is the relative momentum between the

fragments in the initial channel, εnα is the bound state energy of β and γ particles

in the initial state nα, kα is the relative momentum of particles β and γ in the final

state, qα is the relative momentum of the c.m. of the β + γ system and particle α,

µα = mβ mγ/mβ γ and Mα = mαmβ γ/M , mβ γ = mβ +mγ, M = mα +mβ +mγ, mν

is the mass of particle ν.
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There are the following relations between Jacobi coordinates and moments for

three particles in the center of mass system:

rν = − mν

mβγ
rα − εναρα , ρν = ενα

µν

Mα
rα −

mα

M −mν
ρα (5.7)

and

kν = − mα

M −mν
kα − ενα

µα

Mν
qα , qν = εναkα −

mν

mβγ
qα, (5.8)

where ν = β, γ, ενα = −εαν is the antisymmetric symbol, with ενα = 1 for (να) being

a cyclic permutation of (1, 2, 3), and εαα = 0. Although all these notations have been

introduced in the previous chapters, we give them here for convenience of the readers.

First we demonstrate why the conventional derivation of the exact post form

breakup amplitude is not valid in the presence of Coulomb interactions. In the con-

ventional approach a formal solution to (5.3) for the exact wave function in the final

state is given as:

Ψ
(−)
kα ,qα

(rα,ρα) = ψ(−)
α (rα)χ(−)

α (ρα) +G(−) V α ψ
(−)
α (rα)χ(−)

α (ρα), (5.9)

where ψ
(−)
α (rα) is the scattering wave function of β and γ particles interacting via

potential Vα, χ
(−)
α (ρα) is the scattering wave function describing the relative motion

of the c.m. of the system β + γ and particle α interacting via the potential Uα. The

factorized wave function ψ
(−)
α χ

(−)
α has the following asymptotic form

ψ(−)
α χ(−)

α = eikα ·rα eiqα·ραNαF (−iηα, 1; iζα)NαF (−iηα, 1; iζα), (5.10)

where ζα = (kαrα +kα · rα), ζα = (qαρα +qα ·ρα), and ηα = Zα(Zβ +Zγ)Mα/qα. Eq.

(5.9) is fully justified in the case of short range interactions, when Coulomb effects

can be disregarded and it can be used to derive the post-form breakup amplitude from

the prior form. However, in the presence of Coulomb interactions the incident wave
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in Eq. (5.9) is not a three-body incident wave in any asymptotic domain. Consider,

for example, the asymptotic region Ω0, where all three particles are far away from

each other. The incident wave is given by Redmond’s Coulomb-distorted plane wave,

Eq. (2.10), which contains three Coulomb phase factors corresponding to the three

interacting pairs in a three-body system [6, 7]. The asymptotic form of the factorized

wave function (5.9) in Ω0 contains only two phase factors:

ψ(−)
α χ(−)

α → eikα·rαeiqα·ρα e−iηα ln(kαrα+kα ·rα)e−iηα ln(qαρα+qα ·ρα) (5.11)

Similarly in the asymptotic region Ωα the incident wave (5.10) does not coincide with

the leading asymptotic term (see [16] and Chapter IV, Eq. (4.19)).

Generally speaking, one can write down different solutions of Eq. (5.2), but the

correct one is the one which satisfies the proper boundary conditions. For example,

Eq. (5.9) looks formally correct and the wrong incident wave is compensated by the

integral term in Eq. (5.9), But it means that the second term asymptotically has the

same order, O(1), as the incident wave (5.10), i. e. the integral term does not decay

as the outgoing scattered wave. It means that the operator G(−) V α in the integral

term in Eq. (5.9) is noncompact.

C. The prior and post forms of the breakup amplitude

1. The exact prior form of the breakup amplitude

In Chapters III and IV we have discussed two types of three-body scattering wave

functions satisfying two different types of boundary conditions: the wave function of

the first type which evolves from the three-body incident wave and the wave function

of the second type, which evolves from the two-body incident wave. To find both

functions one needs to solve the three-body Schrödinger equation . The breakup
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amplitude can be written in two forms. The first type of amplitude is expressed

in terms of the three-body scattering wave function of the first type describing the

final-state and the two-body channel wave function describing the intial state of the

breakup process. Such an amplitude is called the exact prior form amplitude. The

second form contains the exact initial three-body scattering wave function of the

second type and the three-body channel wave function describing the final state.

Such an amplitude is called the post-form amplitude. We start this part from the

derivation of the prior form amplitude. To do it we use the three-body scattering

wave function of the second type and using the Green’s function formalism, as we did

in the previous chapter, we express the second type of the scattering wave function

in terms of the first type and the prior breakup amplitude. A formal solution of

Eq. (5.2) satisfying the initial two-body incident-wave and the outgoing scattered-

wave boundary condition (second type of wave function) is

Ψ(+)
qi

(rα,ρα) = ϕnα(rα)χ(+)
qi

(ρα) +G(+)V α ϕnα(rα)χ(+)
qi

(ρα). (5.12)

Here ϕnα(rα) is the wave function of the nα-th bound state of the (β γ) system,

χ
(+)
qi (ρα) is the distorted wave describing the relative motion of particles (β γ) and α

in the initial state. The latter satisfies the equation

(
(1/2Mα)∆ρα − Uα(ρα) + q2

nα
/2Mα

)
χ(+)

qnα
(ρα) = 0, (5.13)

where qi is the relative momentum in the initial two-fragment channel, Uα(ρα) is the

”channel” potential, which describes the interaction of particle α with the c.m. of

the bound subsystem (β γ) and is written as

Uα(ρα) = Vβ(ρα) + Vγ(ρα). (5.14)
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Also in Eq. (5.12)

G(+)(z) = (z − T − V )−1 (5.15)

is the total three-body Green’s resolvent, z = E + i0,

V α(rα,ρα) = V − Vα − Uα = Vβ + Vγ − Uα. (5.16)

First we show how to derive the exact prior -form breakup amplitude from Eq. (5.12).

We use the spectral decomposition of the Green’s function [3] and Eq. (4.10) from

Chapter IV:

G(+)(r′α,ρ
′
α; rα,ρα) =

∫
dk′

α

(2π)3

dq′
α

(2π)3

Ψ
(−)
k′

α ,q′
α
(r′α, ρ′

α)Ψ
(−)∗
k′

α,q′
α
(rα, ρα)

E − k′2α /2µα − q′2α/2Mα + i0
+ ..., (5.17)

where Ψ
(−)
kα ,qα

(rα, ρα) is the exact three-body scattering wave function of the first type

describing the scattering of three particles α, β and γ in the continuum in the final

state with the three-body Coulomb distorted incident plane wave. The dots indicate

the contribution from all the (both three- and two-body) bound states of the system.

Then from Eq. (5.12) we have

Ψ(+)
qi

( rα,ρα) = ϕnα(rα)χ(+)
qi

(ρα)

+

∫
dk′

α

(2π)3

dq′
α

(2π)3

Ψ
(−)
k′

α,q′
α
( rα,ρα)

E − k′2α /2µα − q′2α/2Mα + i0
Mprior

k′
α,q′

α ;qi
+ .... (5.18)

We now show that the amplitude

Mprior
kα,qα ;qi

=
〈
Ψ

(−)
kα ,qα

∣∣V α

∣∣ϕnαχ
(+)
qi

〉
, (5.19)

with the on-shell momenta kα and qα, is the exact prior -form breakup amplitude [53].

To prove it one should calculate the integral in Eq. (5.18) in all the asymptotic regions

of the six-dimensional configuration space (rα,ρα).

In asymptotic regions, Ψ
(−)
kα,qα

can be replaced by its corresponding leading asymp-
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totic terms. We substitute in Eq. (5.18) the generalized asymptotic wave function

(3.83) for Ψ
(−)
kα,qα

, because Eq. (3.83) gives the leading asymptotic term of Ψ
(−)
kα,qα

in all

the asymptotic regions. The integral in Eq. (5.18) is taken out using an asymptotic

form of the plane wave, the residue in the pole of the integrand and the stationary

phase method (see Chapter IV). The leading order term will be generated by the

first term of Eq. (3.39) or Ψ̃
(αβγ)(−)
kα ,qα

(rα,ρα) producing the asymptotically three-body

outgoing wave:

∫
dk′

α

(2π)3

dq′
α

(2π)3

Ψ
(−)
k′

α,q′
α
(rα,ρα)

E − k′2α /2µα − q′2α /2Mα + i0
Mprior

k′
α,q′

α;qi

Ω→ 1

(2π)5/2
Mprior

kα,qα;qi

(µαMα)
3
2

m2

κ
3
2

R5/2
eiκ R+iπ/4

×
∏

ν=α,β,γ

ϕ
(−)

k̃ν
(rν) = Φ

(sc)(+)
i , (5.20)

where Ω is any of the asymptotic regions Ω0 or Ων (for definitions of the asymptotic

regions see Chapter I) and κ =
√

2mE. Thus the coefficient in the outgoing three-

body wave (5.20) is nothing but the breakup amplitude (5.19) taken at momenta

aligned along the corresponding radial directions: qα = Mα κ/(mR)ρα and kα =

µα κ/(mR) rα. Here m is the nucleon mass and the hyperradius is given by

R =
(
(µα/m) r2

α + (Mα/m) ρ2
α

)1/2
. (5.21)

Eq. (5.20), which proves that Eq. (5.19) is indeed the exact prior form breakup am-

plitude in the presence of the Coulomb interactions, is the first main result of this

chapter. Although Eq. (5.19) gives an exact breakup amplitude it is not very popular

because the three-body wave function Ψ
(−)
kα,qα

is available only asymptotically. Since

the integration over rα is protected by the bound-state wave function ϕnα(rα), at

specific kinematic conditions Ψ
(−)
kα ,qα

can be approximated by its leading asymptotic

term Ψ
(α)(−)
kα,qα

in the asymptotic region Ωα, where rα/ρα → 0, ρα →∞ which has been
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found in Chapter III, Eq. (3.39).

