
FINAL REPORT

PRESENTED BY

FRANK J. BLANDO

DEPARTMENT OF MATHEMATICS

TO

DR. W. PERRY

APRIL 21, 1981

ABSTRACT

This report concludes a year of

research in artificial intelligence.

investigative

Artificial

intelligence is a field of computer science in which

recreating human behavior in machines is the main sUbject;

the field is divided into four areas of research: pattern

recognition, natural language, problem solving, and learning

and reasoning. The first half of the year of research was

spent learning about artificial intelligence in general,

then the second half was spent focusing on pattern

recognition.

First, pattern recognition was divided into two

parts, feature extraction and feature recognition. Three

algorithms were implemented on a large computer, the Isodata

clustering algorithm, the K-mean clustering algorithm, and

the Block-Nilson-Duda algorithm for feature extraction. The

theory of these algorithms relies on analytic geometry and

common quantities such as the average, the standard

deviation, and the distance between two points.

Computers at the TAMU Cyclotron Institute were used

to develop a set of subroutines, which are used in energy

spectrum analysis, to extract peaks in the data and identify

them. The subroutines follow the same procedure as would

the human operator; they first approximate the background,

subtract the approximation, and then look for peaks in the

remaining data. The set of subroutines in appendix C of

this paper is the result of the last year of research.

TABLE OF CONTENT

Preamble • 1

Clustering algorithms and feature extraction. 2

Feature extraction • 3

Clustering algorithms. 4

Isodata algorithm. 5

K-mean algorithm. 5

Table 1. 6

Table 2. 7

Motivations. 8

Theory • 9

Peak identification.

Background approximation •

Research time-table.

Conclusion •

Bibliography •

Appendices •

Isodata clustering program .

Pictures 1 through 7 •

Subroutine listings.

• 10

• 13

• 17

· 17

• 19

• 20

A

B

C

Page 1

PREAMBLE

In May 1980, I presented a proposal for research, in

the University Undergraduate Fellow Program, in artificial

intelligence. In the proposal, I did not define artificial

inteligence; nor did I precisely state the subject of the

research, because as a mathematics major I had no previous

background in the field. Artificial intelligence was chosen

because it is a field in which computer science, applied

mathematics and pure mathematics are used. Therefore my

first objective was to learn about artificial intelligence

and precisely define the subject of my project.

During the first summer session of 1980, I enrolled

in English 301 (Technical Writing) and chose artificial

intelligence as the topic for my term paper. I became

acquainted with the Texas A&M library and the material

available on artificial intelligence. Most of my research

time was spent on perceptrons{l), and the term paper was

entirely on perceptron and hash coding techniques.

During the fall semester of 1980 I audited Dr. D.

Friesen's computer science 625 course, a graduate course in

artificial intelligence. In the course, artificial

intelligence was defined as an entity possessed by a

man-made object the action of which are indistinguishable

from those of a human in the same situation. We learned

that the machine only has to act like a human to possess

artificial intelligence; it does not have to reason or

Page 2

decide to act in the same manner as a human would. Hence,

only the end result determines possession of artificial

intelligence. This definition allows varied approaches to

the same problem so a profusion of algorithms and theories

results.

Using the text book(2), we performed an overview of

the current artificial intelligence research status. We

discussed pattern recognition, classification methods,

Euclidean description, clustering algorithms, perceptrons,

convergence, grammatical inference, feature extraction,

heuristics, search algorithm, the resolution problem,

problem solving, natural languages, and other techniques.

The final exam was replaced by a report, in which I decided

to test some different clustering algorithms. I wrote the

isodata clustering algorithm(3) in FORTRAN-77 using a

VAX-ll/780 computer, and used this to get a feel for how

such algorithms can be used. The completed report included

the test data and a list of bench mark results.

CLUSTERING ALGORITHMS AND FEATURE EXTRACTION

Since in artificial intelligence we are interested

in reproducing human behavior in machines, we have to

reproduce or simulate the human capability for analysis.

The base for human intelligence lies in the human brain's

power to analyze, classify, and store events; therefore, for

a machine to simulate intelligence it must have the

Page 3

capability to analyze, classify and store information. To

analyze a situation, one has to be able to extract relevant

and unique facts from the situation, and then classify them

according to some known and already classified precedents.

This thinking process involves pattern recognition and

clustering capabilities. In pattern recognition, the goal

is to develop an algorithm which extracts features from a

given situation or picture; then, using these features, the

algorithm should classify the events according to some known

pattern(4).

One of the feature extraction algorithm is the

Block-Nilsson-Duda algorithm for feature extraction(5).

This algorithm operates on a N dimensional array, which can

be a digitized picture or an event representation in an N

dimensional Euclidean space. The algorithm assumes the data

is in a binary format; any cell in the N dimensional array

can assume only one of two values, here we will call them ON

and OFF. The program involves a threshold value which is

used to decide whether an array possesses a feature or not.

The array to be analyzed is "anded" with every feature and

then a count of the ON elements in the result is taken. If

that count exceeds the threshold, then that array is

assigned the feature. The "and" operation is a logical

"and", and the result follows the rule:

Page 4

feature

AND ON OFFa

r

r

a

y

ON ON OFF

OFF OFF: OFF

Also, when an array is recognized to have a feature, and

then later on the feature is positively identified, then the

algorithm replaces the feature by the result of the "and":

this produces a possible improvement of the program. It

should be noted that the threshold value is related to the

number of features to be recognized, only N-l features are

required to recognize N objects(6).

Once a feature has been extracted from a context, it

is necessary to identify it with respect to some known data.

This is where clustering algorithms are used: the

unidentified features are represented in an Euclidean space,

and then clusters are formed. Most clustering algorithms

rely heavily on distance and standard deviation: the

Euclidean distance D between 2 points in an N dimensional

space is given by:

to N

D=Square root(SUM Square(X(I)-Y(I))
1=1

Where X(I) is the Ith coordinate of the first point, and

Y(I) is the Ith coordinate of the second point. The sample

mean of a set of N points is given by:

Page 5

Mean =

to N
SUM X(I)) / N
1=1

And the standard deviation of a set of N points is then

given by:

to N
Std Dev=Square root((SUM Square(X(I))-N*Square(Mean))/(N-l))

1=1

The first clustering algorithm tested is the isodata

clustering algorithm. The algorithm starts by assuming that

there are as many clusters as there are points in the space.

Then it merges clusters with centers close to one another,

and it splits clusters with an internal standard deviation

greater than some threshold value. The algorithm repeats

this merging and splitting process until the result stays

constant or starts oscillating between constant states.

