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NOTES 7 
THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS 

INCLUDING FLUID INERTIA EFFECTS 
Notes 4 and 5 presented the derivation of the pressure field, load capacity and dynamic force 

coefficients in a short length cylindrical journal bearing. Notes 7 present an analysis for the 

prediction, using numerical methods, of the static load capacity and dynamic force coefficients in 

finite-length journal bearings. Practical bearing geometries include lubricant feeding 

arrangements (grooves and holes), multiple pads with mechanical preloads to enhance their load 

capacity and stability.  The analysis includes the evaluation of the film mean temperature field 

from an energy transport equation. The film temperature affects the viscosity of the lubricant 

within the fluid flow region. In addition, the analysis includes temporal fluid inertia effects 

modifying the classical Reynolds equation; and hence, the model predicts not only stiffness and 

damping force coefficients but also added mass coefficients. As recent test data shows, fluid 

inertia effects cannot longer be ignored in journal bearing forced performance, static or dynamic.  

 

Introduction 

Analysis of the dynamic performance of rotors supported on fluid film bearings relies not just 

on the rotor structural (mass and elastic) properties but also on the acurate evaluation of the static 

and dynamic forced performance characteristics of the bearing supports. A rotordynamic analysis 

delivers synchronous response to imbalance and stability results in accordance with API 

requirements, to demonstrate certain performance characteristics ; and on occasion, to reproduce 

peculiar field phenomena and to troubleshoot malfunctions or limitations of the operating 

system. 

Mineral-oil lubricated bearings support most commercial machinery that operate at low to 

moderately high rotational shaft speeds. The bearings carry heavy static loads, mainly a fraction 

of the rotor weight. The lubricant, supplied from an external reservoir, fills the small clearance 

separating the shaft (journal) from the bearing. Shaft rotation drags the lubricant through the 

bearing film lands to form the hydrodynamic wedge that generates the hydrodynamic fluid film 

pressure that, acting on the journal, is able to support or carry the applied static load. The mineral 

oil lubricant, generally of large viscosity, increases its temperature as it carries away the 
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mechanical energy dissipated into heat. Hence, the material visosity of the lubricant, a strong 

function of temperature, does not remain constant within the film flow region in the bearing.  

Importantly enough, the conditions of low speed (Ω), small clarance (c), and large viscosity 

(μ/ρ) determine a laminar flow condition in the bearing, i.e. operation with small Reynolds 

numbers Re < 1,000 (Re=ρΩRc/μ). Hence, Reynolds equation of Classical Lubrication is valid 

for prediction of the equilibrium hydrodynamic film pressure in the bearing. The prediction of 

the thermal energy transport in a thin film bearing is more difficult since there is a significant 

temperature along and accross the film, i.e. a three-dimensional phenomenon. Most importantly, 

the thermal energy exchange does not just involve the mechanical energy generated by shear and 

its advection by the lubricant flow but also must account for the heat conduction into or from the 

shaft and bearing cartridge.  

A comprehensive 3-D thermohydrodynamic analysis for prediction of performance in finite 

length journal bearings is out of the scope of these lecture notes. The interested reader should 

refer to relevant work in the archival literature [1,2] for  further details. However, note that most 

fluid film bearing designers and bearing manufacturers rarely rely on cumbersome and 

computationally expensive analysis tools; in particular when these require of boundary 

conditions that are operating system dependent (not general). More than often, engineers  prefer 

to obtain model results that are in agreement with published test data and go along with their vast 

practical experience. 
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Analysis 

Figures 1 and 2 depict the geometry of typical cylindrical journal bearings comprised of a 

journal rotating with angular speed (Ω) and a bearing with one or more arcuate pads. A film of 

lubricant fills the gap between the bearing and its journal. Journal center dislacements (eX, eY) 

refer to the (X,Y) inertial coordinate system. The angle Θ, whose origin is at the –X axis, aids to 

describe the film geometry. The graphs show the relevant nomenclature for analysis.   
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Figure 1. Geometry of a cylindrical bearing pad with feed hole (not to scale) 
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Figure 2. Geometry of elliptical (two groove) and four-pad cylindrical bearings (not to 

scale) 
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Figure 3 shows a typical bearing pad with radial clearance (c) and preload (rp) at angle ΘP. Θl 

and Θt denote the leading edge and trailing edges of the pad, respectively. Within the flow region 

 , 0l t z L     , the film thickness (h) is 

   cos( ) cos sinp p X Yt th c r e e         (1)  

where   ,X Y t
e e are the journal center eccentricity components along the (X, Y) directions.  
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Figure 3. Geometry of a bearing pad with preload and description of film thickness (not to 
scale) 

 

Governing equations for pressure generation and temperature transport 
The modified [3,4,5]  laminar flow Reynolds equation describing the generation of 

hydrodynamic pressure (P) in the thin film region  , 0l t z L     of a bearing pad is  

  
3 3 2 2

2 2
( ) ( ) ( )

1

12 12 2 12T T T

h P h P h h h h

R z z t t


  

            
                        

  (2) 
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where (ρ, μ) denote the lubricant density and viscosity, both temperature (T) dependent material 

properties. For example,  v ST T
S e      , with subindex S denoting supply conditions.  The 

modified Reynolds equation includes temporal fluid inertia effects ; hence, the flow model is 

strictly applicable to lubricant thin film flows induced by small amplitude journal motions about 

an equilibrium position. 