2. The conventional post form of the breakup amplitude

First we will derive a conventional post form of the breakup amplitude from the exact

one (5.19). Substituting a formal solution (5.9) into Eq. (5.19) gives a conventional

post form of the breakup amplitude:

Mconv,post
kα,qα;qi

=
〈
ψ(−)

α χ(−)
α

∣∣V α + V αG
(+) V α

∣∣ϕnα χ
(+)
qi

〉

=
〈
ψ(−)

α χ(−)
α

∣∣V α

∣∣Ψ(+)
qi

〉
. (5.22)

We call Eq. (5.22) the conventional post form amplitude because the channel wave

function in the final-state (bra state) is given by the factorized form. To derive

Eq. (5.22) from the exact prior form we used seemingly trivial manipulations. Since

in the presence of Coulomb interactions the operator V αG
(+) V α is noncompact, it

is not evident that Eq. (5.22) coincides with the original prior form of the breakup

amplitude (5.19). To verify this we transform the volume integral in Eq. (5.22) into

a surface integral encircling the hypersphere in the six-dimensional space. Allowing

for

(E − T )Ψ(+)
qi

= V Ψ(+)
qi
, (5.23)

and

(E − T )ψ(−)
α χ(−)

α = (Vα + Uα)ψ(−)
α χ(−)

α , (5.24)

we can rewrite Eq. (5.22) in the form

Mconv,post
kα ,qα;qi

=
〈
ψ(−)

α χ(−)
α

∣∣∣←−T −−→T
∣∣∣Ψ(+)

qi

〉
, (5.25)
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where the operator
←−
T (
−→
T ) acts on the function to the left (right). Using Green’s

theorem we transform Mconv,post
kα,qα ;qi

into a surface integral

Mconv,post
kα,qα ;qi

=
1

2

m2

(µα Mα)3/2
lim

R→∞
R5

∫
d r̂αdρ̂α

∫ π/2

0

dφα sin2(φα) cos2(φα)

×
[
ψ(−)∗

α χ(−)∗
α

∂

∂R
Ψ(+)

qi
−Ψ(+)

qi

∂

∂R
(ψ(−)∗

α χ(−)∗
α )

]
. (5.26)

Here,

φα = arctan
[
(µα/Mα)1/2 rα/ρα

]
, 0 ≤ φα ≤ π/2. (5.27)

In order to calculate this integral we take into account the asymptotic behavior of

Ψ
(+)
qi (see Eqs.(4.39), and (4.45) in Chapter IV) :

Ψ(+)
qi

= ϕnα χ
(+)
qi

+ Φ
(sc)(+)
i + ... (5.28)

The dots assume that the two-body rearrangement terms are included. First we show

that when substituting Eq. (5.28) into (5.26) the integral containing ϕnα χ
(+)
qi dissa-

pears. Then the integral containing
←−
T ρα−

−→
T ρα vanishes because of the orthogonality

of the (β γ) bound state wave function ϕnα(rα) and scattering state wave function

ψ
(−)
α (rα). The integral containing

←−
T rα −

−→
T rα also vanishes: the volume integral over

rα can be transformed to the surface integral with infinitely large radii. Since the

bound state wave function exponentially fades away, the surface integral vanishes for

rα → ∞. Similarly the integrals containing the terms in Eq. (5.28) shown by dots

also vanish. The only nonzero integral is generated by the three-body scattered wave

Φ
(sc)(+)
i whose explicit form has been derived is given by Eq. (5.20). Taking into

account the factorized asymptotic wave function (5.11) for the final state ψ
(−)
α χ

(−)
α
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and the asymptotic scattered wave (5.20) Eq. (5.26) takes the form:

Mconv,post
kα,qα ;qi

=
m2

(µα Mα)3/2

i

2
lim

R→∞
R5

×
∫

dr̂αdρ̂α

∫ π/2

0

dφα sin2(φα) cos2(φα) e−ikα · rαe−iqα·ραΦ(r̂α, ρ̂α)

×
[
κ+ kα · r̂α

√
m/µα sin(φα) + qα · ρ̂α

√
m/Mαcos(φα)

]
, (5.29)

where for simplicity we have defined Φ
(sc,0)(+)
i ψ̃

(−)∗
α χ̃

(−)∗
α ≡ Φ(r̂α, ρ̂α) . The integra-

tions over ρ̂α and r̂α are straightforward after using the asymptotic equation for the

plane wave as rα, ρα→∞:

eik·r =
2π

ikr
[δ(k̂− r̂)eikr − δ(k̂ + r̂)e−ikr]. (5.30)

Then we have

Mconv,post
kα ,qα;qi

=
m2

(µαMα)3/2

i

2
lim

R→∞
R5 (5.31)

×
∫ π

2

0

dφα sin2(φα) cos2(φα)
2π

ikαrα

2π

iqαρα

×
{
eikαrα+iqαραΦ(−k̂α,−q̂α)

[
κ− kα

√
m/µα sin(φα)− qα

√
m/Mαcos(φα)

]

−eikαrα−iqαραΦ(−k̂α, q̂α)
[
κ− kα

√
m/µα sin(φα) + qα

√
m/Mαcos(φα)

]

−e−ikαrα+iqαραΦ(k̂α,−q̂α)
[
κ + kα

√
m/µα sin(φα)− qα

√
m/Mαcos(φα)

]

−e−ikαrα−iqαραΦ(k̂α, q̂α)
[
κ+ kα

√
m/µα sin(φα) + qα

√
m/Mαcos(φα)

]}
.

This integral is highly oscillatory and only the last term will survive. The remaining

integral over φα can be taken using the stationary point method giving the stationary

point

kα

√
m/µα cos(φα) = qα

√
m/Mα sin(φα). (5.32)



75

Thus we have

Mconv,prior
kα ,qα;qi

=
i

2

m2

(µαMα)3/2
lim

R→∞
R5

∫ π/2

0

dα sin(φα) cos(φα)

× 2π

ikαR
√
m/µα

2π

iqαR
√
m/Mα

e−i(kα

√
m/µα sin(φα)+qα

√
m/Mα cos(φα))R

×Φ(k̂α, q̂α)
[
κ+ kα

√
m/µbc sin(φα) + qα

√
m/µaAcos(φα)

]

=
m2

(µαMα)3/2
e−iπ/2 (2π)5/2

iκ3/2
lim

R→∞
e−iκRR5/2Φ(k̂α, q̂α). (5.33)

Using Φ
(sc,0)(+)
i and the asymptotic behaviour of ψ̃

(−)∗
α χ̃

(−)∗
α for rα →∞, and ρα→∞,

that is in the Ω0 region, the resulting integral boils down to

Mconv,post
kα ,qα;qi

=Mkα ,qα;qi lim
R→∞

eiN(R), (5.34)

where N(R) is

N(R) = ηα ln (2qα ρα)− ηβ ln(2kβ rβ)− ηγ ln(2kγ rγ)

= (ηα − ηβ − ηγ) ln(2κR) + ηα ln(cos2 φα)

−ηβ ln(sin2 φβ)− ηγ ln(sin2 φγ). (5.35)

Here we have defined hyperspheric angles in other channels similar to (5.27)

φβ = arctan
[
(µβ/Mβ)

1/2
rβ/ρβ

]
= arctan

[
(Mβ/µβ)

1/2
kβ/qβ

]
, 0 ≤ φβ ≤ π/2,

(5.36)

φγ = arctan
[
(µγ/Mγ)

1/2 rγ/ργ

]
= arctan

[
(Mγ/µγ)

1/2 kγ/qγ

]
, 0 ≤ φγ ≤ π/2.

(5.37)

The phase factor N(R) logarithmically diverges as R→∞. Thus making seemingly

identical transformations we arrive at the post form which does not coincide with

the starting prior form. This is the price we have to pay for using a factorized wave

function with the wrong asymptotic behavior as the first term in the right-hand-side
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of Eq. (5.9). Since the conventional post amplitude differs from the exact one by the

phase factor, one can still use Eq. (5.22) to calculate the breakup cross section. This

is somewhat similar to the case known in atomic physics [54]. Eq. (5.34) is the second

main result of this chapter.

3. The exact post form of the breakup amplitude

Now we discuss the derivation of the exact post form breakup amplitude in the pres-

ence of the Coulomb interaction. We demonstrate for the first time how to derive

an exact expression for the post form of the breakup amplitude for particles of arbi-

trary masses and charges. Let us consider the exact three-body wave function Ψ
(+)
qi

satisfying the Schrödinger equation (5.2). Using Eq. (5.12) we can write it as

Ψ(+)
qi

= ϕnαχ
(+)
qi

+ Ψ(sc)(+). (5.38)

The second term describes all the outgoing waves including the three-body scattered

wave Φ(sc)(+) describing the channel α+ β+ γ in the continuum. Substituting it into

Eq. (5.2) gives

(E −H)Ψ(sc)(+) = V α ϕnα χ
(+)
qi
. (5.39)

Taking into account these equations, we transform the prior form of the breakup

amplitude (5.19) as follows

Mprior
kα ,qα;qi

=
〈
Ψ

(−)
kα ,qα

∣∣∣E −−→H
∣∣∣Ψ(sc)(+)

〉
(5.40)

=
〈
Ψ

(−)
kα ,qα

∣∣∣←−H −−→H
∣∣∣Ψ(sc)(+)

〉
(5.41)

=
〈
Ψ

(−)
kα ,qα

∣∣∣←−T −−→T
∣∣∣Ψ(sc)(+)

〉
(5.42)

=
〈
Ψ̃

(−)
kα ,qα

∣∣∣←−T −−→T
∣∣∣Ψ(sc)(+)

〉
(5.43)

=
〈
Ψ̃

(−)
kα ,qα

∣∣∣←−T −−→T
∣∣∣Ψ(+)

qi

〉
=Mpost

kα,qα;qi
. (5.44)
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As we learned before seemingly evident manipulations in the presence of the Coulomb

interaction may not be valid. First we explain all the transformations for the tran-

sition from Eq. (5.40) to Eq. (5.44). The transition from Eq. (5.40) to Eq. (5.41)

and the consequent transition to Eq. (5.42) are evident taking into account that

Ψ
(−)
kα ,qα

satisfies Eq. (5.2). To prove that two other matrix elements obtained from Eq.