Before starting, the algorithm requires a rough estimate on

the final number of clusters; the algorithm will converge

only if the true number of clusters lies between double the

estimate and half the estimate. During the entire process,

the clusters are referenced by their centers; once the

algorithm is finished each point is assigned to a

cluster(7) • A listing of the program is provided in

appendix A, and an input sample with the generated output is

given in table 1.

The next clustering algorithm studied is the K-mean

algorithm. Unlike the isodata algorithm, the K-mean

Page 6

Table 1

Input data for isodata program: 44 points in 2 dimensions

(-1,-1) (-1,0) (-1,1) (° ,1)
(° , 0) (0,-1) (1,-1) (1,-1)
(1 , °) (1 ,1) (4,9) (4 ,8)
(4 ,7) (5 ,9) (5 ,8) (5,7)
(5 ,4) (5 ,3) (5 ,2) (5 ,1)
(6 ,9) (6 ,8) (6 ,7) (6 ,4)
(6 ,3) (6 ,2) (6 ,1) (7 ,4)
(7 ,3) (7 ,2) (7 ,1) (8 ,4)
(8 ,3) (8 ,2) (8 ,1) (10,1)
(10,0) (10,-1) (11,1) (11,0)
(11,-1) (12,1) (12,0) (12,-1)

The input parameters were:

Approximate number of clusters: 5
Standard deviation paramters: 2
Minimum # of points per cluster: 3

Lumping parameter: 3
Number of changes per pass: 30

The result was:

Cluster 1 at (0,0) with: (0,0)
(-1,1)
(-1,-1)

(0 ,1)
(0,-1)

(1,-1)
(1 , °)

(1,1)
(-1,0)

Cluster 2 at (5,8) with: (4 ,9) (4 ,8) (4,7)
(5,9) (5 ,8) (5 , 7)
(6 ,9) (6 ,8) (6,7)

(5 ,4) (5 ,3) (5 ,2)
(5 ,1) (6 ,1) (6 ,2)
(6 ,3) (6 ,4) (7 ,1)
(7 ,2) (7 ,3) (7 ,4)
(8 ,1) (8 ,2) (8 ,3)
(8 ,4)

(10,1) (10,0) (10,-1)
(11,1) (11,0) (11,-1)
(12,1) (12,0) (12,-1)

Cluster 3 at (6.5,2.5) with:

Cluster 4 at (11,0) with:

The input data was:

Table 2

(0 ,0) (1 ,2) (5 ,2)

The produced polynomial coefficients were:

9-APR-81 09:46:36

[BLANOO.WORKJI1800481.DAT

-6 2 2

ExPor�ENT IAL FIT OF DEGREE 4

12C(160,4HE)24MG E-118.3 AT 3 OEG

9-APR-81 09146102

55.

15. 70.

. 6959E+05 �--------��------------------.------------------�------------------------------�

. 5263E+05

.2567E+05

.. 1871E+O� J

.• 0175E+05 j
L 4794E+04

;.7835E+04

5. (:876Ei·04

3.3918E+04
I

1.6'359£+04

').OOOOE+I)O
1. 103. 206. 513.30:3. 410.

CHANNEL �1U!"iBER

615. 922.

Page 7

(1 ,0)

EXCITATION ENERGY IN MEV

LAB ENERGY IN I1EV

PT " ELAB EXC CHANNEL COUNT

1 33.9 48.29 163 140454

2 38.9 45.46 213 10613':>

3 44.1 42.33 265 70941

4 49.3 39.03 317 44172

5 54.3 35.72 367 27198

717. 819. 1024.

COEFT I C lENT f� 5 IS:
-.0000000
COEFFICIENT " 4 lSI
.00002213

COEFFICIENT n 3 IS:
-.0048116
COEFFICIEtH (� 2 lSI
.421820(J4

COEFFICIENT f) 1 IS:
.29310748

Figure]

Page 8

algorithm does not assign each point to a cluster, but it

computes the coefficient of a polynomial which graph would

separate each cluster. This algorithm is much less complex

than the isodata algorithm, and it heavily relies on the

inner product of two vectors (dot product). The algorithm

starts with all the polynomial coefficients set to zero and

then computes the dot product of the vector of coefficients

and each individual point. When the dot product is less

than or equal to zero, it updates the coefficients by adding

the coefficients of the point to the polynomial

coefficients. However, since only the equation of a

polynomial separating the clusters is produced, this simple

algorithm produces a much less useful output than the

isodata algorithm. A sample input and the obtained results

are shown in table 2. This algorithm can be used in two

ways, either the program tries to isolate each cluster in

one pass and therefore produces N+I coefficients to isolate

N clusters, or the program separates the data into two

regions per pass and therefore requires N-I passes to

isolate N clusters(8).

MOTIVATIONS

After writing the isodata clustering algorithms, I

decided to acquire a deeper understanding of clustering

techniques and pattern recognition, so I wrote an

implementation of the K-mean algorithm, the

Page 9

Block-Nilsson-Duda algorithm for feature extraction. Then

in January 1981 I started to work on a project involving

clustering algorithms, feature extraction, and my work at

the Cyclotron Institute on heavy ion nuclear physics; I

started in September 1980 to work on an analysis program

which reads arrays of data created during an experiment at

the Cyclotron, and analyzes the features of the data such as

peaks corresponding to certain elements at certain energies.

The program runs on a VAX-ll/780, is interactive, and

heavily relies on graphics. The data is stored in vectors

made of 1024 entries; then the program manipulates the data

under user control and a subtracted spectrum is obtained(9).

The principal goal of the program manipulations is

to identify elements by their mass and energy which is shown

by the deviation undergone by the beam of particle when

subjected to an intence magnetic field. Until now the

program relied heavily on the operator, and therefore the

results obtained were often different with different

operators. My hope was to write a section of code which

would perform the subtraction and identification in a less

subjective manner. Details on the Cyclotron experiments and

the data analysis follows.

THEORY

As in most experimental settings, the collected data

obtained at the Cyclotron contains a lot of background

Page 10

noise. Background noise in this case is defined as the

result of irrelevant registered events which can be modeled

with a random function of the time and an exponential

function of the beam energy variable. This background is

created by residual particles left after vacuum, by high

frequency interferences created by the electronic data

acquisition equipment, and by other external unrelated

events. A typical collected raw spectrum is shown in figure

1. The relevent parts of the spectrum are between the two

dashed lines. In figure 1 is also included the exponential

approximation of this background; the program produced this

approximation. In figure 2, the background is subtracted

and the relevant data shows as peaks. One of the reasons

why the background needs to be subtracted is that counts

generated by the background far outweigh the important data,

and therefore, the peaks only slightly show. This is

visible in figure 1 and 2, in figure 1 small notches are

visible on the side of the curve, but they are much

amplified in figure 2, and are then much more suitable for

recognition by the human eye. Once the background

approximation is subtracted each peak needs to be identified

and correlated with a known particle.