For the laminar flow of an incompressible fluid and regarding the temperature as uniform 

along the axial direction, the energy transport equation under steady-state conditions is [6]  

    
22 2

212

12 2v s

R R
C hU T hW T Q S W U

R z h

 
                       

     (3) 

where T is the lubricant bulk-temperature1 and     s B B J JQ h T T h T T     is the heat flow 

into the bearing and journal surfaces. Above, Cv is the lubricant specific heat, and (W, U) 

represent the axial and circumferential mean flow velocities given by    

    
2 2

;
12 12 2

h P h P R
W U

z R 
  

  
 

   (4) 

Eq. (3) is representative of a bulk-flow model that balances the mechanical shear dissipation 

energy (S) to the thermal energy transport due to advection by the fluid flow and convection (Qs) 

into the bearing surfaces.  The heat convection coefficients   ,B Jh h  depend on the Prandtl 

number (
r vP C 

 ) and the  flow condition defined by the local Reynolds number 
e

U h
R




 
 

 
 

relative to the bearing and journal surfaces[7]. For laminar flow, 1e

c
R

R
 , Colburn’s analogy 

renders the convection coefficients 
1

33 rh P
h


 . See  Ref. [8] for details2. 

 

                                                 

1 The bulk temperature represents an average across the film thickness, i.e.  , ,
0

1 h

z yT T dy
h     

2 The THD model implements a number of heat transfer models, including those for fixed or developing wall 
temperatures and heat flows.    
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Boundary conditions for film pressure and temperature3 

The pressure at a pad leading edge equals a supply condition, i.e.  

   0 : ,  l Sz L P z P          (5a) 

The pressure is ambient at the bearing axial ends,   

    ;,   ; 0,: aatl PLPPP      (5b)  

and also at the pad trailing edge, 

 0 : ,  t az L P z P         (5c) 

Furthermore, within the whole flow domain, P > Pcav, i.e., the film pressure must be higher 

than the lubricant cavitation pressure. For a thorough discussion on lubricant cavitation and 

physical sound boundary conditions refer to Notes 6 [9]. 

Lubricant is supplied into the bearing at a known supply temperature (TS). The fluid 

temperature (T) gradually increases as it flows through the film thickness in a bearing pad since 

the lubricant removes shear induced mechanical energy. At the leading edge of a pad (Θl), there 

is mixing of the supplied cold lubricant flow rate (FS) and a fraction of the hot lubricant flow 

(Fup) leaving the upstream with temperature Tup. The flow and thermal energy mixing conditions, 

as shown in schematic form in Figure 4, are specified as 

 
in S up

v in in S S up up

F F F

C F T F T F T





 

 
    (6) 

where  
0 l

L

inF W h dz


   is the volumetric flow rate entering the pad at temperature Tin, and 

 
0 t

L

upF W h dz


  . The mixing parameter   0,1   is an empirical variable. Current or 

modern oil feed flow configurations incorporate direct impingement of the lubricant into a 

bearing pad, thus λ is low, to render cool lubricant temperature operation, i.e. Tin ~ TS . In general, 

λ ~ 0.6-0.9 [10] for conventional feed arrangements with deep grooves and wide holes. In 

addition, note that the mixing thermal coefficient tends to increase  1  with journal speed. 

                                                 
3 In a symmetric and aligned bearing, the pressure field is symmetric about the bearing mid axial plane. Thus, only 
the pressure field for one-half bearing length needs be calculated, say from z= ½ L to z=L. In this case, 

  0/  zP at z= ½ L.   
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That is, as the operating speed increases it becomes increasingly difficult to suminister fresh or 

cold lubricant into the fluid film bearing. 

 

Upstream pad Downstream pad

R

Fup
Tup

Fin
Tin

FS
TS

Supply flow and 
temperature  

Figure 4. Schematic view of thermal mixing at the leading edge of a bearing pad (F: 
flow,T: temperature)  

 

Since the thermal energy transport Eq. (3) is parabolic, there is no need to specify any other 

temperature along the other pad boundaries. Solution of Eq. (3) determines the lubricant 

temperature exiting a bearing pad through its axial sides (z=0, L) and at the pad trailing edge (Θt). 

Importantly enough, in the region where the lubricant cavitates (P=Pcav), the (current) analysis 

assumes there is no further generation of mechanical energy; and consequently, the fluid 

temperature in this region is constant. This is not an oversimplification, as verified by predictive 

analysis [11] and various published measurements,see  [12,13].  

 

Perturbation analysis4  

Consider journal center motions of small amplitude (X, Y << c) about a static equilibrium 

position  
0 0
,X Ye e , as shown in Figure 5. 

   0 0
,X X Y Yt te e X e e Y         (7)   

  

                                                 
4 Follows the classical analysis of J.W. Lund in Refs. [14,15] 
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Figure 5. Depiction of small amplitude journal motions about an equilibrium position (Not 
to scale). 
 

The film thickness is expressed as the superposition of an equilibrium (zeroth-order) 

thickness (h0) and a first-order thickness (h1), i.e.  

 0 1 th h h   ,  

0 00 cos( ) cos sinp p X Yh c r e e      ,   (8) 

     sincos1 tt YXh ,   

with      

0 0

0 1
( ) ( )sin( ) sin cos ; sin cosp p X Y t t

h h
r e e X Y

 
          

 
 

2

2
cos sin , cos sin

h h
X Y X Y

t t

 
         

 
      (9) 

The perturbation in film thickness leads naturally to a perturbation in film pressure, i.e.  
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0 1

1

( , , ) ( , ) ( , , ),

X Y X Y X Y

P z t P z P z t

P P X P Y P X P Y P X P Y

     

                     (10)  

where P0 is the zeroth-order or equilibrium pressure field defined by  
0 0
,X Ye e  at steady 

operating conditions, and ΔP1 is the perturbed dynamic pressure field5.   