(5.42) are equivalent, we should transform the volume integral to the surface integral

encircling an infinitely large hypersphere in the six-dimensional configuration space.

Transformation of the matrix element (5.42) into the surface integral gives

〈
Ψ

(−)
kα,qα

∣∣∣←−T −−→T
∣∣∣Ψ(sc)(+)

〉
=

1

2

m2

(µαMα)3/2
lim

R→∞
R5

∫
dr̂αdρ̂α

∫ π/2

0

dφα sin2(φα) cos2(φα)

×
[
Ψ

(−)∗
kα ,qα

∂

∂R
Ψ(sc)(+) −Ψ(sc)(+) ∂

∂R
Ψ

(−)∗
kα,qα

]
. (5.45)

Replacing Ψ
(−)
kα,qα

in Eq. (5.45) by its leading asymptotic term Eq. (3.39)from Chapter

III, we can see that only the contribution from the first term Ψ̃
(−)
kα ,qα

will survive,

leading to

Mprior
kα,qα;qi

=
1

2

m2

(µα Mα)3/2
lim

R→∞
R5

∫
dr̂αdρ̂α

∫ π/2

0

dφα sin2(φα) cos2(φα)

×
[
Ψ̃

(−)∗
kα ,qα

∂

∂R
Ψ(sc)(+) −Ψ(sc)(+) ∂

∂R
Ψ̃

(−)∗
kα,qα

]
=Mpost

kα,qα;qi
. (5.46)

Eq. (5.46) justifies Eq. (5.43). Substituting here the asymptotic form of Ψ(sc)(+), Eq.

(5.20), and Eq. (3.39) we arrive at the identity Mprior
kα ,qα;qi

≡ Mprior
kα,qα;qi

confirming

once more that all the transformations are correct. Similary as was done for the

conventional integral Eq. (5.26), we can integrate Eq. (5.46) which exactly equals the

breakup amplitude without any oscillatory phase because after integration the three

distortion factors of Ψ̃
(−)
kα ,qα

will be cancelled by the three factors of Ψ(sc)(+). Now in
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Eq. (5.46) Ψ(sc)(+) can be replaced by the exact wave function Ψ
(+)
qi , because

〈
Ψ̃

(−)
kα ,qα

∣∣∣←−T −−→T
∣∣∣ϕnα(rα)χ(+)

qnα
(ρα)

〉
(5.47)

=
1

2

m2

(µαMα)3/2
lim

R→∞
R5

∫
dr̂αdρ̂α

∫ π/2

0

dφα sin2(φα) cos2(φα)

×
[
Ψ̃

(−)∗
kα ,qα

∂

∂R

(
ϕnα(rα)χ(+)

qi
(ρα)

)
− ϕnα(rα)χ(+)

qi
(ρα)

∂

∂R
Ψ̃

(−)∗
kα ,qα

]
= 0,

which follows from the discussion of the integral in Eq. (5.26). The replacement of

Ψ(sc)(+) by Ψ
(+)
qi justifies Eq. (5.44). Thus we derived the exact post form amplitude

from the prior form. As we see, it can be written as a volume integral with kinetic

energy operators or a surface integral encircling an infinitely large hypersphere in

the six-dimensional configuration space. Eq. (5.46) is the third main result of this

chapter. We emphasise that the post form reduces to the conventional form (5.22)

when the interactions are short-range. From the results here we can see that only the

prior form of the breakup amplitude can be written as the volume integral with the

transition operators expressed in terms of the interaction potentials. However, the

prior form contains the exact three-body scattering wave function of the first type,

which is known only asymptotically.

D. The DWBA amplitude for Coulomb breakup

1. Conventional DWBA amplitude for breakup processes with charged particles

Since the exact three-body wave function of the first type Ψ
(−)
kα ,qα

and of the second

type Ψ
(+)
qi (rα,ρα) are not available in practical calculations of breakup processes, the

distorted-wave-Born-approximation (DWBA) is being used. A conventional DWBA

amplitude can be obtained by omitting the second term on the r.h.s. of Eq. (5.9) or

equivalently the second term in the transition operator in Eq. (5.22). Then the exact
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prior-form amplitude reduces to the conventional DWBA one:

MDWconv
kα,qα ;qi

=
〈
ψ(−)

α χ(−)
α

∣∣V α

∣∣ϕnα χ
(+)
qi

〉
. (5.48)

However, as we have indicated before, the second term in the transiton operator in

Eq. (5.22) cannot be neglected. It is a very important point which needs special

attention. In the few-body approach with charged particles, the operators V
(C)

α G(+)

and V
(C)

α G(+) V
(C)

α , where V
(C)

α is the long-range part of the potential defined in Eq.

(5.16), play a crucial role. The operator V
(C)

α can be written as

V
(C)

α (rα,ρα) =
Zβ Zα

|ρα + λβ rα|
+

Zγ Zα

|ρα − λγ rα|
− (Zβ + Zγ)Zα

|ρα|
, (5.49)

where λβ = mγ/mβγ, λγ = mβ/mβγ. In the asymptotic region Ωα, where rα << ρα,

one can use the asymptotic expansion

V
(C)

α (rα,ρα) = O
(
rα/ρ

2
α

)
+O

(
r2
α/ρ

3
α

)
+ .... (5.50)

Thus in the asymptotic region, Ωα, the effective Coulomb potential, V
(C)

α (rα,ρα),

decreases faster than the pure Coulomb potential and does not generate any prob-

lems. However, the situation is totally different in the asymptotic domain, Ω0, where

all three particles are well separated. In this region rα and ρα are comparable and

V
(C)

α (rα,ρα) behaves as the sum of three Coulomb potentials, which do not compen-

sate each other [1]. In this case when the operator V
(C)

α G(+) appears under the inte-

gral containing the integration in the Ω0 region and the energy is above the breakup

threshold, the asymptotic decrease of the Green’s function and the Coulomb potential

V
(C)

α is not fast enough to provide convergence of the integral. In few-body physics

this case has been analyzed in momentum space by Veselova [74, 75]. If we write the

integral in a momentum representation, the singularity of the operator V
(C)

α G(+) be-

comes noncompact due to the coincidence of the forward singularity of V
(C)

α and the
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pole singularity of G(+). It also means that the perturbation expansion of the total

Green’s function over the channel Green’s functions does not converge. It is easy to

see that in the presence of the Coulomb interaction the matrix element in Eq. (5.22)

generated by the transition operator V α(r′α,ρ
′
α)G(+)(r′α,ρ

′
α; rα,ρα)V α(rα,ρα) is not

small compared to the DWBA matrix element defined in Eq. (5.48). Due to the

presence of the bound state wave function ϕnα in the ket state, the integration over

rα is protected while the integration over ρα is not. In contrast the integration over

r′α and ρ′
α on the left-hand-side extends to infinity. It means that we need to know

the asymptotic behavior of the operator V α(r′α,ρ
′
α)G(+)(r′α,ρ

′
α; rα,ρα)V α(rα,ρα) in

the asymptotic regions (rα, ρα) ∈ Ωα and (r′α, ρ
′
α) ∈ Ω0. The asymptotic form of

the three-body Green function in these asymptotic regions is ∼ exp(i κR)/R5/2 [53].

Besides, in Ω0, r
′
α ∼ ρ′α and V

(C)

α (r′α,ρ
′
α) ∼ 1/R . Hence the integral in the six-

dimensional space over X ′ = (r′α,ρ
′
α) does not converge. From the mathematical

point of view, the operator V αG
(+) V α is not compact. Hence the matrix element

(5.48) taken from the first term of the operator V α + V αG
(+) V α is not the first-

order perturbation term of the exact amplitude for breakup reactions with charged

particles. This is the fourth main result of this chapter.

2. From the exact prior form to the DWBA amplitude

One of the evident flaws of the conventional DWBA amplitude is the missing post-

decay Coulomb acceleration [76] contribution. This higher order effect is generated by

the final-state Coulomb interaction between fragments β and γ and the target-nucleus

α. Classically fragments β and γ moving in the Coulomb field of the third particle

α will be accelerated differently if their charge/mass ratio is different. Classically

and quantum mechanically it is a genuine three-body effect. However, if one uses the

factorized wave function in the final-state the post-decay Coulomb acceleration effect
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disappears [76]. A better approximation for the final-state wave function, is to replace

Ψ
(−)
kα ,qα

by its extended asymptotic form Ψ
(α)(−)
kα,qα

, obtained in Chapter III, Eq. (3.39).

Now a question arises: can we really write down the DWBA amplitude for breakup

reactions for charged particles? The idea of DWBA is to replace the three-body wave

function in the exact matrix by the ”channel” wave function given by the product

of the two-body wave functions so that the DWBA matrix element becomes the first

order perturbation term in powers of the transition operator. DWBA works quite

well for transfer reactions where the initial and final state channel wave functions

are well defined. However, this is not the case for breakup processes. Since the post

form of the amplitude is written in terms of kinetic energy operators, replacement

of Ψ
(+)
qi in Eq. (5.44) by the first term on the right-hand-side of Eq. (5.28) gives

a matrix element equal to zero. This is evident after transformation of the volume

matrix element in Eq. (5.44) to the surface one. Thus, derivation of the breakup

amplitude can be derived only from the prior form given by Eq. (5.19). However,

it is impossible to determine the final-state channel wave function which describes

all three particles in the continuum and which is a solution of the Schrödinger equa-

tion in all the asymptotic regions. It means that there is no three-body incident

wave with the correct asymptotic boundary conditions in all the asymptotic regions

which can replace the exact final-state wave function Ψ
(−)
kα,qα

to get the first order

perturbation matrix element. Under specific kinematic conditions one of the four

asymptotic regions (Ων, ν = α, β, γ, 0) can give a dominant contribution to the re-

action amplitude. For example, if the main contribution to the prior breakup matrix

element comes from the region Ωα : rα << ρα the exact prior matrix element can be

approximated by [76]

MDW
kα,qα;qi

=
〈
Ψ

(α)(−)
kα,qα

∣∣V α

∣∣ϕnα χ
(+)
qi

〉
. (5.51)
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Ψ
(α)(−)
kα ,qα

is given by Eq. (53) of Ref. [17]. The amplitude (5.51) can be considered as the

generalized DWBA amplitude for peripheral breakup processes in Ωα. If kinematic

conditions are such that the dominant contribution in the final-state comes from the

interaction, for example, between particles α and γ, then the final-state three-body

scattering wave function in Eq. (5.19) can be replaced by the leading asymptotic term

in the asymptotic region Ωβ. This asymptotic function Eq. (3.39) has been derived in

Chapter III. Note that to derive the leading asymptotic term in Ωβ proper interchange

of indexes should be done in this equation.