Before proceeding with the code, a definition of a

peak had to be developed. A peak is defined as a location

where the data contained in the vector achieves a local

maximum. The width of a peak is defined as the distance

between the two extreme edges of the peak. By the extreme

Page 11

edge of a peak we mean the location in the array where the

slope of an N point linear least square fit of the data is

equal to zero and after a change of sign becomes greater

than one in absolute value. The N points are chosen

starting from the peak and then going toward the higher

channels on one side and the lower channels on the other

side (channell is element 1 of the vector, channel 1024 is

element 1024). Every time the linear least square fit does

not satisfy the check for a peak edge, the N points are

shifted one channel further from the center; this process is

repeated until a right edge and a left edge is found to

every peak. The slope of the linear least square regression

is obtained using the following formulas:

to N to N
Given N points, A = SUM I B = SUM 1*1

1=1 1=1

to N to N
C = SUM DATA(I) 0 = SUM (I * DATA(I))

1=1 1=1

Then the slope is given by:

Slope= ((N * D) - (A * C)) / ((N * B) - (B * A))

Which is obtained by Cramer's rule.

From the previous formula, it is reasonably clear

that the location of the edges heavily depends on the number

of points chosen for the least square fit. If we choose N

to be small, then the local variation at one single point

will have more weight than for a larger N; therefore, N can

be adjusted depending on the type of peaks we want to

identify. A small N will allow us to identify very small

Page 12

peaks; a large N will smooth out small peaks, and only large

peaks will be found. An example of this is shown in figure

3 and figure 4; in figure 3, the background is not

subtracted, but the N factor is set to 6. The program finds

peaks that are hardly visible, but once the peak energy is

computed, it is about the same as the energy level of the

peak shown in figure 4 which was obtained with a N factor of

30 on a set of data where the background had been

subtracted.

However, two problems were encountered. First, if

two peaks are within N of one another, then the two peaks

will be merged into a single peak. This is shown for peak 4

in figure 5, N was set to 30, the data has a peak at 353 and

at 377, the limit between the two peaks is at 370; but the

number of events at 370 is larger than at 384 so the two

peaks are not separated by the program. Second, when the

program tried to find a large number of peaks, some

left-over data from the in-between peaks was isolated and

displayed as peaks; figure 6 and 7 show this. In figure 6

the first six peaks found are shown; however, some data was

left-over between peaks 1, 3, and 5. This left-over data

was then singled out by the program as two legitimate peaks,

one of these peaks is shown in figure 7. In order to remedy

this, the program should not be asked to find too many

peaks, or it should eliminate data left between close peaks.

Two methods for eliminating data between close peaks

are possible. For the first method, the program should get

Page 13

a background approximation fit which is slightly larger than

the between peaks data, thus once this fit is subtracted

from the data only the peaks are left, and the vector values

are zeros between peaks and therefore no extraneous peaks

can be isolated there. Unfortunately, this method implies

overestimating slightly the background and therefore could

lead to a loss of data; the method would also only work if

the data between peaks is a the fairly constant level,

otherwise too much data will be truncated. So this method

should be used only when we are interested in large peaks.

The second method involves setting up a threshold variable

and defining the minimum width of a peak. After identifying

a peak, the program scans the vector and eliminates any

chunk of data which is between two identified peaks less

than the threshold value apart.

Since the program can identify peaks before or after

the background approximation has been subtracted it is not

important for its execution that this approximation be done,

but to satisfy the operator a background fit should be made.

Two techniques were studied to perform this fit: brute

force, and random sampling. Brute force involves making a

least square fit of the relevant points, about seven hundred

points, and assuming that these points are an approximation

of the exponential of a fourth degree polynomial. Once this

approximation is done the approximation is lowered by the

smallest quantity possible that will prevent that fit from

intercepting the plot of the collected data, then this

Page 14

corrected fit is subtracted from the data. Even though this

method provides a good approximation of the background, it

is impractical to implement because doing a least square fit

of seven hundred points involve summing up the values at

these points and higher powers of the points. Since in a

normal experiment counts of at least 200,000 events and more

are common, integer arithmetics would be dangerous to use

because the limit on a 32 bit signed integer is about

2,147,483,647. This limit could be reached, and an integer

overflow would occur. Thus, real arithmetics would have to

be used which would greatly reduce the speed and efficiency

of the program, rendering

computer technology.

The second method is a derivative of the previous

one, but instead of using all the relevant points, a random

it impractical with present

selection of the points is made. Use of heuristics can

however improve the quality of such random sampling and also

reduce the number of points necessary for that least square

fit. Thus, integer arithmetics is possible and the number

of operations required from the computer is kept at a

minimum. The heuristics used in picking points is extremly

simple; the vector of data is divided into about 10 regions,

then an optimal point is chosen from each region. The

optimal point is the closest point to the center of the

region which is not a local maximum or a local minimum. A

point is a local maximum if its count of events is larger

than both the one preceding and following it; a point is a

Page 15

local minimum if its count of event is lower than both the

preceding and following point. These heuristics are derived

from the assumption that the program will only have to

process data with the characteristics shown in figure 1; the

background can always be approximated by a fourth degree

exponential fit, and the raw collected data has its highest

count close to its lowest channel.

This program works in a manner similar to the human

operator. The points for the least square fit of the

background are chosen using a technique that simulates the

operator's behavior; the points are chosen only in the

relevant part of the spectrum, not-weI I-behaved points are

not chosen for the fit, and only a minimum number of points

are chosen. The peaks are defined in a manner that

recreates the conditions on the plot as seen by the eye of

the operator; a peak occurs when a local maximum is

surrounded by a sharp (large linear least square slope)

decrease in the number of count, and the edges of the peak

are defined as where that sharp drop in event count stops

(the slope passes thru zero and then changes sign).

However, the program does not totally reproduce the human

behavior, the program will always produce the same

approximation of the background when presented the same

spectrum; whereas a human operator will produce a slightly

different approximation each time he is faced with the same

spectrum. This is due to exterior factors which are much

too complicated to understand and simulate using our

Page 16

computers. In any case the constant behavior of the program

is one of its strong points because it reduces the

subjectivity of the analysis.

Page 17

RESEARCH TIME-TABLE

June 80 - August 80 Familiarization with the TAMU

library, primary research on

perceptron

Sept 80 - Dec 80 Artificial intelligence introductory
course. Introduction to clustering
algorithms and feature extraction
techniques.

Nov 80 - Dec 80 Implementation of the isodata
clustering algorithm, the K-mean

clustering algorithm, and the Block­
Nilson-Duda algorithm for feature
extraction.