Define the linear operator 

     3 3
0 0

() ()1
()

12 12

h h

R R z z 
     

          
L    (11) 

Substitution of the pressure (P) and film thickness (h) into the modified Reynolds Eq. (2) 

gives the following equations for determination of the equilibrium and first order pressure fields  

3 3
0 0 0 0 0

0 2

1
( )

12 12 2

h P h P hR
P

R z z R 
       

            
L    (12a) 

 

 

2 2
0 0 0 0

2 2
0 0 0 0

3 3
cos cos

2 12 12

3 3
sin sin

2 12 12

X

Y

h P h PR
P

R R z z

h P h PR
P

R R z z

 

 

                             
                             

L

L

  (12b)  

   cos ; sinX YP P    L L      (12c) 

   
2 2
0 0cos ; sin

12 12X Y

h h
P P

 
 

   
         
   

 L L     (12d) 

where 
0 00 cos( ) cos sinp p X Yh c r e e      . 

The boundary conditions for the solution of the zeroth- and first-order pressure fields 

follow. Note that in those boundaries where the pressure is fixed, say at ambient condition, the 

perturbed pressures must vanish, i.e. a homogeneous boundary condition. Hence, 

P0(l ,0<z<L) = PS ; P0 (t , 0<z<L) = Pa  

   0 0: ,0  ;   , ;l t a aP P P L P           (13a)  

       , , , , ,0 , , ,
0

l t
X Y X Y X Y z z L

P P P P P P
   

              (13b) 

                                                 
5 The physical units of each perturbed pressure differ. For example, 

      2, , , , ,X Y X Y X Y
Pa Pa PaP P P P P Pm m s m s

             
     
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At the inception of the film rupture or cavitation zone (c), P0=Pcav, and  0 0P   . At 

this location, the first-order pressure fields also vanish, i.e. 0.X Y X Y X YP P P P P P          

Other physical conditions may also apply6. 

The current analysis does not consider a perturbation in the temperature field or the lubricant 

material properties (density and viscosity). Recall the journal motions are small in amplitude 

affecting little the steady-state temperature field. However, in bearings and seals operating in the 

turbulent flow regime, the journal motion does affect the flow condition and hence, there is the 

need to account for temporal variations in the fluid material  viscosity and density, see Notes 10 

[6] 

 

Bearing reaction forces and force coefficients 

The hydrodynamic pressure field generated in each pad acts on the journal to generate a fluid 

film reaction force with components  ,X YF F . Integration of the pressure fields gives 

( , , )
1 1 0

cos

sin

tpads pad
k

k

k l

N N L
XX

z t k
Y Yk k k

FF
P R d dz

F F




  

                        
       (14) 

Substitution of Eq. (10) gives for the kth pad 

 
1

0

0

cos

sin

tL

X
X Y X Y X Y k

Y k

F
P P X P Y P X P Y P X P Y R d dz

F





   
                            (15) 

The components of a pad reaction force are expressed in terms of stiffness, damping and 

inertia force coefficients (K, C, M)αβ=X,Y 

0

0

( )

( )

XX t XX XY XX XY XX XY

YX YY YX YY YX YYY t Y k k kk k

FF K K C C M MX X X

K K C C M MF F Y Y Y

              
                                 

 
   (16) 

 

The bearing pad force coefficients follow from 

                                                 
6 See for example, Zhang, Y., 1990, “Starting Pressure Boundary Conditions for Perturbed Reynolds Equation,” 
ASME Journal of Lubrication Technology, Vol. 112, pp. 551-556. 
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1

1

0

0

0

cos
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sin

cos
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sin
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sin

t

t

t

L

XX XY
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XX XY
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K K
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K K
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C C

M M
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M M













   
       

   
          

   
          







 

 

  (17) 

The individual pad forces and force coefficients add to render the components of reaction 

force and the force coefficients for the whole bearing, i.e., 

        , ,
1 1 1 1

; ; ;
pads pads pads padsN N N N

X Yk k k k
k k k k

F F K K C C M M         
   

        (18)  

 

Calculation of the bearing static equilibrium position 

A fluid film bearing supports an applied load W. This load has components   ,X YW W  along 

the (X,Y) fixed axes. At the rated operating condition W produces a static displacement of the 

journal center, better known as the equilibrium journal eccentricity e, with components  
0 0
,X Ye e . 

The static balance of forces is 

0, 0X X Y YW F W F        (19) 

Most fluid film bearing analyses predict the bearing reaction forces due to specified journal 

center static displacements. Thus, in practice, an iterative procedure is implemented to predict 

the journal equilibrium position given the applied load.  

Let the journal operate with eccentricity  ,X Y j
e e at the jth iteration and giving the bearing 

reaction force components  ,X Y j
F F  . Then, corrections  ,X Y j

e e  to the journal eccentricity 

that will render reaction forces converging towards the applied external load are given by the 

Newton-Raphson procedure   
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





























 

j

jj

YY

XX

jYYYX

XYXX

jY

X

FW

FW

KK

KK

e

e 1




   (20a) 

  

and      





























jY

X

jY

X

jY

X

e

e

e

e

e

e
jjj




1

1
   (20b)  

Aboce, the bearing pseudo or temporal stiffness coefficients (Kαβ=X,Y)  are evaluated at  ,X Y j
e e . 

