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Abstract 

The authors present a method for representing N- 
dimensional fuzzy mcmbership functions. The proposed 
method is a generalization of the one-dimensional 
trapezoidal membership function commonly used in fuzzy 
systems. The issue of correlation between input variables 
and a decrease in tht, rule base size is the motivation for 
extending the definii fion of membership functions into 
more than one domain. The approach outlined in this 
paper is focused by practical considerations and use of a 
Bayesian version of ,fuzzy logic which requires that set 
membership sum to lone, The fuzzy partitioning which 
stems from the pres(1mted method is parameterized by 
M+I values, yielding an eficient mechanism for 
designing complex fizzy systems. 

Introduction 

The current state of the art in fuzzy logic system 
design is the use of hzzy membership functions which 
are defined in a single domain, i.e. functions of one 
variable. These fuzzy membership functions define the 
degrees of membership that a crisp value has in a fuzzy 
set. In practice, the nwnbership functions are also either 
trapezoidal or triangular as in Figure 1. For simple 
applications this scheme is adequate, easy to design, 
prototype and adjust. 

However, the use of one-dimensional membership 
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Figure 1. Typical 1 D membership functions. 
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functions has proved to be inadequate in practical 
situations involving comlplex systems. In particular, 
previous work in the area of flight mode identification for 
an “automated pilot advisor” has revealed this 
inadequacy. Lass [5] describes “as long and tedious’’ the 
use of one-dimensional membership functions for 
maintaining an airp1ane”s state within a particular 
operating region. He hrther concludes that fifty-two 
rules would have been netded to describe one operating 
mode on a two-dimensiaaal state space. Harral [41 
showed that in areas like flight mode identification the 
real problem for one-dimensional membership functions 
is the high amount of correlation between the measurable 
inputs. 

By “correlation” is meant the condition that an aircraft 
operating mode, say, is represented by irregular, smoothly 
connected region in a multivariable state-space. The 
“footprint” of a mode on the x-y plane could look 
something like Figure 2. One-dimensional membership 
functions cannot by thiemselves represent such a 
relationship. The current practice approximates a smooth 
representation by composition of two or more single 
variable regions. Such a composition is shown in dashed 
lines on Figure 2. A better approximation would require 
that each axis be partitioned into more one-dimensional 
fuzzy sets. However, with additional fuzzy sets come a 
larger rule base. 

The composition of single-variable fuzzy sets into 
multivariable sets requires a rule base. One-dimensional 
fuzzy sets are defined on each input space. The typical 
rules might resemble “If x is HIGH and y is LOW then z 
is SHORT. These rules c;m define the system output or 
an intermediary set used for multilevel rulebases. The 
accuracy of the approximation depends on the number of 
fuzzy sets defined on each input, and the particular 
connectives used. 
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: "Correlated" model 
- Two variable composition 
8 (i.e. IF Si and Sj, THEN ...) 

rint sf fuzzy set w 

For systems with correlation between two variables, x 
and y, the one-dmensional membership functions 
describing a set A are of the form pA(x1y=Y) and 

pA (ylx = X) . Correlation of membership can also be 
approximated by designing conditional membership 
functions. This is a brute force method of specifymg 
pA(xly=Yk) for k=1,2, ... K. This requires K one- 
&mensional fuzzy set definitions for each set or mode. 
In the case that yj < y = Y* < Y ~ , ~ ,  an interpolation 

must be done to approximate pA(xIy = Y*) . This 

method has been successful [5] but lacks efficiency and is 
arduous to tune. 

Our scheme is a utilitarian multidimensional 
representation. 

The "Sum To One" Design Crite 

Our present work in knowledge-based control [6] 
admits the alternate fuzzy logic connectives, originally 
compared by Bellman and Zadeh [ 11. These are the usual 
connectives of the Bayes version of fuzzy logic [7], 
wherein the membership values sum to unity. That is, for 
membership functions pi (x) , 

1 

Membership functions defined in such a manner are 
referred to as a fuzzy partitioning. 