Dec 80 - Jan 81 Development of the specification and

requirement of the spectrum analysis
program be developed at the Cyclotron
Institute. Work on the interface to
the ANALYZE program to which this
addition is to be made.

Feb 81 - March 81 Production of the code of the
FORTRAN 77 implementation, and

debugging of the routines using the
VAX-ll/780 debugging package.
Identification of major flaws in the

program logic, and development of
remedies.

CONCLUSION

When in April 1980 I proposed to do some research of

my own in artificial intelligence, my background in the

subject was nonexistent. Therefore, my first task was to

acquire some knowledge in the subject; most of my research

time was spent taking classes in artificial intelligence and

becoming familiar with terms used in that field. During the

first part of the year, I focused on learning about

artificial intelligence, no time at all was spent on a

Page 18

project; then the second part was spent developing a project

which relates the theory to the every-day needs of

scientific research in an area of Nuclear Physics.

During the program development, I realized how

important it is to understand how a human thinks and deduces

a course of action. It became evident that the most

important part of writing the program was to breakup the

process to be simulated into subtasks and subgoals, in the

same manner as a human, until it becomes possible to program

each subtask into the computer. The subtask break up should

be done in a manner similar to a human doing the same task,

and only the final small subtasks can be programmed in a

manner differing from the human problem solving process.

The subroutines written at the Cyclotron Institute

do not involve any elaborate artificial intelligence

techniques, nor do they require a lot of advanced computer

hardware. Furthermore, these routines demonstrate that

artificial intelligence can be used in a common useful task;

even though R2D2 of "Star Wars" fame is still a long time in

the future, artificial intelligence can be applied now to

improve program performances and understandability.

Page 19

Bibliography

(1) Minsky, Marvin, "Perceptrons". MIT University Press,
Cambridge, Ma. 1969

(2) Hunt, B. Earl, "Artificial Intelligence". Academic press
in cognition and perception, N.Y. 1975

(3) J. T. Tou and R. C. Gonzalez, "Pattern recognition
principle", Adisson-Wesley pub, Ma

(4) Bellman, Richard, "An introduction to artificial
intelligence", Boyb & Fraser, San Fransisco. 1978

(5) Duda, R., & Hart, "Pattern recognitionand scene

analysis", Wiley, N.Y. 1973

(6) Bundy, A., "Artificial intelligence, an introductory
course", Edinburgh University Press. 1978

(7) Friesen, Dr D., Computer science 625, Texas A&M

University, Fall 1980

(8) Becker, Peter W., "Recognition and pattern",
2nd edition, Spring-Verlay Wien, N.Y.

(9) Youngblood, Dave, research group. Texas A&M Cyclotron
Institute. 1980

APPENDICES

APPENDIX A

IMPLICIT CHARACTER*1(A),LOGICAL*1(E-F),INTEGER*2(B,D,G-P),
X REAL*8(Q-Z)

INTEGER*4 STEP 11,END OF LOOP,TOP OF LOOP
CHARACTER*20 FILE NAME

_ _ _

INTEGER*2 DATA(0:IO,255)
REAL*8 CLUSTER(0:10,255),DISTANCE(10),STANDARD_DEV(O:10,255),

X GAMMA,DISTANCES(3,255),LUMPING PARA,OVER ALL AVG
PARAMETER ZERO

_

=0,
_ _

X FACTOR =0.5DO,
X ONE =1,
X TWO =2,
X THREE =3,
X SIX =6,
X TEN =10,
X TWO FIFTY FIVE =255,
X MAXI VALUE =lD30

10 FORMAT (A)
ASSIGN 1000 TO TOP OF LOOP
ASSIGN 11000 TO STEP II
ASSIGN 14000 TO END OF LOOP
WRITE (ONE,lO) 'I'
WRITE (ONE,lO) '$Do you want to enter a data file? '

READ (ONE,lO) ANSWER
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y') THEN

WRITE (ONE,lO) '$Enter the spacial dimension'
READ (ONE,*) DIMENSION
WRITE (ONE,lO) , Just type ©Z to stop'
COUNT=ONE
EVER=.TRUE.
DO WHILE (EVER)

WRITE (ONE,*) 'Point #',COUNT,':'
READ (ONE,*,END=9999) (DATA(LENGTH,COUNT),LENGTH=ONE,

DIMENSION)
COUNT=COUNT+ONE

END DO
COUNT=COUNT-ONE
WRITE (ONE,lO) '$Should the file be saved on disk? '

READ (ONE,lO) ANSWER
IF (ANSWER.EQ. 'y' .OR.ANSWER.EQ. 'y') THEN

WRITE (ONE,lO) '$Enter the file name

READ (ONE,lO) FILE NAME
OPEN (UNIT=TWO,NAME=FILE NAME,STATUS='NEW' ,CARRIAGE

CONTROL='LIST' ,ERR=lOO)
WRITE (TWO,*) DIMENSION,COUNT
DO LENGTH=ONE,COUNT

WRITE (TWO,*) (DATA(COUNTER,LENGTH),COUNTER=ONE,
DIMENSION)

X

9999

100

X

X

END DO

CLOSE (UNIT=TWO,STATUS='KEEP')
END IF

ELSE
200 WRITE (ONE,lO) '$Enter the name of the file to read'

READ (ONE,lO) FILE NAME
OPEN (UNIT=TWO,STATUS='OLD' ,NAME=FILE_NAME,ERR=200)

READ (TWO,*) DIMENSION,COUNT
DO COUNTER=ONE,COUNT

READ (TWO,*) (DATA(LENGTH,COUNTER),LENGTH=ONE,
X DIMENSION)

END DO
END IF

C
C STEP 1
C

NUMBER CLUSTER=COUNT
DO LENGTH=ONE,DIMENSION

DO COUNTER=ONE,COUNT
CLUSTER(LENGTH,COUNTER)=DATA(LENGTH,COUNTER)

END DO
END DO

1000 WRITE (ONE,lO) '$Enter the approximate number of clusters'
READ (ONE,*) NUMBER K

WRITE (ONE,lO) '$Enter the minimun size of a cluster'
READ (ONE,*) MINIMUM SIZE
WRITE (ONE,lO) '$Enter the standard deviation parameter'
READ (ONE,*) THETA S
WRITE (ONE,lO) '$Enter the lumping parameter'
READ (ONE,*) LUMPING PARA
WRITE (ONE,lO) '$Ent�r the number of changes per pass'
READ (ONE,*) NUMBER L
WRITE (ONE,lO) '$Enter the maximun number of iteration'
READ (ONE,*) MAXI ITERATION
DO ITERATION_COUNT=ONE,MAXI ITERATION