Upon convergence, the differences in forces in Eq. (19) become negligible, i.e. (W+F)X,Y  0; 

and the stiffness coefficients are those of the bearing at its equilibrium position.  

Note that the bearing reaction forces are highly nonlinear functions of the journal position or 

eccentricity function; thus, convergence of the Newton-Raphson algorithm relies heavily on the 

closeness of the initial journal eccentricity components to the actual equilibrium eccentricity. Of 

course, the fact noted is common in the solution of any nonlienar system of equations. 

 

Generalization of the perturbation method 

Consider small amplitude harmonic journal motions  ,X Ye e  with whirl frequency  

about the equilibrium position  
0 0
,X Ye e . The film thickness (h) is the real part of the following 

expression 

  0 0 ,cos sin  ; ;   1t t
X Y X Yh h e e e h e h e 

            i i i   (21) 

with h0 as the equilibrium film thickness at  
0 0
,X Ye e , and cos ,  sinX Yh h    . Note that, 

  
  2

0 2
2

,

t
t t

h e h eh h
e h e e h e

t t t


   

    
  

    
  

i
i ii   (22) 

The pressure field is written as the superposition of zeroth and first order fields, 

0 , ; t
X YP P e P e 

     i
.    (23)  

The zeroth-order (P0) is the equilibrium pressure field satisfying 

3 3
0 0 0 0 0

0 2

1
( )

12 12 2

h P h P hR
P

R z z R 
       

            
L      (24=12a) 
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and the first-order complex pressure fields ,X YP  due to the journal center motions satisfy 

 
2 2 2
0 0 0 0 03 3

2 12 12 12

h h h h P h h P
P h

R R z z
  

 
 


  

                                     
L i ; =X,Y      

or            (25) 

 
2 2 2
0 0 0 0 0

( ) ( ) ( )

3 3

12 2 12 12T T T

h h P h h PR
P h h h

R R z z


   
  
  

                                   
L i  

Above 
2
0

12

h 


 
  
 

 = Res represents a local squeeze film Reynolds number.  

The FX and FY components of the fluid film bearing reaction force are  

 
00 , ,

0 0

    ; 
L L

t t
X YF P h R d dz P e P e h R d dz F Z e e 

         
 

            i i    (26)  

where the components of the static (equilibrium) bearing reaction force at journal position 

 
0 0
,X Ye e are 

0 0 ,
0

   = -   ;      
L

X YF P h R d dz W    


       (27)  

and the bearing impedances (Z) rendering the stiffness, damping and inertia force coefficients, 

(K, C, M)αβ=X,Y , are evaluated from the real and imaginary parts of 

 2
, ,

0

  ;      
L

X YZ K M C P h R d dz         


      i  (28) 

 

Numerical solution of film pressure equations: equilibrium and first-order 
The finite element method (FEM) is well suited for the numerical solution of elliptic type 

differential equations such as Reynolds Equation. Complicated geometrical domains are well 

represented by finite elements, hence its major advantage over other methods such as finite 

differences. Another advantage becomes apparent later as the systems of equations for solution 

of the zeroth and first order pressure fields have the same (global) fluidity matrix. This feature 

allows the most rapid evaluation of the bearing dynamic force coefficients. 
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Figure 6 depicts a flow region divided into a collection of Nem four-noded isoparametric finite 

elements. The pressure over an element (e) is given by a linear combination of nodal values 

 Pi

npe

1
and bilinear shape functions  

1

pene
i 

 , i.e. 

0 0 ,
1 1

 ,    ;  
pe pe

i i

n n
e e e e e e

i i X Y
i i

P P P P   
 

         (29) 

e

x=R

z Nodal 
pressures

q Flow rate

Flow
domain

 

Figure 6. Depiction of general domain of flow field and finite element representation 
 

The Galerkin formulation [15] reduces the PDE (12a) for the equilibrium pressure field P0 

within a finite element (Ωe) into the algebraic system of linear equations  

       0 0
e e e

0 G
k P = - q + f :        0 0 0

1

pe

j

n
e ee e

ij i i
j

k P q f


     ;  i,j=1,Npe  (30) 

where the coefficients of the element fluidity matrix  ek  are  

3
0

( )12e

e e
j je e i i

ij ji
T

h
k k dx dz

x x z z

  
    

                 
   i,j=1,..Npe (31) 

and the right hand side vectors denote the shear flow effect and nodal flow rates, 

0 0  
2i

e

e

e iR
f h dx dz

x




 
   

 
 ;     q q d

i
e

e
i
e e

0 0
   


     i=1,..Npe (32) 

with     
0

3
0 0 0

( )12 2 x
T

h P h R
q

 
 


       (33) 
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as the flow through the element boundary (e).  Note above that the fluid viscosity is a function 

of the temperature,  v ST T
S e     ; thys, varying over the flow domain.  

The integrals in Eqns. (31, 32) are evaluated numerically over a master isoparametric 

element ( ̂ ) with normalized coordinates. Reddy and Gartling [16] explain the coordinate 

transformation and numerical integration procedure using Gauss-Legendre quadrature formulas. 

Eqns. (30) are assembled over the whole flow domain and then condensed by enforcing the 

corresponding boundary conditions.  The resultant global set of equations is  

       0G G GG
k P = Q + F     (34) 

where           
1 1 1

, ,
Nem Nem Nem

e

e e e  

  e e

G G G
k k Q q F f   . The global fluidity matrix  Gk is 

symmetric, easily decomposed into its upper and lower triangular form (Cholesky algorithm), i.e.  