E. Conclusion

Summarizing, a time-independent theory of the breakup processes in the presence

of Coulomb interactions has been presented in this chapter. The exact prior form

breakup amplitude has been derived using the spectral decomposition of the three-

body Green’s function. We also demonstrated the flaws of the conventional approach

based on using of the incident three-body wave in the factorized form. The important

result of this chapter is that the post form breakup amplitude derived from the

prior form is given by a volume integral containing the exact final state three-body

scattering wave function and the initial two-body channel wave function with the

transition operator being expressed in terms of kinetic energy operators. We show

that both the prior and post forms of the breakup amplitude can be written in terms

of surface integrals in the six-dimensional hyperspace. The resulting expression for the

asymptotic scattered three-body wave, Eq. (5.20), and the breakup amplitude (5.46)

in terms of the surface integral in the six dimensional hyperspace can be used as a

basis for the determination of the breakup amplitude from ”ab-initio” calculations of

the Schrödinger equation in configuration space. By matching the computer output
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with the boundary conditions Eq. (5.20), one can determine directly the breakup

amplitude. However, such a procedure calls for very accurate calculations, because

the calculations of the Schrödinger equation should start from the internal region and

expand to asymptotically large distances. In such numerical calculations errors will

be accumulated. Another approach is to interpolate the computer output for the

outgoing three-body wave and to substitute it into the surface integral (5.46) which

can give more accurate results than the first method.

We also discussed a flaw of the conventional DWBA and showed that, due to

the presence of noncompact operators, the conventional procedure for writing a gen-

eral expression for the DWBA amplitude may lead to a wrong result. For peripheral

collisions in the asymptotic region, where two fragments are close to each other and

far away from the spectator gives the dominant contribution, we suggest a general-

ized prior DWBA amplitude. This amplitude containing the asymptotic three-body

Coulomb scattering wave function has been derived in Chapter IV.
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CHAPTER VI

NONRADIATIVE TRIPLE COLLISIONS 7Be(ep, e)8B AND 7Be(pp, p)8B IN

STELLAR ENVIRONMENTS

A. Introduction

In this chapter, the impact of stellar matter on reaction rates is considered under

conditions existing in different stellar environments from the Sun’s core to the X-ray

burst’s surface. Our purpose is to investigate the reaction rates of triple collisions,

where a third particle is a spectator, and to compare them with reaction rates of

the corresponding binary processes. In this work we estimate the reaction rates of

7Be(ep, e)8B and 7Be(pp, p)8B triple collisions leading to the nonradiative formation of

8B. In general triple collisions have small probability, therefore these triple reactions

are not included in stellar model calculations. But only direct calculations can show

how small they are and the conditions when they might be important. It is well known

that binary and sequential reactions like the triple α process are dominant in stellar

conditions. Binary collisions have higher probability than triple collisions if both

processes are not restricted by some quantum rules. That is why most reactions taking

place in the stellar interior are predominantly binary. But conservation laws and

selection rules can suppress some binary nuclear reactions, or high temperatures and

densities may increase triple reaction rates. Therefore some reasonable calculations

should be done to come to a final conclusion. Recently reaction rates were estimated

in solar conditions for several triple reactions with an electron spectator [77],[78],[79].

The triple nonradiative reaction rates obtained for solar conditions are approximately

104 times smaller than the corresponding binary ones. In this work we estimate the

impact of stellar matter on reaction rates under conditions existing in a stellar core,
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a hydrogen burning envelope in a binary system (nova) or in an X-ray Superburst.

There is a static impact, which is also known as screening, and a dynamic impact of

matter on a binary reaction in a stellar core. Here we consider the dynamic impact of

matter on a binary reaction. Our purpose is to investigate the reaction rates of triple

collisions where a third particle is a spectator and to compare them with reaction rates

of the corresponding binary processes. Binary radiative capture in the presence of a

spectator particle can proceed in two different ways. The first process is the so-called

nonradiative capture, when an emitted photon in a binary process is absorbed by a

third particle-spectator. The second process is radiative capture, when a photon is

emitted in triple collisions. The radiative triple collisions are more difficult to analyze

than the nonradiative ones. In this work we present calculations of reaction rates for

nonradiative triple collisions. A quantum mechanical description of triple collisions

dictates a knowledge of the three-body Coulomb scattering wave function in the initial

state. It is the three-body scattering wave function of the first type (see Chapter III)

since it evolves from the three-body incident wave. Due to the strong Coulomb barrier

at stellar energies, the proton spectators interact with nuclei involved in the binary

radiative process through the Coulomb interaction. Also the the Coulomb barrier

keeps a spectator proton far away from the colliding nuclei. Hence, we can use the

leading asymptotic terms of the three-body Coulomb scattering wave function in the

asymptotic region to describe the initial state where two particles are close to each

other and far away from the third. This wave function was found in Chapter III. The

calculation of the triple reaction rates may be considered as a practical application

of the three-body asymptotic Coulomb scattering wave function of the first type.

The presence of the proton spectator changes the relative momentum of the colliding

nuclei involved in the capture process, which may affect the cross section of the binary

process. It is a genuine three-body effect [16, 17].
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The same asymptotic wave function can be used to calculate the triple nonra-

diative process for electron spectators. In this case the Coulomb interaction between

electron spectators and colliding nuclei is attractive, so the electron can be quite close

to the interacting nuclei. However, the average distance between elctrons in a stellar

plasma is significantly larger then the radius of the binary process. That is why the

use of the three-body Coulomb asymptotic scattering wave function in the asymptotic

region is justified. We use this three-body scattering wave function to estimate the

reaction rates of nonradiative triple collisions and compare it with binary reaction

rates.

We do calculations for the 7Be(p, γ)8B capture reaction in the presence of a

spectator electron or proton which absorbs the emitted photon. In particular, we

estimate the reaction rates for the 7Be(ep, e)8B and 7Be(pp, p)8B triple collisions.

These triple reactions are not included in solar model calculations since they are

supposed to be very small. It is understandable because the ratio of the triple to

binary reaction rates is VR nα, where VR is the reaction volume and nα is the spectator

particle number density. The effective volume of the nonradiative capture processes

can be quite large and the ratio depends on the spectator particle number density.

Only direct calculations can reveal the relative contribution of the triple collisions in

different astrophysical environments.

The reaction rates of the binary 7Be(p, γ)8B radiative process are calculated

within the framework of the R-matrix approach [80, 81, 82, 83, 84] in the tempera-

ture range from 1.4×107K to 109K. As this reaction is extremely peripheral [85, 86],

the overlap function 〈7Be|8B〉 of the bound-state wave functions is approximated by

its asymptotics with the amplitude given by the asymptotic normalization constant

(ANC) for the virtual synthesis of 7Be+p→ 8B [87], [88],[89], [90]. A general expres-

sion for the triple reaction rate has been derived in [91]. We will estimate the reaction
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rates of 7Be(ep, e)8B and 7Be(pp, p)8B in the range from 1.4 × 107K, corresponding

to solar core conditions, to 109K corresponding to the hydrogen burning envelope in

novae and X-ray burts. Calculations of nucleosynthesis in novae cover temperature

ranges from 0.145×109 K to 0.418×109 K and densities from 10 g cm−3 to 105 g cm−3

[92]. As a result of successive X-ray bursts, 12C nuclei are accumulated in superbursts

with densities significantly higher than in normal X-ray bursts. As was pointed out in

[93], X-ray superbursts from accreting neutron stars, following X-ray bursts, present

a unique opportunity to probe nuclear processes at superhigh densities and tem-

peratures. Note that type I X-ray bursts are thermonuclear flashes of accumulated

hydrogen and helium on an accreting neutron star. Superbursts are a new class of

type I bursts which were discovered recently [94], [95], [96], [97]. In a superburst the

density reaches ρ ≈ 109 g cm−3 and the temperature T > 109 K. At densities and

temperatures existing in the superburst the reaction rates of triple collisions can be

comparable with the reaction rates of the corresponding binary collisions.

This chapter is organized as follows. In Sec. B we address general definitions and

important relations for a binary process. In Sec. C we present reaction rate for triple

nonradiative collisions and we discuss the approximations we made in calculation of

matrix elements and reaction rates for the 7Be(ep, e)8B and 7Be(pp, p)8B nonradiative

collisions. Finally the results are presented and discussed in Sec. D.

B. Binary reaction rate

Here we recall some of the important relations and definitions concerning a binary

process β + γ → β ′ + γ′ [98, 99]. The reaction rate is one of the important nuclear

astrophysical inputs to calculate element synthesis in stars. An understanding of the

most critical stellar features, such as time scale, energy production, and nucleosyn-
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thesis of elements, depends directly on the magnitude of the reaction rate per particle

pair for a number of reactions. Depending on the magnitude of the reaction rates

different stellar models are constructed. These models can lead to different predicted

fates for a particular star. Stellar matter in its core consists of hot plasma where

mainly binary reactions take place.