C
C STEP 2
C

WRITE (ONE,*) 'Pass #',ITERATION_COUNT
DO NUMBER=ONE,COUNT

WORK=MAXI VALUE
DO COUNTER=ONE,NUMBER_CLUSTER

SUM=ZERO
DO LENGTH=ONE,DIMENSION

SUM=SUM+(DATA(LENGTH,NUMBER)-CLUSTER(LENGTH,
X COUNTER))**TWO

END DO
IF (SUM.LT.WORK) THEN

WORK=SQRT(SUM)
DATA(ZERO,NUMBER)=COUNTER

END IF
END DO

END DO
C
C
C

STEP 3

COUNTER=ONE
DO WHILE (COUNTER.LE.NUMBER_CLUSTER)

LENGTH=ZERO
DO NUMBER=ONE,COUNT

IF (DATA(ZERO,NUMBER).EQ.COUNTER) LENGTH=LENGTH+ONE

x

x

C
C
C

x

C
C
C

END DO
IF (LENGTH.LT.MINIMUM SIZE) THEN

DO INCREMENT=ONE,COUNT
IF (DATA(ZERO,INCREMENT).GT.COUNTER) THEN

DATA(ZERO,INCREMENT)=DATA(ZERO,INCREMENT)-ONE
ELSE IF (DATA(ZERO,INCREMENT).EQ.COUNTER) THEN

WORK=MAXI VALUE
DO LENGTH=ONE,NUMBER_CLUSTER

SUM=ZERO
DO LOOP COUNT=ONE,DIMENSION

SUM�SUM+(DATA(LOOP COUNT,INCREMENT)
-CLUSTER(LOOP_COUNT,LENGTH))**TWO

END DO
IF (SUM.LT.WORK) THBN

WORK=SUM

DATA(ZERO,INCREMENT)=LENGTH
END IF

END DO
END IF

END DO
DO INCREMENT=COUNTER+ONE,NUMBER_CLUSTER

DO LENGTH=ZERO,DIMENSION
CLUSTER(LENGTH,INCREMENT-ONE)=CLUSTER(LENGTH

,INCREMENT)
END DO

END DO
NUMBER CLUSTER=NUMBER CLUSTER-ONE

END IF
COUNTER=COUNTER+ONE

END DO

STEP 4

DO COUNTER=ONE,NUMBER CLUSTER
DO LENGTH=ONE,DIMENSION

DISTANCE(LENGTH)=ZERO
END DO
WORK=ZERO
DO LENGTH=ONE,COUNT

IF (DATA(ZERO,LENGTH).EQ.COUNTER) THEN
DO INCREMENT=ONE,DIMENSION

DISTANCE(INCREMENT)=DISTANCE(
INCREMENT)+DATA(INCREMENT,LENGTH)

END DO
WORK=WORK+ONE

END IF
END DO
DO LENGTH=ONE,DIMENSION

CLUSTER(LENGTH,COUNTER)=DISTANCE(LENGTH)/WORK
END DO

END DO

STEP 5

x

x

C
C
C

C
C
C

x

C
C
C

x
x

DO COUNTER=ONE,NUMBER_CLUSTER
SUM=ZERO
CLUSTER(ZERO,COUNTER)=ZERO
DO INCREMENT=ONE,COUNT

IF (DATA(ZERO,INCREMENT).EQ.COUNTER) THEN
WORK=ZERO
DO LENGTH=ONE,DIMENSION

WORK=WORK+(DATA(LENGTH,INCREMENT)-CLUSTER(
LENGTH,COUNTER))**TWO

END DO

CLUSTER(ZERO,COUNTER)=CLUSTER(ZERO,COUNTER)+
SQRT(WORK)

SUM=SUM+ONE
END IF

END DO

CLUSTER(ZERO,COUNTER)=CLUSTER(ZERO,COUNTER)/SUM
END DO

STEP 6

OVER ALL AVG=ZERO
DO CQUNTER=ONE,NUMBER CLUSTER

OVER_ALL_AVG=OVER=ALL_AVG+CLUSTER(ZERO,COUNTER)
END DO

OVER_ALL_AVG=OVER_ALL_AVG/NUMBER_CLUSTER

STEP 7

IF (ITERATION_COUNT.EQ.MAXI ITERATION) THEN
LUMPING PARA=ZERO
GO TO STEP 11

ELSE IF (NUMBER CLUSTER.LE.NUMBER K/TWO) THEN
ELSE IF (ITERATION COUNT.EQ.ITERATION COUNT/TWO*TWO.OR.

NUMBER CLUSTER�GE.TWO*NUMBER K) THEN
GO-TO STEP 11

_

END IF

STEP 8

DO COUNTER=ONE,NUMBER_CLUSTER
DO INCREMENT=ZERO,DIMENSION

STANDARD DEV(INCREMENT,COUNTER)=ZERO
END DO

_

SUM=ZERO
DO INCREMENT=ONE,COUNT

IF (DATA(ZERO,INCREMENT).EQ.COUNTER) THEN
DO LENGTH=ONE,DIMENSION

STANDARD DEV(LENGTH,COUNTER)=STANDARD DEV

(LENGTH,COUNTER)+(DATA(LENGTH,INCREMENT
)-CLUSTER(LENGTH,COUNTER))**TWO

END DO
SUM=SUM+ONE

END IF
END DO

C
C
C

C
C
C

C
C
C
11000

x

x
x
x

x

x

x

DO INCREMENT=ONE,DIMENSION
STANDARD DEV(INCREMENT,COUNTER)=SQRT(STANDARD DEV(

INCREMENT,COUNTER)/SUM)
_

END DO
END DO

STEP 9

DO COUNTER=ONE,NUMBER CLUSTER
SUM=ZERO

_

DO LENGTH=ONE,DIMENSION
IF (STANDARD DEV(LENGTH,COUNTER).GT.SUM) THEN

SUM=STANDARD_DEV(LENGTH,COUNTER)
STANDARD_DEV(ZERO,COUNTER)=LENGTH

END IF
END DO

END DO

STEP 10

FLAG FOR SPLIT=.FALSE.
DO COUNTER=ONE,NUMBER_CLUSTER

POINTER=STANDARD_DEV(ZERO,COUNTER)
NUMBER=ZERO
DO LENGTH=ONE,COUNT

IF (DATA(ZERO,LENGTH).EQ.COUNTER) NUMBER=NUMBER+ONE
END DO
IF (STANDARD DEV(POINTER,COUNTER).GT.THETA S.AND.