         TG G G G G
k = L U = L L     (35)  

A process of back- and forward-substitutions then renders the discrete zeroth order pressure 

field  0 G
P :  

          T
0G G G GG

L L P = Q + F     (36) 

Note that   
G

Q 0  denotes the addition of flow rates at a node. Hence the components of 

this vector are nil at each internal node of the finite element domain.  

A similar procedure follows for solution of the perturbed (dynamic) pressure fields, PX and 

PY, due to journal harmonic displacements  ,X Ye e  with whirl frequency ω.  PDEs (25) 

become 

     0 , 
1 1

  ;  
pe pe

j j

n n
e e ee e e

ij X Yi ij i
j j

k P f S P q     
 

     i,j=1,..Npe  (37) 

with cos ,  sinX Yh h    , 1 i . Defining , ,andi i
i x i zx z

      . Above, for 

perturbations along the X-direction,  

           X X X X e e e e
0G G

k P = f S P q     (37a) 

for example.  
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In Equations (37) 

   
e e e

2 2
0

,
( )

       
2 12

e

e e e e
i x i ii

T

hR
f h dx dz h dx dz h dx dz   

 


  

             
  i   

   
2
0

, , , ,
( )

3

12e

e
ee

i x j x i z j zij
T

h h
S dx dz
 

 
      

 
 ,  i,j=1,..Npe   (38)  

   
e

e e e
ii

q q d  


    ;    
3 2
0 0 0

( ) ( )

3

12 12 2 x
T T

h P h h P R
q h 
 

  
     


       

 

The assembly process of the first order FE equations renders a fluidity matrix identical to 

that for the equilibrium pressure field. Thus, the perturbed pressure fields can be calculated 

rapidly since the global fluidity matrix  Gk is originally obtained and decomposed in the 

procedure to find the equilibrium pressure field  0 G
P , see Eq. (36). 

In practice, the process does not require specification of a whirl frequency (ω) nor 

conducting several calculations to discern the stiffnesses from the mass coefficients.   

For  ,X YP P  from Eqs. (12b): 

     0 , 
1 1

  ;  
pe pe

j j

n n
e e ee e e

ij X Yi ij i
j j

k P f S P q     
 

      i=1,..Npe  (39a) 

   
e

,   
2

e e
i xi

R
f h dx dz 




  ;    

2
0

, , , ,
( )

3
 

12e

e
ee

i x j x i z j zij
T

h h
S dx dz
 

 
      

 
 (39b) 

To make the global system of equations 

               T
σ σ σ 0G G GG G GG

L L P = Q + F S P    (39c) 

For  ,X YP P   from Eqs. (12c): 

    , 
1

  ;  
pe

j

n
e ee e

ij X Yi i
j

k P f q    


        i=1,..Npe    (40a) 

 
e

 
e e

ii
f h dx dz 



     i=1,..Npe     (40b) 

Giving the global system of equations 
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          T
σ σ GG G GG

L L P = Q + F      (40c) 

For  ,X YP P   from Eqs. (12c): 

    , 
1

  ;  
pe

j

n
e ee e

ij X Yi i
j

k P f q    


         i=1,..Npe   (41a) 

 
e

2
0

( )

 
12

e

e e
ii

T

h
f h dx dz 






 
   

  
   i=1,..Npe   (41b) 

Giving the system of equations 

          T
σ σ GG G GG

L L P = Q + F      (41c) 

Solution of the system of equations for the first order fields is performed quickly with the 

procedure  

 

        

       

       

find

find



 

T

G G G G

G G G G

T

G G G G

L L X = Y

L Z = Y Z

L X Z X

   (42) 

which does not require inversion of matrices but only 2-N forward and backward substitutions.  

 

Numerical solution of the traport equation for fluid film mean temperature  

The transport of energy equation (3) is of parabolic type. Hence, a control volume method 

with upwinding [17 ] is chosen to solve for the temperature field. Figure 7 depicts the control 

volume for integration of the thermal energy transport Eq. (3). Note that, in accordance with 

practice and measurements, the fluid bulk-temperature (T) does not vary along the bearing axial 

length. In the figure, {Te, Tw and Tn} are temperatures at the east, west and north faces of the P-

control volume; while {TE, TW, TP} are nodal temperatures at the center of the control-volumes.  
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z=½ L

z=L

Fs =0 (W=0) 
Midplane (symmetry line)

Fw Fe

Fn

Fe – Fw + Fn =0 

TPTW

x

x=R

z
TE

Tn

Tw Te

Exit plane at ambient pressure

Pressure
Finite 
element

TN

 

Figure 7. Control volumes for integration of energy transport equation (F: flow, T: 
temperature)  

 

Integration of the energy transport Eq. (3) over ½ axial length of the bearing (T-control 

volume) leads to: 

        /2
2 2

L e L
e L

v sw z L
L w L

C hU T dz hW T dx S Q dz dx 


 
   

  
    (43) 

with the source (energy dissipation) term 
22 2

( ) 212

12 2
T R R

S W U
h

            
   (44) 

and heat flow into the bearing and journal surfaces     s B B J JQ h T T h T T      (45) 

Since the film temperature is regarded as constant along the axial direction, Eq. (43) reduces 

to 

       
2 2 2

L L e L
e we w n

v sz L
L L w L

C T hU dz T hU dx T hW dx S Q dz dx  


 
    

  
       (46) 
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Recall that the axial flow velocity is null7 at the midplane of a bearing pad, i.e., W=0 at z=0. 