Fuzzy membership functions based on Gaussian 
probability density functions can easily be extended to N- 
dimensions. Multidimensional Gaussian membership 
functions have proved especially useful in the area of 
clustering [l] and training [8]. However, membership 
functions based on Gaussian densities generally do not 
exhibit the desirable property of equation (1). 
Trapezoidal membership functions, on the other hand, 
can easily be defined with the design constraint of 
equation (1). 

The standard method for defining one-dimensional 
trapezoidal membership functions is with four points -- a, 
b, c, and d, as shown in Figure 3. This method, however, 
is impracticable for defining membership functions on 
multiple dimensions. Therefore, we propose the 
hypertrapezoidal membership function as a utilitarian 
scheme for defining multidimensional membership 
function. 

1 

0 X 
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The complete tr~gonometric derivation of Si and Sj, with prototype points hi and h and a crisp 
hypertrapezoidal membership functions is straight- 
forward and is not shown here due to space constraints. 
The derivation consists of four steps: the definition of the 

input A ,  that distance measure is 

2 
prototype points and a “crispness factor”, the definition of lTi12 -lvjl 
a relative distance measure, the calculation of a Pilj (A) = 9 (3) 
conditional membership function, and the final 
composition. 

1 

0 

partitioning of an N-dimensional space, let each fuzz; 
set, SI, be defined by B prototype point, hi. Furthemore, 
let the partitioning of the space also be parameterized by 
a crispness factor, cr . The prototype point, hi ,  has a 
degree of membershiip in set, SI, of pi(&) = 1 and a 

degree of membersh~ip in set s,, of pj (hi )  =o where 
j#i. 

The crispness factor, 0 I 6 I 1, determines how much 
ambiguity exists between the sets of the partitioning. For 
6 =1, no fuzziness exists between the sets and the 
partitioning is equiivalent to a minimum distance 
classifier. For fuzzy sets, 6 c 1. One way to define the 
crispness factor is using Figure 4 and equation (2). 

hi to A ; and V j  is a vector &om hj  to A .  This 

distance masure is used [to determine if the crisp input 
A lies completely in fuzz,y set i, or completely in fizzy 
set j, or in the fuzzy region between the two sets. 

The third step in the derivation of hypertrapezoidal 
membership functions is determining the degree of 
membership that A has in set i, given that set j is the 
only other set in the partition. Suppose fuzzy sets i and j 
are the only two Sets defined in an I’J-dhenSional Space. 
using the diStance “ r e :  Of equation (3, that degree of 
membershipis 

p il (A) 1 1 - 6 

.I 

--  

si s 2  

hl 

2a 
d 

(3=- 

The crispness factor latablishes how much of the space 
between the prototype points is fuzzy. The prototype 
points are chosen as ideal representatives of each fuzzy 
set. Then, the designer’s selection of 0 specifies the ratio 
of a and d . See Figillre 5 for one-dimensional examples. 

The second step irii the derivation is the definition of 
an appropriate distance measure relating the distance 
from the crisp inpul, to two prototype points. This 
distance measure is a ratio of the distance between two 
prototype points, and the difference in the distances Erom 
the crisp input to the IWO prototype points. For fuzzy sets 

I cLil j (A) = 
I 

For the first case in equation (4), A lies completely in 
fuzzy set j. For the second case, A lies completely in 
fuzzy set i. The third case is the case of A being in the 
transition from set i to set j. 

Figure 4. Defining the crispness of a partitioning. 
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Generally, there will be more than two sets in an input 
space. Therefore, the final step in the derivation requires 
combining the membership functions of equation (4) for 
all j+i. In this case, the degree of membership of a point 
A in each of the M fuzzy sets can calculated in one of 
two ways. The first is based on producthum inference 
and is shown in equation (5). The second is based on 
min/max inferen d is shown in equation (6). Both 

equation (1) is satisfied. 