(NUMBER CLUSTER.LE.NUMBER K/TWO.OR.(CLUSTER(ZERO,
COUNTER).GT.OVER ALL AVG.AND.NUMBER.GT.TWO*(MINIMUM
SIZE+ONE)))) THEN

_

_

GAMMA=FACTOR*STANDARD_DEV(POINTER,COUNTER)
NUMBER CLUSTER=NUMBER CLUSTER+ONE
DO LENGTH=ZERO,DIMENSION

CLUSTER(LENGTH,NUMBER CLUSTER)=CLUSTER(
LENGTH,COUNTER)

_

END DO

CLUSTER(POINTER,NUMBER CLUSTER)=CLUSTER(POINTER,
NUMBER CLUSTER)-GAMMA

CLUSTER(POINTER,COUNTER)=GAMMA+CLUSTER(POINTER,
COUNTER)

FLAG FOR SPLIT=.TRUE.
END IF

END DO
IF (FLAG_FOR_SPLIT) GO TO END OF LOOP

STEP 11

POINTER=ZERO
DO COUNTER=ONE,TWO FIFTY FIVE

DISTANCES(ONE,COUNTER)=MAXI VALUE
END DO
DO COUNTER=ONE,NUMBER CLUSTER-ONE

DO LENGTH=COUNTER+ONE,NUMBER_CLUSTER

x

C
C
C

C
C
C

x

x

SUM=ZERO
DO INCREMENT=ONE,DIMENSION

SUM=SUM+(CLUSTER(INCREMENT,COUNTER)-CLUSTER(
INCREMENT,LENGTH))**TWO

END DO
IF (POINTER.LT.TWO_FIFTY_FIVE) THEN

POINTER=POINTER+ONE

DISTANCES(ONE,POINTER)=SQRT(SUM)
DISTANCES (TWO,POINTER)=COUNTER
DISTANCES (THREE,POINTER)=LENGTH

ELSE
CALL MERGE (DISTANCES,SUM,COUNTER,LENGTH)

END IF
END DO

END DO

STEP 12

CALL SORT (DISTANCES)
COUNTER=ONE
DO WHILE (COUNTER.LE.POINTER)

IF (DISTANCES(ONE,COUNTER).GE.LUMPING_PARA) THEN
POINTER=COUNTER-ONE

ELSE
COUNTER=COUNTER+ONE

END IF
END DO

POINTER=MIN(POINTER,NUMBER_L)

STEP 13

DO COUNTER=ONE,POINTER
IF (DISTANCES(TWO,COUNTER).NE.ZERO.AND.DISTANCES(THREE,

COUNTER).NE.ZERO) THEN

INCREMENT=DISTANCES(TWO,COUNTER)
LENGTH=DISTANCES(THREE,COUNTER)
COUNT l=ZERO
COUNT-2=ZERO
DO LOOP COUNT=ONE,DIMENSION

DISTANCE (LOOP_COUNT) =ZERO
END DO
DO LOOP COUNT=ONE,COUNT

IF (DATA(ZERO,LOOP COUNT).EQ.INCREMENT) THEN
COUNT l=COUNT I+oNE
DATA(ZERO,LOOP COUNT)=LENGTH
DO NUMBER=ONE,DIMENSION

DISTANCE(NUMBER)=DISTANCE(NUMBER)+
DATA(NUMBER,LOOP_COUNT)

END DO
ELSE IF (DATA(ZERO,LOOP COUNT).EQ.LENGTH) THEN

COUNT 2=COUNT 2+0NE-
END IF

END DO
DO LOOP_COUNT=ONE,POINTER

x
x

IF ((DISTANCES(TWO,LOOP COUNT).EQ.INCREMENT
).OR.(DISTANCES(TWO�LOOP COUNT).EQ.LENGTH
)) THEN

_

DISTANCES(TWO,LOOP COUNT)=ZERO
ELSE IF ((DISTANCES(THREE,LOOP_COUNT).EQ.

LENGTH).OR.(DISTANCES(THREE,LOOP COUNT)
.EQ.INCREMENT)) THEN

_

DISTANCES (THREE ,LOOP_COUNT)=ZERO

x

X

X
X

END IF
END DO
DO NUMBER=ONE,DIMENSION

CLUSTER(NUMBER,LENGTH)=((CLUSTER(NUMBER,
LENGTH)*COUNT 2)+DISTANCE(NUMBER))/(
COUNT 1+COUNT-2)

- _

X

END DO
NUMBER CLUSTER=NUMBER CLUSTER-ONE
DO LOOP_COUNT=INCREMENT,NUMBER_CLUSTER

DO NUMBER=ZERO,DIMENSION
CLUSTER(NUMBER,LOOP COUNT)=CLUSTER(

NUMBER,LOOP_COUNT+ONE)
END DO

END DO
END IF

END DO
C
C
C
14000

STEP 14

X

WRITE (ONE,*) NUMBER CLUSTER,' distinct clusters now'
WRITE (ONE,lO) '$Do you want to see the clusters? '

READ (ONE,lO) ANSWER
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y') THEN

DO NUMBER=ONE,NUMBER CLUSTER
WRITE (ONE,*) (CLUSTER(LENGTH,NUMBER),LENGTH=ZERO,

DIMENSION)
END DO

END IF
WRITE (ONE,lO) '$Do you want to see the points? '

READ (ONE,lO) ANSWER
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y') THEN

DO NUMBER=ONE,COUNT
WRITE (ONE,*) (DATA(LENGTH,NUMBER),LENGTH=ZERO,

X DIMENSION)
END DO

END IF
WRITE (ONE,lO) '$Do you want to go back to the top? '

READ (ONE,lO) ANSWER
IF (ANSWER.EQ. 'Y'.OR.ANSWER.EQ.'y') GO TO TOP OF LOOP
WRITE (ONE,lO) '$DO you want to stop? '

__

READ (ONE,lO) ANSWER
IF (ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y') STOP' ,

END DO
END

APPENDIX B

9-APR-81 09'�0:08

I­
z:
:::J
Cl
,..)

I­
z:

�
W J

ORIGINAL DATA

\

1. 115.
,. 1 -------,---

•228. 342. 456. 569. 683. 797. 910. 1024.

CHANt'iEL ��

Figure 2

�,-(,pP-8t 09. 53127

IDENTIFIED PEAKS

I-

s
CI
U

I­
z:

�
w

1. 115. 342. 910. 1024.228. 456. 569. 683. 797.

CHANNEL 0

Figure 3

9-APR-91 091�6142

1
I'

I-

§
CJ
U

I­
z:
IJJ
>
IJJ

.

!
.
t

t

r

I
t
I
t
t
t
t
t
r

r
I

I

I
r
t

�I

,/

IDENTIFIED PEAKS

1.

CHANNEL 0

115. 229. 342. 456. 683. 797. 910. 1024.569.