Define mass flow rates (F) through the control volume faces as     

    

   

   

   

2

2

/2 0

,

,

; 0

z

z

L Ne
e ee

J
JL

L Ne
w ww

J
JL

e e
n s

z L z
w w

F hU dz hU z

F hU dz hU z

F hW dx F hW dx

 

 

 
 

 

 

  





 



    (47) 

where Nez is the number of P-finite elements along the axial direction. The source term from 

shear drag power is  
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,

12 2

z

P
L Ne

TP

JL J

R R
S S dz dx W U z x

h

                 
       (48a) 

From mass flow continuity 0e w nF F F     =0. Assume for simplicity that the bearing 

(TB) and journal (TJ) temperatures are constant along the axial direction. An identical statement is 

made for the heat convection coefficients  ,B Jh h .  Then, 

      
2 2 2

L
P

s P B J B B J J

L

L L
Q Q dz dx T h h x h T h T x         (48b) 

With the definitions above, the discretized algebraic  form of the energy transport equation 

is:  

    
e e w w n n P P

vC F T F T F T S Q         (49) 

Implementation of the upwind scheme [17] for the thermal flux transport terms gives: 

   ,0 ,0e e e e
P EF T F T F T             

   ,0 ,0w w w w
W PF T F T F T                 (50) 

    ,0 ,0n n n
P n NF T F T F T       

with         1 1
,0 ; ,0 ; ,0 ,0

2 2
a a a a a a a a a               ; 

                                                 
7 This is because the pressure field is symmetric along the axial direction. That is, the peak pressure occurs at the 
axial mid-plane of the bearing 
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where TN  is a fluid sump temperature (outside) of the bearing discharge plane8.  

Substitution of Eq. (50) into Eq. (49) renders the control-volume integral form of the energy 

transport equation  

   
P P

p P w W e E n N JBa T a T a T a T S Q       (51) 

where   ,0 ; ,0 ; ,0e w n
e v w v n va C F a C F a C F                      (52a) 

      
2p e w n B J

L
a a a a h h x          (52c) 

     
2

P
JB B B J J

L
Q h T h T x       (52c) 

The system of equations (51) is easily solved with a simple recursive algorithm.  If the 

lubricant flow is from left to right (w to e), then 0; 0 0w e
eF F a    ; and the energy 

transport equation reduces to 

P P
p P w W n N JBa T a T a T S Q        (53) 

If lubricant flows outward at the exit plane z= ½ L, 0 0n
nF a   , and the energy transport 

equation further reduces to 

P P
p P w W JBa T a T S Q       (54) 

where  
2p w B J

L
a a h h x    . This last equation, revealing the parabolic nature of the thermal 

energy transport, shows the film temperature increases due to shear power dissipation effects. 

Note that 0P
JBQ   for adiabatic boundaries, i.e.   0B Jh h  , i.e. no heat flow into or from the 

bearing and journal. 

The algebratic equations for solutions of the presure and temperature fields are programmed 

in FORTRAN with a Graphical User Interface in MS Excel® for input of bearing data and 

operating conditions and output of predictions that include the bearing torque and flow rate, 

static journal eccentricity,  dynamid force coefficients, and the pressure and temperature fields. 

For completeness in the description, Figure 8 depicts the relationship between a finite element 

for evaluation of the film pressure and the control-volume for temperature.   

                                                 
8 Fn < 0 means that flow is entering (instead of leaving) the bearing at the exit plane z = ½ L. This condition is not 
unusual in the zone of lubricant cavitation. However, in practice the value of sump temperature is not well known a-
priori. 
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Figure 8. Flow fluxes through faces of temperature-CV and relation to pressure finite 
elements  
 

Examples 

Model predictions for test bearings reported in the literature were obtained. The benchmark 

cases included one and two grooved journal bearings 9 , see refs. [12,13]. In general, the 

predictions for static load performance conditions, including lubricant temperature rise, load 

capacity and journal eccentricity are in good agreement with the test data. Note that in the 

references listed, one or more parameters of importance are ommitted or not published. Hence, 

the model implemented best practices to obtain accurate results.  

Presently, model predictions for the static and dynamic load performance of a pressure dam 

journal bearing are compared against exhaustive test data acquired in the laboratory, Jughaiman 

and Childs [18]. Figure 9 shows a schematic view of the bearing configuration and coordinate 

                                                 
9 A set of slides follows this lecture notes – The slides show details and comparisons of (current) model predictions 
and test data in Refs. [12,13,18] 
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system. Table 1 details the geometry of the pressure dam bearing, as detailed in Ref. [18]. Please 

note that Al-Jughaiman’s publication (including his M.s. thesis) misses details on the bearing 

geometry, lubricant inlet and feed conditions. Note that the pressure dam depth to clearance ratio 

and dam arc length relative to pad arc length follow standard best practices recommended by 

Nicholas and Allaire[19]. 

 

X

Y
W

e

Pad with relief 
groove Pad with pressure dam

Feed hole

170 deg                       130 deg

X

Y
W

e

Pad with relief 
groove Pad with pressure dam

Feed hole

170 deg                       130 deg



 

Figure 9. Schematic view of pressure dam bearing with relief groove. 
 

In the experiments, ISO VG 32 lubricant fills the thin film lands of the pressure dam bearing. 

An air turbine drives the test rigid shaft supported on ball bearings. The test bearing floats on the 

rotating shaft. The tester includes a hydraulic cylinder for static loading, and stinger connections 

to hydraulic shakers that excite the floating test bearing. The instrumentation includes load cells 

attached to the shaker stingers, eddy current sensors mounted on the bearing and facing the shaft, 

and accelerometers attached to the bearing housing.  The parameter identification method is 
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based on frequency domain measurements and extracts the force coefficients from curve fits of 

the real and imaginary parts of the test system impedances.  