(5) 
j=l+i fori = 1 ,2 ,  ... 

1 Pi (A) = 

Pi1 j (A) 

To summarize, the design of hypertrapezoidal 
membership functions requires two steps - 

a) selection of the prototype points, and 

b) selection of the crispness factor. 

The computation of hypertrapezoi 

a) the distance measure of equation (3), 

b) the conditional m 

c) the composition of equation (5) or (6). 

functions requires e sets of calculations - 

ctions of equation 
(4), and 

Notice that equations (3) - (6) are general for N 
dimensions, including N=l. These four equations allow 
for the use of an Ed- 
using only M a l  parameters. Addition~~y, the desirable 
property of equation (1) is enforced. 

(s = 0.0 cT = 0.5 
1 

0.5 

0 
0 5 10 0 5 10 

c T =  1.0 

0 5 10 

h=[l 5 91. 

membership functions designed using the described 
technique. All the examples were made using equation 
(6). Figure 5 illustrates the use of the described technique 
for onedimensional membership functions and the effect 
of the crispness factor B on fuzzy sets. 

Figure 7 shows an example of three fuzzy sets defined 
on two domains. The definition of the three sets is 
accomplished with the following parameters: 
h, =(9, l), h,  =(5 ,  5 ) ,  h, =(l, 9), and 0=05. 
A rule base operating on one-dimensional sets could only 
approximate the correlation represented in the figure. 

In the example of Figure 7, a transformation of the 
axes could also have compensated for the correlation. It is 
included as a simple example to aid the reader in an 
intuitive understanding of the design parameters hi and 
0. Figure 6 shows another example of fuzzy sets 
defined in a two-dimensional space. In this case, 
coordinate transformation would not be useful. 

Visualization of N-dimensional fuzzy sets defined on 
more than two domains is not easy. However, 
hypertrapezoidal membership functions do not require 
visualization for their design. The results of the 
application of this technique for problems involving as 
many as seven inputs will be reported in future 
publications . 

The following diagrams are examples of fuzzy 
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10 

0 0  

Figure 7. Example of three sets defined on a two-dimensional space. 

Conclusion and IWure Research 
for situations requiring braining. Both clustering and 
genetic algorithm techniqiies could be used to determine 
good his and d from training data. 

Another important extension of the hypertrapezoidal 
membership function is motivated by the work of Foster 
and mmbhmpatipl in the area of multidimensional 

a space be with a Gaussian membership functions. Instead of a single point 

An efficient and simple mechanism for representing 
and evaluating N-dimensional fuzzy membership 
functions has been piresented. The examples show that 

number Of Par'meters' This method Of designing 
N-dimensional mem'bership functions has promise for in space defining the 

function, they used a vector in space to &fine the "top 
of a Gaussian 

ridge" of an elongated Gaussian fuzzy set. This allows 
for more variety in ~ , e  shapes of the designed 

simplifying the design of complex fuzzy systems. 
Multidimensional membership functions can account for 

number of rules needcd in a fuzzy system. 

approach is in the arem of machine learning and adaptive Future work will also compare and contrast the use of 
systems. The small number of parameters needed for N-dimensional membership functions with one- 
hypertrapezoidal membership functions will be valuable First, a classical 

between 'e input vMiables and reduce the functions. Fox hypertrapezoids, this would 

Another signifiant advantage of the presented involve replacing the hi s Vectors X i  

dimensional membership functions. 

10 

0 0  

Figure 6. Example of four sets defined on a two dimensional space. 
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fuzzy logic control problem (an inverted pendulum or 
truck backer-upper) will be used €or comparison. Work is 
also now underway to implement this new technique €or 
flight mode analysis in a pilot advisory system. It is 
believed that the real advantage of this technique will be 
in complex systems like the pilot advisory system. 
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