Let us consider a stellar plasma with nβ(γ) particles per unit volume of type β(γ)

with relative velocities υ. The reaction rate per unit volume between particles of type

β and γ is

rβγ =
nβnγ

1 + δβγ
〈συ〉βγ , (6.1)

where 〈συ〉βγ is the velocity averaged product of cross section and relative velocity,

or average reaction rate per particle pair. The factor (1 + δβγ)
−1 is introduced to

take into account possible cases when particles β and γ are identical to avoid double

counting, where δβγ =





1, If β = γ

0, If β 6= γ
. Normal stellar matter is considered to be a

nondegenerate gas in thermodynamic equilibrium with particles (except possibly elec-

trons) at nonrelativistic velocities which can be described by a Maxwell-Boltzmann

velocity distribution. Therefore the velocity averaged reaction rate per particle pair

is

〈συ〉 =

(
8

πµ

)1/2
∞∫

0

σ(E)e
− E

kBT EdE, (6.2)

where E = µυ2/2 is the nonrelativistic relative kinetic energy of the β and γ nu-

clei. This equation characterizes the reaction rate per particle pair at a given stellar

temperature. As a star evolves, its temperature changes, and, hence, the reaction

rate 〈συ〉 must be evaluated for each temperature of interest. The mean life of the β
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nucleus is related to the reaction rate per particle pair as

τβ =
1

nγ 〈συ〉βγ

. (6.3)

In most cases mass densities of stellar matter and abundances of nuclei are tabulated

rather than the number densities of the corresponding nuclei. Therefore, it is neces-

sary to have a relation between them. Number particle densities are related to the

total mass density ρ by

nβ = NAρ
Xβ

Aβ
= NAρYβ, (6.4)

where Xβ is the mass abundance of nucleus β with atomic number Aβ, Yβ is the mole

fraction, and NA is Avogadro’s number. If the reaction rate for the inverse process

β ′ + γ′ → β + γ is rβ′γ′ then the net energy production per unit mass is

ε = (rβγ − rβ′γ′)
Q

ρ
− εν , (6.5)

where εν is the energy taken away by neutrino ν which leaves the star without further

interactions.

All nuclear particles have positive charges that repell each other, and the Coulomb

interaction prevents them from penetrating into the nuclear interior. Because of the

exponential behavior of the probability for tunneling through the Coulomb interac-

tion barrier, the astrophysical S factor is used in nuclear astrophysics instead of the

reaction cross section:

S(E) = σ(E)Ee2π η. (6.6)

Here the astrophysical factor S(E) contains all of the nuclear effects. For nonresonant

reactions S(E) is a smoothly varying function of energy. Because of that, the astro-

physical factor S(E) is much more convenient for comparing different astrophysical
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processes at astrophysically relevant energies than cross sections.

We can write down the reaction rate per particle pair 〈συ〉 in terms of the

astrophysical S factor:

〈συ〉 =
(

8

πµ

)1/2
1

(kT )3/2

∞∫

0

S(E)e
− E

kBT
−(

EG
E

)1/2

dE, (6.7)

where the quantity EG is called the Gamow energy and is given by

EG = 2µ(πe2z1z2/h)
2. (6.8)

For nonresonant reactions the energy dependence of the integrand in Eq. (6.7) is

governed primarily by the exponential term e
− E

kBT
−

√
EG
E . The penetration through

the Coulomb barrier, determined by the Gamow factor e−
√

EG
E , becomes very small

at low energies. The other exponential term, e−
E
kT , which vanishes at high energies, is

a Maxwell-Boltzmann distribution factor. The integrand in Eq. (6.7) has a peak near

the energy E0, which is called a Gamow peak. Although the Maxwell-Boltzmann

distribution has a maximum at the energy E = kT , the Gamow factor shifts the

effective peak to the energy E0. For a given stellar temperature T , nuclear reactions

take place in a relatively narrow energy window around the effective burning energy

E0. If for relatively low energies the S(E) factor is nearly constant over the energy

window around the effective energy E0, that is S(E) ≈ S(E0), then Eq (6.7) can be

approximated by

〈συ〉 =

(
8

πµ

)1/2
1

(kT )3/2
S(E0)

∞∫

0

e
− E

kBT
−(

EG
E

)1/2

dE. (6.9)

But one should be careful in using this approximation at higher temperatures.
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1. Reaction rate of the binary radiative capture reaction 7Be(p, γ)8B

Let us consider the 7Be(p, γ)8B direct radiative capture reaction at stellar conditions.

While 7Be(p, γ)8B reaction is the weakest of the three branches of the pp−chain,

it is nevertheless important because the 〈Eν〉 = 7.3MeV neutrino produced in the

positron decay of 8B, 8B → 8Be∗+e+ +ν, provides most of the neutrinos detected in

many solar neutrino experiments [98, 100]. The solar neutrinos emerge from nuclear

reactions which start from hydrogen burning or the so called pp−chain in stellar

plasma.

According to the standard solar model 7Be nuclei are produced from collisions of

3He and 4He nuclei formed during hydrogen burning through the radiative capture

reaction 3He+4He→7 Be+γ. Then 7Be is destroyed by electron capture which leads

to the formation of 7Li and by the proton capture reaction 7Be(p, γ)8B in pp−chain

III, which leads to the formation of 8B. The fate of 7Be in the pp−chain is of special

interest since the measurements of neutrino flux from the Sun lead to a paradoxical

conclusion which means the production of 7Be must be strongly suppressed. This

paradox, though, was resolved by neutrino oscillation. The energy level scheme for

this reaction is given in Fig. 2. The initial state of 7Be+ p is defined by their relative

momentum kα, total spin Ji and its z-projection Mi. In the LS angular momentum

coupling scheme, the initial scattering wave function describing the relative motion

of a 7Be and proton in the continuum is given by

ψJi Mi Ii =
∞∑

li=0

ili
∑

miνi

∑

MaMA

〈limiIiνi|JiMi〉 〈JaMaJAMA|Iiνi〉

×χJaMaχJAMA
Yli0(r̂α)

√
4π(2li + 1)ψλli, (6.10)

where ψλli is the radial scattering wave function, 〈j1 mj1 j2mj2| j mj〉is a Clebsch-

Gordon coefficient, li (mi) is the relative angular orbital momentum (projection) of
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Q=138 keV

Be+p7

E(keV) J
p

B8
0

778 1+

+
2

Fig. 2. Low lying energy levels of 8B. The 7Be(p, γ)8B reaction proceeds at energies

below the 640 keV resonance via a direct capture mechanism.
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7Be and proton in the initial state, Ii (νi) is the channel spin (projection), Jj (Mj)

is the spin (projection) of particle j, χJj ,Mj is the spin function of nucleus j = β, γ.

The final state is described by the overlap function of the bound state wave functions

of 8B and 7Be. This overlap function can be written as

IJf Mf Ii = ilf
∑

mf νf

∑

M ′
γM ′

β

〈lfmfIiνf |JfMf 〉 (6.11)

×
〈
JγM

′
γ JβM

′
β|Ifνf

〉
χJγM ′

γ
χJβM ′

β
Ylf mf

(r̂α) IIi lf . (6.12)

Here, lf (mf) is the relative orbital angular momentum (projection) of 7Be and pro-

ton in the ground state of 8B, Jf (Mf ) is the spin (projection) of 8B, IIi lf is the

radial overlap function. For peripheral radiative capture processes the radial overlap

function can be approximated by its asymptotic form:

IIi lf = CIilf

Wlf (rα)

rα
, (6.13)

where CIi lf is the asymptotic normalization coefficient (ANC) for the virtual synthesis

of 7Be + p→ 8B and Wlf is the Whittaker function.

In the R−matrix method the expression for the S factor for the dipole radiative

capture of 7Be + p→ 8B is given by [83]

S(E) =
32π

3

e2

4E

~2

2µα

(2li + 1)(2Jf + 1)

(2Jβ + 1)(2Jγ + 1)(2lf + 1)

×k3
γPli(r0)

3µ2
α(
zγ

mγ
− zβ

mβ
)2(〈li0 10|lf0〉)2

×
∣∣Fli(r0)Gli(r0)Wlf (r0)J

′
1(li, lf)

∣∣2 e2πηα
∑

Ii

C2
Ii lf

. (6.14)

Here, kγ is the momentum of the emitted photon, mβ and zβ e is the mass and charge

of 7Be, mγ and zγ e is the mass and charge of the proton, ηα is the Coulomb parameter

in the initial channel, Pli(r0) is the barrier penetrability, Fli and Gli are the regular
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and singular Coulomb scattering solutions, r0 is the channel radius and

J ′
1(li, lf) =

1

r2
0

∞∫

r0

drαrα

Wlf (rα)

Wlf (r0)

[
Fli(rα)

Fli(r0)
− Gli(rα)

Gli(r0)

]
. (6.15)

Finally recalling Eq.(6.7) we have for the binary reaction rate

〈R2〉 = npn7Be 〈συ〉 =

√
8

πµα

npn7Be

(kT )3/2

∞∫

0

dE S(E)e−
E
kT

−(
EG
E

)1/2

, (6.16)

where n7Be, and np are particle densities of 7Be nuclei and protons in stellar matter.

At low temperatures using the aproximate equation Eq.(6.9) we can write the binary

reaction rates as

〈R2〉 ≈ npn7Be

√
8

πµα

S(E0)

(kT )3/2

∫
dEe−

E
kT

−(
EG
E

)1/2

. (6.17)

This approximation facilitates numerical calculations giving fairly good results. At

high temperatures one has to use Eq.(6.16). Otherwise the approximate equation

Eq.(6.17) underestimates the binary reaction rates by an order of magnitude. We

have calculated the reaction rates for the binary 7Be(p, γ)8B direct radiative process

using the R-matrix approach [80],[81],[82] at temperatures of 1.4×107K ≤ T ≤ 109K.

Results for these reaction rates are presented in Table I.

C. Triple reaction rate

Let us consider the α + β + γ → α + (βγ) nonradiative reaction. Here (βγ) is the

bound state of particles β and γ. We assume that β and γ are close to each other but

far away from the third particle α, i. e. our system is in the asymptotic region Ωα.

We suppose collisions occur in a stellar matter containing, respectively, nα, nβ, and

nγ particles of each type per unit volume. The initial asymptotic state is defined by

relative momentum kα, total spin Ji and third component Mi of the particles β and



95

γ, and by the momentum qα of the spectator particle α with respect to the c.m. of

the particles β and γ.