The maximum load (W) applied equals 12 kN (2,700 lb) which gives a specific pressure 

(W/LD) = 13.45 bar (~ 200 psi).     

 
Table 1. Dimensions and operating conditions of pressure dam bearing with relief groove 
tested by Jughaiman and Childs [18] 

Journal diameter D 117.1 mm
Bearing Length L 76.2 mm
Radial clearance c 0.142 mm

pad arc  170 deg
Dam arc length  D 130 deg
width (0.75 L) L D 57.1 mm

depth 0.4 mm
Reilef groove width L R 19.05 mm

depth 0.1 mm
Lubricant ISO VG 32

Density  860 kg/m3
Specific Heat Cp 2000 J/kg-C

Thermal conductivity  0.13 W/m-C
Viscosity at 45 C  0.028 Pa.s

Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40-55 ? C

Inlet oil pressure N/A bar
Load range 0.1-12 kN
Speed range 4,6,8,10,12 krpm  

 

Closure 

Sept 2009: Lecture notes not yet complete. See slide presentation attached. 

 

Nomenclature 

c  Nominal film (pad) clearance [m] 
cm   bearing assembled clearance [m]  
Cv  Lubricant specific heat [J/kg-K] 
C  Bearing damping force coefficients; ,  = X, Y  N s

m
  

D  Journal diameter [m] 
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eX, eY  Journal center eccentric displacements [m] 
FX, FY  Fluid film bearing reaction forces [N];  
FS, Fin, Fup,  Mass flow rates: supply, inlet to pad and upstream pad [kg/s] 

h  Pad film thickness, c – rP  cos(-P) + eX cos() +  eY sin() [m] 
hX, hY  cos(), sin() 

,B Jh h   Heat transfer convection coefficients [W/m-K] 

K  Bearing stiffness force coefficients; ,  = X, Y  N
m   

L  Journal bearing axial length [m] 
M  Added mass (fluid inertia) coefficients; ,  = X, Y  N

m   
npe  Number of nodes per finite element 
Nem  Number of elements in flow domain 
Qs  heat flow conducted into bearing and journal surfaces [W/m] 
P  Film pressure [Pa] 
Pa  Ambient pressure [Pa] 
Pcav  Lubricant cavitation pressure [Pa] 
PS  Supply pressure [Pa] 
P0  Zeroth-order (aquilibrium) pressure [Pa] 
P  First-order complex pressure fields; ,  = X, Y [Pa/m] 
q  Volumetric flow rate per unit length [m2/s] 
R  ½ D. Journal radius, [m] 

Res  
2h


 
 
 

. Local squeeze film Reynolds number. 

rp  (c-cm). Pad preload [m] 
S  Mechanical energy dissipation per unit area [W/m2] 
t  Time [s] 
T  Lubricant mean flow temperature [degK] 
TS  Supply temperature [degK] 
U, W  Lubricant bulk-flow velocities, circumferential and axial [m/s] 

WX, WY  Componentsof applied static load, 2 2
X YW W W   

(x= R, y, z)  Coordinate system on plane of bearing (starts at -X) 
(X, Y)  Inertial coordinate system 

Z  Impedance force coefficients;  2K M C     i , ,  = X, Y   N
m  

αv   Viscosity-temperature coefficient [1/K] 
ΔeX, ΔeY Dynamic displacements of journal center [m] 
   x

R . Circumferential coordinate [rad],  

l , t , p Arc pad leading and trailing edges, angle of min. film thickness (offset angle) 
[rad] 

   v ST T
S e     . Fluid viscosity [Pa-s] 

e  Element boundary 
ρ  Fluid density [kg/m3] 
  Journal attitude angle with respect to static load vector [] 

 i

npe

1
 Finite element shape functions 
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  Rotor rotating speed,  
  whirl frequency  rad

s  

e  Finite element sub-domain 
 
Subscripts  
S  Supply condition 
in  Inlet to pad 
n,e,w,s  north, east, west and south of control volume 
N,W,E,S North, east, west and south nodes 
 
Superscripts  
e  element 
 

APPENDIX A. MODELS FOR HEAT CONVECTION COEFFICIENTS 
         Reproduced from Ref.[7]  

The Reynolds-Colburn analogy between fluid friction and heat transfer for fully-developed 

flow determines the heat convection coefficients to accounting for heat flux from the fluid film 

into the shaft outer surface and from the film into the bearing cartridge. Over the entire 

laminar/turbulent boundary the Fanning friction factor f is: 
 

2/3

2t r

f
S                (A.1) 

where 
t

v

h
S

C U
  is the Stanton number, ρ and  Cv are the fluid density and specific heat, and U 

is a mean flow velocity p
r

c 


    is the Prandtl number, and  and   are fluid heat conduction 

coefficient and viscosity, respectively.  