Figure 4

9-AP�-81 10:00:02 CENTER AT 353 LIMITS AT 300 � 392 rITs30 EXITATIDN- 36.70 LAB ENERGY- 53.00 COUNT- 4996

MERGE FACTOR= 1 THRESHOLD; 30

t­
z;
::J
Cl
W

l-

�
�

PEAK 0 4

I
)

,!

1.

CHANNEL ,.

115. 228. 797. 910. 1024.342. 456. 569. 683.

Figure 5

19-MAR-81 10105114

MERGE FACTOR- 1 THRESHOLD- 20

CENTER AT 386 LIMITS AT 370 � 397 FITa30 EXITATIDN= 34.47 LAB ENERGYQ �6.30 COUNTz 3447

._
z:
::l

8
._
z:

�
w

PEAK 0 10

1.

CHANNEL 0

115. 342.228.

Figure 6

456. 910. 1024.569. 683. 797.

19-MAR-81 10:0�'42

......

S
o
(..)

......
z:
w
c­
w i�

I

I
I

,

• I

�
I
I

I

I
I

I
I

I

I
I
I
I

I

I

IOENTI�IEO PEAKS

ll�

!�

r

1.
1024.

115. 228. 342.

Figure 7

456. �69.

CHANNEL 0

683. 797. 910.

APPENDIX C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

x
x

x
x
x

x
x
x
x
x
x
x
x

x

x
x
x
X

10
20
30
40

The following subroutines was developed by Frank J. Blando, on the

Cyclotron Institute VAX-ll/780 computers. It should be linked with
the program ANALYZE on the Ken Nagatani Group directory.

The subroutine AI is a peak finder subroutine. The parameters passed
consist of an INTEGER*4 array of 1024 members and a run number. The
subroutine will plot the array, and scan it for peaks. The subroutine
requires that a CRT type terminal be assigned to the fortran unit 3.
From this CRT, the subroutine will ask for 3 parameters:

a) A fit paramter, telling the number of points that should
be used for computing the extrapolation slope

b) A threshold value, when fewer points are left between 2 peak
this data will not be considered for peak analysis.

c) A merge factor, the program will work with the average of
this factor many points. Used to smooth out sharp peaks.

x
X

SUBROUTINE AI (DATA,RUN)
INTEGER DATA(l024) ,GARBAGE(l024) ,PEAKS(l024) ,LEFT

,RIGHT,WIDTH,CENTER,COUNT,NUMBER,GET MAXIMUM

,PEAK(l024),RUN,POINTER,MERGE,COMMON�THRESHOLD
REAL*4 CENTERS(lOO)
REAL*16 RIGHT SLOPE,LEFT SLOPE,FACTOR,SLOPE
LOGICAL*l YES�NO,WANT MORE,INVALID,RESPONCE
CHARACTER*50 ANSWER

-

EXTERNAL LIB$EMULATE
COMMON /WHERE/ POINTER
PARAMETER ZERO=

ZEROS=
ONE=
ONES=
TWO=
DASHED=
CRT=
PLOTTER=
PRINTER=
TEN=
FIFTY=
NINETY NINE=

ONE THIRTY=
TOP;;
SEVEN THIRTY=
SEVEN FIFTY=
TEN TWENTY FOUR=

- -

LARGE MAX=
LARGE MIN=

0,
O. ,
1 ,

1.OQO,
2,
3 ,

3 ,

4 ,

6,
10,
50,
99,
130,
700,
730,
750,
1024,
+1.OQ4100,
-1. OQ4100

FORMAT (A)
FORMAT ('PEAK #',14)
FORMAT ('CENTER AT ',14,' LIMITS AT ',14,' & ',14,' FIT=',I2)
FORMAT ('MERGE FACTOR=' ,13,' THRESHOLD=',I4)
WRITE (CRT,lO) '$How many points per fit?

'

READ (CRT,*) NUMBER
WRITE (CRT,lO) '$Enter the between peak threshold'
READ (CRT,*) THRESHOLD

CALL GET ANSWER ('$DO you want to merge points? ',RESPONCE
X ,ANSWER)

YES=.TRUE.
NO=.FALSE.
CALL LIB$ESTABLISH (LIB$EMULATE)
DO I=ONE,TEN TWENTY FOUR

PEAKS(I)�ZERO
-

GARBAGE(I)=DATA(I)
END DO
IF (WANT MORE(ANSWER)) THEN

140 WRI'rE (CRT, 10) '$How many points at a time? '

READ (CRT,*) MERGE
IF (MERGE.LT.TWO.OR.MERGE.GT.FIFTY) GO TO 140
DO I=ONE,TEN_TWENTY_FOUR-MERGE,MERGE

COMMON=ZERO
DO J=ZERO,MERGE-ONE

COMMON=COMMON+GARBAGE(J+I)
END DO

COMMON=COMMON/MERGE
DO J=ZERO,MERGE-ONE

GARBAGE(J+I)=COMMON
END DO

END DO
COUNT=TEN TWENTY FOUR/MERGE*MERGE
IF (COUNT:NE.TEN-TWENTY FOUR) THEN

COMMON=ZERO
- -

DO I=COUNT+ONE,TEN TWENTY FOUR

COMMON=GARBAGE(I)+COMMON
END DO

COMMON=COMMON/(TEN TWENTY FOUR-COUNT)
DO I=COUNT+ONE,TEN-TWENTY-FOUR

GARBAGE(I)=COMMON
-

END DO
END IF

ELSE
MERGE=ONE

END IF
COUNT=ZERO
CALL TKP ERASE
CALL GET DISPLAY (GARBAGE)
CALL TKP-TSEND
FACTOR=QEXT(TEN_TWENTY_FOUR)/QEXT (GARBAGE (GET_MAXIMUM (GARBAGE)))
POINTER=ZERO
DO WHILE (WANT_MORE(ANSWER).AND.COUNT.LE.NINETY_NINE)

COUNT=COUNT+ONE
CENTER=GET MAXIMUM (GARBAGE)
RIGHT=CENTER+ONE
RIGHT SLOPE=LARGE MIN

WRITE-(PRINTER,*)-'PEAK #',COUNT
DO WHILE (RIGHT SLOPE.LE.-ONES.AND.RIGHT.LE.TEN TWENTY FOUR)

RIGHT SLOPE�SLOPE(GARBAGE,RIGHT,YES,NUMBER)*FACTOR­
RIGHT�RIGHT+ONE

END DO

RIGHT=RIGHT+NUMBER/TWO

IF (RIGHT.GT.TEN TWENTY FOUR) RIGHT=TEN TWENTY FOUR
CALL GET LIMIT (GARBAGE�RIGHT,NUMBER)