The final asymptotic state consists of the bound state of β and γ particles with

spin Jf and projection Mf , and relative momentum q′
α of the bound state (βγ)

and α. We neglect the spin of the spectator particle because it interacts with them

only via the Coulomb force. All particles are assumed to be distinguishable. The

multiparticle reaction rate in general form has been derived in [91]. Here we modify

this multiparticle reaction rate to the three particle reaction rate in Jacobi coordinate

representation. The corresponding triple reaction rate in the Jacobi coordinate system

is given by

dR3(kα,qα→ q′
α) = (2π)7dkαdqαdq

′
αδ(Ef −Ei)

c

~c
|Mif |2NkαNqαnαnβnγ , (6.18)

whereMif is the transition amplitude for the nonradiative triple process. This equa-

tion gives the differential reaction rates for transitions α + β + γ → α + (βγ) per

unit volume. In normal stellar matter the stellar gas is nondegenerate and the nuclei

move nonrelativistically. The gas is in thermodynamic equilibrium, and the momenta

of the nuclei kα, and qα are distributed at temperature T according to the Maxwell-

Boltzmann momentum distribution:

Nkα(T ) = (2πµαkT )−
3
2 exp(− k2

α

2µαkT
); (6.19)

Nqα(T ) = (2πMαkT )−
3
2 exp(− q2

α

2MαkT
). (6.20)

Here k is the Boltzmann constant, Nkα , and Nqα are normalized to unity, µν , and Mν

are reduced masses, which are defined in the previous chapters. We need to average

the reaction rate (6.18) over all the initial quantum numbers Ji, Mi, sum over all the

final-state quantum numbers Mf and integrate over kα, qα, and q′
α. The resulting
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reaction rate of the triple collision depends only on the temperature of the stellar

matter:

〈R3(T )〉 =
∑

Ji,Mi,Mf

1

(2Ji + 1)

∫
dR3(kα,qα→ q′

α). (6.21)

Let α to be the spectator-particle (electron or proton), β and γ denote 7Be and

proton, correspondingly. By cancelling all particle densities in Eq.(6.21) we arrive at

average reaction rate per particle triplet

〈Σ(T )〉 = 〈R3(T )〉
nαnβnγ

. (6.22)

Just like the binary reaction rate we can calculate the triple reaction rate per unit

volume multiplying Eq. 6.22 by nαnβnγ at particular temperatures. To estimate the

reaction rates of the 7Be(ep, e)8B and 7Be(pp, p)8B processes we assume that the 8B

nucleus can be considered as a bound state of a 7Be cluster and a proton. Even at

higher temperatures (up to ∼ 109K) we still can disregard the contributions from

excited states of 8B. Our final goal is the ratio of the reaction rates of triple and

binary collisions which is given by

〈R3(T )〉
〈R2(T )〉 =

〈Σ(T )〉N2
A

〈σv(T )〉NA

ns

NA
, (6.23)

where NA is Avagadro’s number, ns is the number spectator-particle density and

〈R2(T )〉 is the binary reaction rate for the radiative capture 7Be(p, γ)8B given by

Eq. (6.16). We consider various approximations for the triple reaction rate (6.21)

below.



97

1. Matrix element of the triple collision and initial and final state wave functions

Let us consider the matrix elementMif in Eq.(6.18) in detail:

Mif =

∫ ∫
drα

(2π)3/2

dρα

(2π)3
Ψ

(−)∗
f V α Ψ

(+)
kα ,qα

, (6.24)

where the transition operator is given by V α = Vβ + Vγ − U , and Vν = V C
ν + V N

ν ,

ν = β, γ. U = UC +UN is the optical potential between α and the (β, γ) bound state

in the exit channel and UN , UC are its nuclear and Coulomb parts, respectively. UC

is given by

UC =
(zβ + zγ) zα e

2

ρα
. (6.25)

The following are pure Coulomb interactions in β and γ pairs

V C
β =

zβzα e
2

|ρα + λβrα|
(6.26)

V C
γ =

zγzαe
2

|ρα − λγrα|
, (6.27)

where λβ = µα/mβ and λγ = µα/mγ. Initially all three particles are in the three

body continuum. Hence, the initial scattering wave function Ψ
(+)
kα,qα

is the three-body

scattering wave function of the first type (Chapter III). This function is not available,

but we need to know it in the asymptotic region Ωα, where the spectator α is far

away from the colliding particles β and γ. The leading asymptotic terms of this wave

function were found in Chapter III. We can consider Eq. (3.83) as a starting point. In

the asymptotic region Ωα we can replace the local momenta k̃ν, ν = β, γ in Eq. (3.83)

by their asymptotic parts kν, ν = β, γ, because in Ωα rα/ρα → 0. Then we arrive to

the generalized wave function in the asypmtotic region Ωα:

Ψ
(+)
kα,qα

= eikα·rα+iqα ·ραNα(ρα)F (−iηα(ρα), 1, iξα(ρα))
∏

ν=β,γ

NνF (−iην, 1, ξν), (6.28)
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where ηα(ρα) =
zβ zγ e2µα

k̃α
is the Coulomb parameter, Nα(ρα) = e−

πηα(ρα)
2 Γ(1+iηα(ρα))

is the normalization factor, and ξα(ρα) = k̃αrα − k̃α · rα is the parabolic coordinate.

The factor Nα(ρα)F (−iηα(ρα), 1, iξα(ρα)) takes into account the scattering of par-

ticles β and γ. The dependence on ρα reflects the distortion of the relative motion

of particles β and γ caused by the presence of the spectator particle. The local

momentum in the α channel is

k̃α = kα + δkα (6.29)

= kα +
∑

ν=β,γ

mν

mβγ

ην

ρα

k̂ν − εανρ̂α

1− εανk̂ν · ρ̂α

. (6.30)

Momenta kν for ν = β, γ of the ν pairs can be expressed in terms of the α channel

momenta as

kν = −ενα
µα

Mν
qα −

mα

M −mν
kα. (6.31)

In Eq. (6.28) we disregarded the nuclear interaction between β and γ in the initial

state because the 7Be(p, γ)8B reaction is extremely peripheral. The last two factors

Nβ F (−iηβ, 1, ξβ) and Nγ F (−iηγ, 1, ξγ) take into account γ+α and β+α scatterings,

caused by the long range Coulomb interaction. The wave function (6.28) will be

used in this work to describe the initial three-body scattering state in triple stellar

collisions. As usual the final bound-state wave function is normalized as:

〈
ΦJf M ′

f I ′f
(rα)|ΦJf Mf If

(rα)
〉

= δJfJ ′
f
δMfM ′

f
. (6.32)

Now let us consider the 7Be(p, γ)8B radiative capture reaction in the presence

of an electron or proton spectator. First we analyze common features for both cases

then in the next sections we treat them seperately. The final state is the two-body

continuum state of 8B and the spectator particle described by the scattering wave
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function

Ψ
(−)
q′

α
(ρα) = eiq′

α·ραNF (iη, 1,−iξ). (6.33)

Here, the parabolic coordinate and momentum in the final state are given by the

equations ξ = q′αρα + q′
α · ρα, and q′α =

√
2µ(εb + k2

α

2µα
+ q2

α

2Mα
), respectively. Since our

aim is to estimate nonradiative reaction rates for 7Be(ep, e)8B, and 7Be(pp, p)8B, we

can proceed with further simplifications. For charged particles with small energies,

a window around the most efficient energy is enough to estimate the reaction rate.

Contributions from energies smaller and larger then the effective energy are cut by

the penetration factor and by Maxwell distributions, respectively. Even when the

spectator particle is an electron which is attracted toward the positively charged pair

(7Be, p), we still can restrict the calculations to electron energies around the Maxwell

peak energy which will dominate the reaction rate. Because me/mα << 1, where

me is the electron mass amd mα = m7Be is the 7Be mass, the Coulomb parameters

for ν = β, γ pairs characterizing the Coulomb interactions of the electron with the

7Be nucleus and the proton will be very small at energies around the Maxwell peak:

ην � 1 .

The reaction rates for the 7Be(pp, p)8B process is more difficult to calculate but

we still can use approximations similar to those used for the electron-spectator case.

In contrast to the electron case, the proton spectator has the Coulomb barrier. In this

case the Gamow peak energy of both protons dominates when calculating the reaction

rates. At energies around the Gamow peak we can replace the local momentum k̃α

by the local momentum kα because |δkα|
kG

α
� 1. Here kG

α is the relative momentum

of β and γ at the Gamow peak for the 7Be(p, γ)8B reaction. We distinguish protons

assuming one is closer to 7Be and the second one is the spectator, which is far away

from the colliding 7Be and proton, i.e. rα � ρα. This approximation will help us to
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integrate the matrix element using the stationary phase method.

Taking into account |kα| � |δkα| and using the Taylor’s expansion in Eq. (6.28)

we get

Nα(ρα)F (−iηα(ρα), 1, iξα(ρα)) ≈ NαF (−iηα, 1, iξα)

×[1 + i
ηα

kα
(
π

2
− iψ(1 + iηα))

δkα · k̂α

ρα
], (6.34)

where ψ(1 + iηα) is the derivative of the Γ-function. If we disregard the O(1/ρα)

term in Eq. (6.34), then Eq. (6.28) transforms to the 3C asymptotic three-body wave

function in the Ω0 region. This wave function has been found in Chapter III. As

particles which we are considering have spins, we have to couple their spins with the

orbital angular momenta. This is done by carrying out a partial wave expansion of

the scattering wave function and coupling it to the spin. The spins of the 7Be and

proton are 3−

2
, and 1

2
, respectively. We couple these into a channel spin. The ground

state of 8B is 2+ and the relative orbital angular momentum of the 7Be and proton

is lf = 1. The dipole transition in the binary capture 7Be(p, γ)8B is dominated by

the li = 0 → lf = 1 transition. Therefore, in the partial wave expansion of the

initial scattering wave function we may retain only the term with li = 0 for the part

describing the relative motion of particles β and γ. The partial wave expansion of

the wave function eikα ·rαNαF (−iηα, 1, iξα) describing the relative motion of 7Be + p

is given by

eikα·rαNαF (−iηα, 1, iξα) =

∞∑

li=0

√
4π(2li + 1)ilieiδli

Fli(ηα, kαrα)

kαrα
Yli0(r̂α). (6.35)

Using this partial wave expansion we can couple the partial waves with the channel

spin. Recalling Eqs.(6.10) and (6.13) we have for the initial three-body scattering
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state

Φ
(+)
i (rα,ρα) ≈ ΦIi

λJiMi
eiqα·ρα

∏

ν=β,γ

NνF (−iην, 1, ξν), (6.36)

and for the final state 8B + p, where 8B = (7Bep)

Ψf (rα,ρα) = Φ
If

λJf Mf
(rα)Ψ

(−)
q′α

(ρα) (6.37)

We disregard the spin of the spectator particle because it is far away and, hence,

interacts with the colliding 7Be and proton only via the Coulomb force which does

not depend on spin.