From Eq. (A.1), heat convection coefficients h for laminar flow are derived from the Nusselt 

number; 

1/33 r

c h
Nu


         (A.2) 

while for turbulent flow conditions  

0.8 0.40.023hyd
r

D h
Nu Re


            (A.3) 

where 4  area

wetted perimeterhydD


 is a hydraulic diameter.  
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Foil Gas bearings 
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Fortran code : complete – including prediction of inertia force 
coefficients

GUI (Excel interface) – complete

Examples for calibration:
(pressure and temperature fields)
oil 360 deg journal bearing

Dowson et al. (1966) 
Ferron, Frene, Boncompain (1983)
Costa, Fillon (2000 2003)

oil two groove journal bearing
Costa, Fillon (2000 2003)
Brito, Fillon (2006, 2007)

Pressure dam bearing
Childs et al (2007, 2008)
Load capacity & force 

coefficients

Computational code 
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Example 1 : Ferron bearing (1983)

Journal diameter D 100 mm
Bearing Length L 80 mm
Radial clearance c 0.152 mm

Groove width mm
groove arc length 18 deg

Lubricant
Density  860 kg/m3

Specific Heat Cp 2000 J/kg-C
Thermal conductivity  0.13 W/m-C

Viscosity at 40 C  0.0277 Pa.s
Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40 C

Inlet oil pressure 0.7 bar
Load range 1kN-10 kN
Speed range 1-4 kRPM
Prandtl No 426
Load No 23.98

Diffusivity 7.55814E-08 m2/s

Sommerfeld #
2









C
R

W
DLNS 

Ferron,J., Frene, J., and R. 
Boncompain, 1983, “A Study 
of the Thermohydrodynamic 
Performance of a Plain 
Journal Bearing Comparison 
Between Theory and 
Experiments”, ASME 
Journal of Tribology, Vol. 
105, pp. 422-428,

X

Yflow

 W
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Ferron et al. bearing (1983)

Pressure and temperature fields – 4 kRPM, 6 kN
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Ferron et al. bearing (1983)

Eccentricity ratio (e/c) vs Sommerfeld #
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Ferron et al. bearing (1983)
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Ferron et al. bearing (1983)

Peak film pressure vs. eccentricity ratio (e/c)
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Ferron et al. bearing (1983)

Peak film temperature vs. eccentricity ratio (e/c)
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Example 2: two axial groove bearing 
Brito,F.P., Miranda, A.S., Bouter, J., 
and Fillon, M., Frene, J., and R. 
Boncompain, 2007, “Experimental 
investigation on the influence of 
Supply temperature and Supply 
Pressure on the Performance of a 
Two-Axial Groove Hydrodynamic 
Journal Bearing”, ASME Journal of 
Tribology, Vol. 129, pp. 98-105,

Journal diameter D 100 mm
Bearing Length L 80 mm
Radial clearance c 0.085 mm

preload r p 0 mm
Feed groove width 70 mm

Pad arc length 162 deg
Lubricant

Density  870 kg/m3
Specific Heat Cp 2000 J/kg-C

Thermal conductivity  0.13 W/m-C
Viscosity at 40 C  0.0293 Pa.s

Visc-temp coefficient  0.032 1/C
Inlet oil temperature 35,40,50 C

Inlet oil pressure 0.7,1.4, 2.1 bar
Load range 1kN-10 kN
Speed range 1-4 kRPM
Prandtl No 451

X

Y

W

Top pad

flow

bottom pad
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Brito et al. bearing (2007)

Pressure and temperature fields – 4 kRPM, 10 kN
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Example 3 – Pressure dam bearing
Al-Jughaiman, and Childs, D., 2007,
“Static and Dynamic Characteristics 
for a Pressure-Dam Bearing”, ASME 
Paper GT2007-25577

X

Y
W

e

Journal diameter D 117.1 mm
Bearing Length L 76.2 mm
Radial clearance c 0.142 mm

pad arc  170 deg
Dam arc length  D 130 deg
width (0.75 L) L D 57.1 mm

depth 0.4 mm
Reilef groove width L R 19.05 mm

depth 0.1 mm
Lubricant ISO VG 32

Density  860 kg/m3
Specific Heat Cp 2000 J/kg-C

Thermal conductivity  0.13 W/m-C
Viscosity at 45 C  0.028 Pa.s

Visc-temp coefficient  0.034 1/C
Inlet oil temperature 40-55 ? C

Inlet oil pressure N/A bar
Load range 0.1-12 kN
Speed range 4,6,8,10,12 krpm

Missing details on bearing geometry, lubricant and feed conditions. Even with test 
data at hand, not able to reproduce test results in paper. VERY PECULIAR 
THERMAL EFFECTS
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Example 3 – Pressure dam bearing

GT2007-25577  Power loss 
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Example 3 – Pressure dam bearing

Journal eccentricity vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Attitude angle vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Direct stiffness KYY vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Direct stiffness KXX vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Cross stiffness KXY vs specific pressure

145 psi
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Note: prediction changed sign

Example 3 – Pressure dam bearing

Cross stiffness KYX vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Direct DAMPING CYY vs specific pressure

145 psi



37

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Unit Load (W/LD) [kPa]

D
am

pi
ng

 [k
N

.s
/m

]

4 krpm (pred)
10 krpm (pred)
test 4 krpm
test 10 krpm

TAMU Pressure Dam Bearing

CXX
X

Y
W

e

Example 3 – Pressure dam bearing

Direct DAMPING CXX vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Cross DAMPING CXY vs specific pressure

145 psi
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Note: prediction changed sign

Example 3 – Pressure dam bearing

Cross DAMPING CYX vs specific pressure

145 psi
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Example 3 – Pressure dam bearing

Whirl frequency ratio WFR vs specific pressure
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Example 3 – Pressure dam bearing

Added Mass Coefficients WFR vs specific pressure

10 krpm

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 200 400 600 800 1000 1200 1400 1600

In
er

tia
 c

oe
ffi

ci
en

ts Mxx
Myy
Mxy
Myx

Unit Load [kPa]

kg