- -

LEFT=CENTER-ONE
LEFT SLOPE=LARGE MIN
DO WHILE (LEFT SLOPE.LE.-ONES.AND.LEFT.GE.ONE)

LEFT_SLOPE�SLOPE(GARBAGE,LEFT,NO,NUMBER)*FACTOR
LEFT=LEFT-ONE

END DO

LEFT=LEFT-NUMBER/TWO
IF (LEFT.LT.ONE) LEFT=ONE
CALL GET LIMIT (GARBAGE,LEFT,NUMBER)
CENTERS(COUNT)=REAL(CENTER)
CALL TKP MOVEA (CENTERS(COUNT) ,ZEROS)
CALL 1IKP-DASHR (ZEROS ,REAL (GARBAGE (CENTER)) ,TWO)
CALL TKP-TSEND
CALL GET-ANSWER ('$Do you want an identification plot? '

X RESPONCE,ANSWER)
IF (WANT_MORE(ANSWER)) THEN

DO I=ONE,LEFT-ONE
PEAK(I)=ZERO

END DO
DO I=LEFT,RIGHT

PEAK(I)=GARBAGE(I)
END DO
DO I=RIGHT,TEN TWENTY FOUR

PEAK(I)=ZERO
-

END DO
CALL PLOT (PEAK)
ENCODE (TEN,20,ANSWER(ONE:TEN)) COUNT
CALL PXP TITLE ('CHANNEL #','EVENT COUNT',ANSWER(ONE:

X TEN))
ENCODE (FIFTY,30,ANSWER) CENTER,LEFT,RIGHT,NUMBER
CALL PXP LABEL (ANSWER,ONE THIRTY,SEVEN FIFTY,ONE)
CALL GET-VALUE (ANSWER,CENTER,DATA,RUN)-
ENCODE (FIFTY,40,ANSWER) MERGE,THRESHOLD
CALL PXP LABEL (ANSWER,ZERO,SEVEN THIRTY,ONE)
CALL GET-DATE TIME (PLOTTER)

-

END IF
DO I=LEFT,RIGHT

PEAKS(I)=DATA(I)
GARBAGE(I)=ZERO

END DO

CALL BETWEEN CHECK (GARBAGE,RIGHT,LEFT,THRESHOLD)
IF (COUNT.LE:NINETY NINE) THEN

CALL GET ANSWER-('$DO you want to keep on going? '

X RESPONCE�ANSWER)
END IF

END DO

CALL GET ANSWER ('$Do you want a hard copy? ',RESPONCE,ANSWER)
IF (WANT-MORE(ANSWER)) THEN

CALL-PLOT (DATA)
CALL PXP TITLE ('CHANNEL #','EVENT COUNT','ORIGINAL DATA')
CALL GET-DATE TIME (PLOTTER)
CALL PLOT (PEAKS)

DO I=ONE,COUNT
CALL PXP SCALE (CENTERS(I),ZEROS,IX,IY)
CALL PXP=VECTOR (IX,IY,IX,TOP,DASHED)

END DO
CALL PXP TITLE ('CHANNEL #','EVENT COUNT','IDENTIFIED PEAKS')
CALL GET-DATE TIME (PLOTTER)
CALL PLOT (GARBAGE)
CALL PXP TITLE ('CHANNEL #','EVENT COUNT','DATA LEFT OVER')
CALL GET-DATE TIME (PLOTTER)

END IF

END

C
C This function inputs an array of event counts and identifies 10 points
C to be used in a quartic exponential approximation fit. The subroutine
C assumes that not all counts are zero in the array (ie the array has a

C non-zero maximum point somewhere. The coordinates of the points are

C returned into the INTEGER arrays CENTER_x and CENTER_Y.
C

SUBROUTINE SUBTRACT (ARRAY,RUN,CENTER X,CENTER Y)
INTEGER ARRAY(1024) ,MAXIMUM X,MAXIMUM-Y,GET MAXIMUM

X ,COUNT,RUN,LEFT,RIGHT,MIDDLE,CENTER-X(40)
X ,CENTER Y(40),END POINT

-

LOGICAL*l MORE TO GO
-

EQUIVALENCE (MORE-TO GO,ANSWER)
PARAMETER

- -

ZERO= 0,
X ONE= 1,
X TWO= 2,
X CRT= 3,
X FIVE= 5,
X NINE= 9,
X TEN= 10,
X HUNDRED= 100,
X TEN TWENTY FOUR= 1024

MAXIMUM X=GET MAXIMUM(ARRAYT
MAXIMUM-Y=ARRAY(MAXIMUM X)
FACTOR=�95

-

END POINT=TEN TWENTY FOUR

COUNT=MAXIMUM-Y/HUNDRED
DO WHILE (ARRAY(END POINT).LT.COUNT)

END POINT=END POINT-ONE
END DO

INCREMENT=(END_POINT-MAXIMUM_X-ONE)/NINE
DO COUNT=ONE,NINE

MIDDLE=MAXIMUM X+INCREMENT*COUNT-INCREMENT/TWO
IF (ARRAY(MIDDEE).GE.ARRAY(MIDDLE+ONE).AND.

X ARRAY(MIDDLE).LE.ARRAY(MIDDLE-ONE)) THEN
CENTER X(COUNT)=MIDDLE
CENTER-Y(COUNT)=ARRAY(MIDDLE)*FACTOR+ONE
CALL XXX (MIDDLE,CENTER_Y(COUNT))

ELSE
MORE TO GO=.TRUE.
RIGHT=MIDDLE+ONE
LEFT=MIDDLE-ONE
DO WHILE (LEFT.GT.MAXIMUM X.AND.RIGHT.LE.TEN TWENTY

X FOUR.AND.MORE TO GO)
-

IF (ARRAY(RIGHT)�LE.ARRAY(RIGHT-ONE).AND.
X ARRAY(RIGHT).GE.ARRAY(RIGHT+ONE)) THEN

MORE TO GO=.FALSE.
CENT�R X(COUNT)=RIGHT
CENTER-Y(COUNT) =ARRAY(RIGHT) *FACTOR+ONE
CALL XXX (RIGHT,CENTER Y(COUNT))

ELSE IF (ARRAY(LEFT).LE.ARRAY(LEFT-ONE).AND.
X ARRAY(LEFT).GE.ARRAY(LEFT+ONE)) THEN

MORE TO GO=.FALSE.

CENTER_X(COUNT)=LEFT

CENTER Y(COUNT)=ARRAY(LEFT)*FACTOR+ONE
CALL XXX (LEFT,CENTER_Y(COUNT))

END IF
LEFT=LEFT-ONE
RIGHT=RIGHT+ONE

END DO
IF (MORE_TO_GO) STOP 'Unable to use Heuristics!'

END IF
END DO
END