2. Triple reaction rate for the nonradiative 7Be(e−p, e−)8B reaction

Due to the high density of the stellar plasma, the 7Be, proton and electron form

a three-body initial state, which can lead to the following nonradiative reaction,

7Be(e−p, e−)8B. We consider the asymptotic region, where the 7Be and proton are

close to each other but far away from the electron spectator. The average kinetic

energy of the particles in the plasma is the same for nuclei and electrons. Since

me

mp
<< 1 the electron velocity is three orders of magnitude higher than that of a

proton or 7Be. We have the following mass relations: µα

Mβ
≈ µα

Mγ
≈ 1 and

µβ

mγ
≈ µγ

mβ
≈ 0.

Then for the electron-spectator case Eq. (6.31) leads to kβ ≈ qα and kγ ≈ −qα. It

means that the motion of the electron relative to the (7Be, p) center of mass is totally

uncoupled from the relative motion of the 7Be and proton. Therefore, as has been

done in [78], we can use the adiabatic approximation. In this approximation while

the proton approaches 7Be very slowly the electron flies ”nearby” picking up energy

and leaving the heavy particles in a bound state. Contrary to the proton-proton

case the electron is attracted to the positively charged nuclei. Because there is no
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Coulomb barrier factor for the electrons, the main contribution to the reaction rate

comes from the electrons with energies nearly equal to the Maxwell-Boltzmann peak

energy. Due to the small electron mass the Coulomb parameters for electron-nuclei

Coulomb interactions are η, ηβ, ηγ � 1. Therefore we can use this approximation

NβNγF (−iη, 1, iξ)F (−iηβ, 1, ξβ)F (−iηγ, 1, ξγ) ≈ 1 (6.38)

in the integrand of the integral in the matrix element Eq.(6.24), i. e. the motion of

the electron relative to the center of mass of the heavy nuclei is described by a plane

wave. The approximations above facilitate integration over ρα in the matrix element.

Since we replaced the electron motion by the plane wave the integral involving the

channel potential UC disappears and we define

V
C

α = V C
β + V C

γ , (6.39)

where V
C

α is the Coulomb potential describing the interaction of the electron with

the 7Be and proton and V C
ν , ν = β, γ is given by Eqs.(6.26) and (6.27). The matrix

element (6.24) for the electron spectator case takes the following form:

Mif =
∑

mf

C
Jf Mf

lf mf JiMi

∫
drαY

∗
lfmf

(r̂α)φ∗
lf

(rα)ψ0(rα)

∫
dραV

C

α e
i(qα−q′

α)·ρα. (6.40)

Integration over ρα is straightforward:

∫
dραV αe

i~p·ρα = −4π e

p2
[zβ e e

−iλβ~p·rα + zγ e e
iλγ~p·rα], (6.41)

where p = q′
α − qα is the momentum transferred to the electron. Using the partial

wave expansion of the plane waves in Eq.(6.41) in the integral of Eq. (6.40) we perform
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the angular integrations leaving only the integration over rα:

Mif = −4π i e

p2

√
4π(2lf + 1)C

Jf Mf

lf0JiMi

×
∫
r2
αdrαψ0(rα)φ∗

λlf
(rα)[zγ e jlf (λγprα)− zβ e jlf (λβprα)], (6.42)

where jlf (λνprα) is a Riccati-Bessel function. By averaging over the initial Mi and

summing over final Mf spin orientations we obtain

1

(2Ji + 1)

∑

Mi,Mf

|Mif |2 =
1

(2Ji + 1)

5(4π)3

p4k2
α

[eCIf lf ]
2

×[

∞∫

0

drαF0(ηα, kαrα)W ∗
lf
(2κrα)(zγ e jlf (λγprα)− zβ e jlf (λβprα))]2. (6.43)

Finally, the reaction rate given by Eq.(6.21) for the 7Be(e−p, e−)8B nonradiative triple

reaction takes the following form

〈Σ(T )〉e =
320πe2

α

(kBT )2

∑

Ji

C2
Iilf

2Ji + 1

√
Mα

µ3
α

∞∫

0

dkα

∞∫

0

dpe
−

Mα(
k2
α

2µα
−ε− p2

2Mα
)2

2kBTp2 e
− k2

α
2µkBT

×
(
∞∫
0

drαF0(ηα, kαrα)W ∗
lf

(2κrα){eγjl(λγprα)− eβjl(λβprα)})2

p3
(6.44)

The electron density in stellar matter dominated by hydrogen can be found from

ne ≈
ρ

MH

(1 +XH)

2
, (6.45)

where MH , and XH are the hydrogen mass and atomic weight abundances, respec-

tively. We use the reaction rate equation (6.44) to estimate the triple reaction rate

per particle triplet for the 7Be(pe, e)8B nonradiative reaction. The results are shown

in Table I.
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3. Triple reaction rate for the nonradiative 7Be(pp, p)8B reaction

It is well known that hydrogen is the most abundant element in the Sun and in the

Universe. Therefore the most important and dominant reactions in the stellar core,

in a supernova hydrogen envelope or in any stellar object which has not used up its

hydrogen fuel, are reactions involving hydrogen nuclei. Contrary to the 7Be(pe, e)8B

reaction, the 7Be(pp, p)8B triple collision involves interacting particles that are posi-

tively charged. This leads to a strong Coulomb barrier. Therefore the reaction rate

will have a strong temperature dependence, especially at low temperatures. As men-

tioned earlier, the initial state for this reaction consists of a 7Be, a nearby proton and a

far away proton which takes away the excessive energy emitted in the binary process.

The far away proton must penetrate the Coulomb barrier of other two nuclei in order

to pick up a virtual photon but it will still be far away from the colliding 7Be and

proton. This configuration allows us to distinguish the two protons from each other

and disregard the antisymmetrization of their wave functions when estimating the

nonradiative reaction rate. There are two identical protons, therefore, triple reaction

rate Eq 6.18 is divided by two. Since the radiative capture is an extremely peripheral

process, the transition operator in the matrix element (6.24) is approximated by its

Coulomb parts:

V α = V C
β + V C

γ − UC , (6.46)

where V C
β , V C

γ , UC are given by Eqs. (6.25), (6.26), (6.27). Since we have rα � ρα in

the Ωα region we can further simplify the calculation by using a multipole expansion

[76] of V α:

V α = zαe
2
∑

LM

4π

2L + 1
µL

α((−1)L zβ

mL
β

+
zγ

mL
γ

)
rL
α

ρL+1
α

Y ∗
LM (r̂α)YLM(ρ̂α). (6.47)
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We also took into account that ξβ ≈ ξβα and ξγ ≈ ξγα, where ξνα = kνρα− εανkν · ρα,

and ν = β, γ. Now we can separate the integrations over rα and ρα in the matrix

element (6.24):

Mif =
∑

LM

4π

2L + 1
QLMQLM , (6.48)

where

QLM = eµL
α((−1)L zβ

mL
β

+
zγ

mL
γ

)

∫
drα

(2π)3/2
Φ∗

λJfMf If
rL
αY

∗
LM (r̂α)ΦλJiMi Ii (6.49)

is the multipole moment for 7Be(p, γ)8B capture and

QLM = zαe

∫
d~ρα

(2π)3

ei(qα−q′
α)·~ρα

ρL+1
α

NF (−iη, 1, iξ)YLM(ρ̂α)

×
∏

ν=β,γ

NνF (−iην, 1, iξν). (6.50)

Let us investigate the matrix element (6.49) for further simplifications. As q′
α is

reasonably large in the final state wave function, we replace NF (−iη, 1, iξ) by its

asymptotic form eiη ln ξ. Similarly we replace the NβF (−iηβ, 1, iξβ) function describing

the scattering of two protons in the initial state by its asymptotic form eiηβ ln ξβα. As

usual the dipole moment contribution in Eq. (6.48) will dominate so we keep only the

L = 1 term. After substituting Φ∗
λJf Mf If

, and ΦλJiMi Ii into Eq.(6.49) we have

Q1M = µα(
Zγ

mγ
− Zβ

mβ
)(−1)MC

Jf Mf

JiMiL−M

∫
r2
αdrα

(2π)3/2
φ∗

λlf
rL
αψλli, (6.51)

where ψλli is the radial part of the initial wave function of the reacting pair and the

radial part of the bound state φ∗
λlf

is given by (6.13). Using the following relation for

the Clebsch-Gordan coefficients

∑

MiMf

C
JfMf

JiMiL−MC
Jf Mf

JiMiL−M ′ =
∑

MiMf

C
Jf Mf

JiMiLxC
JfMf

JiMiLx′ =
2Jf + 1

2L + 1
δMM ′, (6.52)
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averaging |Mif |2 over the initial state projections Mi and summing over the final

state projections Mf , we can write down Eq. (6.48) in the following form:

|Mif |2 ≈ (
4π

2L + 1
)2

∑

M

|QLM |2 |QLM |2 . (6.53)

The angular integration in the matrix element QLM can be performed using the

following relation for the plane

eip·ρα ∼ 2π

ipρα
[δ(p̂− ρ̂α)eipρα − δ(p̂ + ρ̂α)e−ipρα], (6.54)

where p = qα−q′
α. Then keeping the leading term in the direction −p̂, we integrate

over ρα [101, 102]:

Q1M ≈ −2πZαeY1M(−p̂)

i |p| Nγe
iηβ ln(kβ+εβαkβ ·(−p̂))+iη ln(q+q·(−p̂))e−i(ηβ+η) ln|qα−q|

×Γ(i(ηβ + η))e
π
2
(ηβ+η)F (−iηγ, i(ηβ + η), 1,

ξ′γ(−p̂)

|p| ). (6.55)

So finally Eq. (6.55) takes the following form

Q1M = GY1M (−p̂), (6.56)

where for simplicity we have defined

G =
2π i zαe

|p| Nγe
iηβ ln(kβ+εβαkβ ·(−p̂))+iη ln(q+q·(−p̂))e−i(ηβ+η) ln|qα−q|

×Γ(i(ηβ + η))e
π
2
(ηβ+η)F (−iηγ, i(ηβ + η), 1,

ξ′γ(−p̂)

|p|
). (6.57)

All phase factors will disappear when we multiply Eq. (6.57) by its complex conjugate:

G∗G =
4π2z2

αe
2

|p|2
2π

e2πηγ − 1

2π

1 − e−2π(ηβ+η)

ηγ

(ηβ + η)

×
∣∣∣∣F (−iηγ, i(ηβ + η), 1,

ξ′γ(−p̂)

|p| )

∣∣∣∣
2

. (6.58)
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Finally, Eq. (6.53) boils down to

∑

Mi,Mf

|Mif |2 ≈
3

4π
(

4π

2L + 1
)2 2Jf + 1

2L + 1
|X|2 |G|2 , (6.59)

where X comes from the matrix element of the dipole moment, Eq. (6.51), and is

defined by

|X|2 = µ2
α(− zβ

mβ
+

zγ

mγ
)2 e2

∣∣∣∣
∫
r2
αdrαφ

∗
λlf
rαψλli

∣∣∣∣
2

(6.60)

= µ2
α(− zβ

mβ
+

zγ

mγ
)2 e2

C2
Ilf

k2
α

∣∣∣∣
∫
rαdrαW

∗
lf
(rα)Fli(−iηα, kαrα)

∣∣∣∣
2

(6.61)

The final equation which we use to estimate the reaction rates of the 7Be(pp, p)8B

nonradiative triple collision takes the following form:

〈Σ(T )〉p = A

∫ ∣∣∣∣
∫
rαdrαW

∗
lf
(rα)Fli(−iηα, kαrα)

∣∣∣∣
2

e
− (~c)2k2

α
2µc2kBT dkα

×
∫
q2
αdqα

√
(εb +

(~c)2k2
α

2µα
+

(~c)2q2
α

2Mα
)e

− (~c)2q2α
2Mαc2kBT

×
∫ ∫

sin θdθ sin δdδdφ
1

|p|2
1

e2πηγ − 1

kβ

kγ

eβµγ

(eγµβ +
kβ

q
(eβ + eγ)µ)

×
∣∣∣∣F (−iηγ, i(ηβ + η), 1,

ξ′γ(−p̂)

|p| )

∣∣∣∣
2

, (6.62)

where A is constant factor

A =
(~c)4

(kBT )3
c
16π2

3

2Jf + 1

2L + 1

µc2
√

2µc2

(Mαc2µαc2)
3
2

µ2
βγ(−

zβ

mβ
+

zγ

mγ
)2

×z2
α(
e2

~c
)2

∑

Ji

C2
Ilf

(2Ji + 1)
. (6.63)

The reaction rates for the 7Be(pp, p)8B nonradiative triple collisions are given in the

Table I.
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D. Results and discussions

We calculated reaction rates for the 7Be(pe, e)8B and 7Be(pp, p)8B nonradiative re-

actions using Eqs.(6.44) and (6.62) for temperatures T ranging from 1.4 × 107 K to

109 K. The results of our calculations are given in Table I. We present the results

for the triple reaction rate per particle triplet multiplied by the square of Avagadro’s

number, N2
A 〈Σ(T )〉s, with units (cm6mol−2s−1). In this form our results can be used

not only for solar conditions but also for any stellar objects with different particle

densities and temperatures. Any specific reaction rate for a particular stellar object

can be calculated from Table I by multiplying the rate by n7Benpns/N
2
A, where ns

is number density of either the electron or proton spectator. The four columns give

temperature, binary rection rate and the nonradiative triple reaction rates for elec-

tron and proton spectator cases, respectively. The temperature dependence of the

binary and triple reaction rates, normalized to the same value at T = 1.4 × 107K

are shown in Figure 3. We have defined NR(T ) = NA 〈σv〉 × 1012, for the binary

reaction rate, and NR(T ) = N2
A 〈Σ(T )〉s NA〈σv〉T0

/(N2
A 〈Σ(T0)〉s) × 1012 as the rate

for the triple reaction normalized to the rate at T0 = 1.4 × 107, and s = e, p for the

electron and proton spectators, respectively.

The 7Be(pp, p)8B reaction has the strongest temperature dependence at low tem-

peratures, as is expected, since all particles are positively charged and have a strong

Coulomb barrier. At high temperatures the reaction rate is practically a flat function

of temperature for all reactions and triple rates with electron and proton spectators

have the same order. As has been anticipated the nonradiative reaction rates are

small compared to the corresponding binary radiative fusion rates in the solar core.

A supernova’s envelope has similar conditions as the core of a normal hydrogen burn-

ing star. Therefore the triple to binary reaction rate ratios have almost the same order
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Table I. Temperature dependence of the reaction rates of the binary radiative
7Be(p, γ)8B, and nonradiative triple 7Be(ep, e)8B, and 7Be(pp, p)8B reactions

T7 (107K)
NA 〈σv〉

(cm3mol−1s−1)

N2
A 〈Σ(T )〉e

(cm6mol−2s−1)

N2
A 〈Σ(T )〉p

(cm6mol−2s−1)

1.4 1.7×10−12 1.7×10−19 1.2×10−26

1.5 4.2×10−12 4.2×10−19 4.3×10−26

1.6 9.9×10−12 9.6×10−19 1.4×10−25

1.8 4.5×10−11 4.1×10−18 1.0×10−24

2 1.7×10−10 1.4×10−17 5.5×10−24

3 1.7×10−8 1.1×10−15 2.0×10−21

4 3.2×10−7 1.7×10−14 7.8×10−20

6 1.3×10−5 4.5×10−13 9.3×10−18

8 1.4×10−4 3.4×10−12 2.3×10−16

10 7.6×10−4 1.4×10−11 2.6×10−15

20 7.7×10−2 4.6×10−10 1.6×10−12

30 7.9×10−1 2.1×10−9 3.3×10−11

40 3.6 5.0×10−9 2.1×10−10

50 10.8 8.8×10−9 7.7×10−10

60 25.4 1.3×10−8 2.0×10−9

80 90.9 2.1×10−8 7.1×10−9

90 149.1 2.5×10−8 1.1×10−8

100 229.2 2.8×10−8 1.7×10−8
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Fig. 3. Temperature dependence of the binary and triple reaction rates.



111

as for the Sun, as shown in Table II. This smallness is due to the small probability of

triple collisions for the low density of spectator particles and to the Coulomb barrier

for the proton spectators at low temperatures. We can use the results of Table I to

estimate triple reaction rates in other stellar objects where high temperatures and

densities exist. Even though the triple reaction rates are small at low temperatures

and densities the calculations performed here give some insight into conditions when

triple collisions might be important. Triple collisions have larger probability at high

temperatures due to the smaller effect of the Coulomb barrier and at high densities

of the spectator particles since the probability of the triple collisions is proportional

to the number densities of the spectator particles.

Now let us consider some other stellar objects, where high temperature and

high density conditions exist. These objects are novae events in binary systems, X-

ray bursts and X-ray Superbursts. In [92] the reaction rate uncertainties in nova

nucleosynthesis were investigated for a wide range of reactions. These investigations

cover temperatures ranging from 0.145 × 109 K to 0.418 × 109 K and densities from

10 gcm−3 to 105 gcm−3. Another object of interest is an X-ray burst in a binary

system. Type I X-ray bursts are thermonuclear flashes of accumulated hydrogen and

helium on an accreting neutron star. The X-ray emission in binary systems with

compact objects is due to accretion. Densities in an X-ray binary system are much

higher than that in a nova binary.

Finally, we need to mention the stellar objects, called Superburst, with densities

higher than X-ray bursts. Superbursts are rare and powerful nuclear explosions on the

surface of neutron stars. Superbursts are energetic (1042 − 1043 ergs) thermonuclear

flashes on the surface of accreting neutron stars and are thought to be caused by

unstable carbon burning and photodisintegration of heavy elements produced during

the rapid proton capture process. Superbursts provide a new way to study the physics
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Table II. Ratio of the nonradiative triple to radiative binary rates in different environ-

ments

Stellar Object T9 ne (cm−3) np (cm−3)
〈R3(T )〉e
〈R2(T )〉

〈R3(T )〉p
〈R2(T )〉

The Sun 0.0156 6× 1025 4.8× 1025 10−5 10−12

Supernova 0.02 7× 1025 5.4× 1025 9.6× 10−6 3× 10−12

Big bang 0.8 ÷ 0.3 3.6× 1024 3 × 1024 2× 10−7 3.6× 10−12

Nova surface 0.1 ÷ 0.4 2.5× 1028 2 × 1028 6× 10−5 2× 10−6

X-Ray burst > 1 7.3× 1029 6 × 1029 1.5× 10−4 7× 10−5

Superburst > 1 6× 1032 ∼ 1025 0.1 ∼ 10−7

of nuclear burning at high temperatures and densities, as well as a new probe of the

neutron star interior [93]. In a superburst the density reaches ρ ≈ 109 g cm−3 and

temperature T > 109K. Results of estimates for triple to binary rates are shown

in Table II. These results depend on temperature, density and abundances of the

elements in the stellar environment. As we see triple reactions are larger at high

temperatures and densities than earlier thought. We have chosen here nonradiative

triple reactions as examples. If the charges of interacting particles are small, and if

there are some low lying resonances at high temperature and densities, such triple

reactions might play an important role in stellar nucleosynthesis.
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