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ABSTRACT

An Adaptive Angular Discretization Method for Neutral-Particle Transport in

Three-Dimensional Geometries. (December 2010)

Joshua John Jarrell, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Marvin L. Adams

In this dissertation, we discuss an adaptive angular discretization scheme for

the neutral-particle transport equation in three dimensions. We mesh the direction

domain by dividing the faces of a regular octahedron into equilateral triangles and

projecting these onto “spherical triangles” on the surface of the sphere. We choose

four quadrature points per triangle, and we define interpolating basis functions that

are linear in the direction cosines. The quadrature point’s weight is the integral of

the point’s linear discontinuous finite element (LDFE) basis function over its local

triangle. Variations in the locations of the four points produce variations in the

quadrature set.

The new quadrature sets are amenable to local refinement and coarsening, and

hence can be used with an adaptive algorithm. If local refinement is requested, we

use the LDFE basis functions to build an approximate angular flux, Ψinterpolated, by

interpolation through the existing four points on a given triangle. We use a transport

sweep to find the actual values, Ψcalc, at certain test directions in the triangle and

compare against Ψinterpolated at those directions. If the results are not within a user-

defined tolerance, the test directions are added to the quadrature set.

The performance of our uniform sets (no local refinement) is dramatically better

than that of commonly used sets (level-symmetric (LS), Gauss-Chebyshev (GC) and

variants) and comparable to that of the Abu-Shumays Quadruple Range (QR) sets.

On simple problems, the QR sets and the new sets exhibit 4th-order convergence in
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the scalar flux as the directional mesh is refined, whereas the LS and GC sets ex-

hibit 1.5-order and 2nd-order convergence, respectively. On difficult problems (near

discontinuities in the direction domain along directions that are not perpendicular

to coordinate axes), these convergence orders diminish and the new sets outperform

the others. We remark that the new LDFE sets have strictly positive weights and

that arbitrarily refined sets can be generated without the numerical difficulties that

plague the generation of high-order QR sets.

Adapted LDFE sets are more efficient than uniform LDFE sets only in difficult

problems. This is due partly to the high accuracy of the uniform sets, partly to

basing refinement decisions on purely local information, and partly to the difficulty

of mapping among differently refined sets. These results are promising and suggest

interesting future work that could lead to more accurate solutions, lower memory

requirements, and faster solutions for many transport problems.
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1. INTRODUCTION

In this dissertation we introduce new quadrature sets for solving the discrete or-

dinate (Sn) neutral-particle transport equation. Our new quadrature sets are based

on discontinuous finite-element basis functions in the direction (or “angle”) variable.

They are amenable to local refinement and coarsening and thus can form the founda-

tion of adaptive discrete-ordinates algorithms. We develop and test such algorithms

in this work, including refinement and coarsening strategies as well as algorithms for

mapping between different quadrature sets. In this section we describe the transport

equation that we are attempting to solve and briefly describe previous work that has

laid the foundation for our work.

1.1 Neutral Particle Transport Equation

The neutral-particle transport equation is the linear form of the Boltzmann equa-

tion, which is a conservation equation in a seven-dimensional “phase-space.” The

solution, called the angular flux, is dependent on seven variables: time, energy, three

position variables, and two direction (or “angular”) variables. For neutrons, the

transport equation is

1

v(E)

∂Ψ(−→r ,−→Ω , E, t)

∂t
+
−→
Ω · −→∇Ψ(−→r ,−→Ω , E, t) + σt(

−→r , E, t)Ψ(−→r ,−→Ω , E, t) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σf (
−→r , E ′, t)Ψ(−→r ,−→Ω , E ′, t)+

∫

4π

dΩ′
∫ ∞

0

dE ′σs(
−→r ,−→Ω ′ · −→Ω , E ′ → E, t)Ψ(−→r ,−→Ω ′, E ′, t)+

q(−→r ,−→Ω , E, t) ,

(1.1)

This dissertation follows the style of International Journal of Heat and Mass Transfer.
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where

−→r =space coordinate vector (cm),

−→
Ω =unit vector in the direction

of the particle motion,

E =particle’s energy (MeV ),

t =time (s),

v(E) =particle’s speed corresponding

to energy E (
cm

s
),

χ(E) =fraction of fission particles

emitted per unit energy

centered about E (
1

MeV
),

ν(E) =average number of particles

emitted from fission caused by

neutrons of energy E (
neutrons

fission
),

σt(
−→r ,−→Ω , E, t) =total cross-section (cm−1),

σf (
−→r , E, t) =fission cross-section (cm−1),

σs(
−→r ,
−→
Ω′ · −→Ω , E ′ → E, t) =scattering cross-section

from (E ′,Ω′) into (E,Ω) (cm−1MeV −1ster−1),

Ψ(−→r ,−→Ω , E, t) =particle angular flux

(
particles

MeV ster cm2 s
),

q(−→r ,−→Ω , E, t) =particle source rate density

(
particles

MeV ster cm3 s
) .

(1.2)

When we write the time-dependent equation in this form, we implicitly assume that

the delayed neutron emission is included in the q(−→r ,−→Ω , E, t) term and the fission
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term is just the prompt neutrons. Also, we assume that the scattering cross section

has been modified to include (n, 2n) and similar reactions. Assuming the boundaries

are non-reentrant, the boundary conditions are given for all incoming angles:

Ψ(−→r s,
−→
Ω , E, t) = F (−→r s,

−→
Ω , E, t) −→n · −→Ω < 0 on δD, (1.3)

where F is a known function, −→n is the outward facing normal on the boundary δD,

and −→r s is a point on δD. Boundary conditions that specify the incident angular

flux in terms of the exiting angular flux are also possible. Examples include specular

reflection (mirror) or periodic boundary conditions. We assume an initial condition

is given as

Ψ(−→r ,−→Ω , E, t0) = F0(
−→r ,−→Ω , E), (1.4)

where F0 is a known function and t0 is the time at the start of the problem.

1.1.1 Transport Equation Assumptions

Equation 1.1 has a number of assumptions or approximations built into it [1]. The

first is that particles may be considered as points. That is, we assume the quantum

mechanical wavelength is small compared to the atomic diameter. This assumption is

used because particles, in general, travel many atomic diameters between collisions.

The next assumption is that particles are not affected by gravitational, electric, or

magnetic fields. This ensures that particles travel in straight lines. Because we are

utilizing the linear form of the transport equation, we assume particles do not in-

teract with each other. This assumption is generally valid because the number of

particles is dramatically (orders of magnitude) less than the number of particles in

the surrounding matter. Another assumption is that interaction between the matter

and a particle occurs instantaneously. We also assume that the background matter

is moving isotropically and the angular particle distribution from fission is isotropic.

This ensures that particles see the same distribution of background matter from any

direction, which causes the total cross section to be independent of particle direction
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and causes the scattering cross section to depend only on the change in direction

and not separately on the incident and exiting directions. There are some instances

where this could break down including crystalline lattice structures and high ve-

locity background matter. We also assume that the properties of the nuclei and

the compositions of materials under consideration are known and time-independent

unless explicitly stated. This means that feedback mechanisms are not explicitly

treated in this equation. In general, these mechanisms are treated using other itera-

tive processes [1]. The final assumption is that Ψ(−→r ,−→Ω , E, t) is the mean value for

the particle density. The density in a given physical object will fluctuate about this

mean even in a “steady state” problem or will vary from object to object even in

systems that are macroscopically similar. These fluctuations and variations become

small relative to the mean when the density is integrated over a sufficiently large

phase-space volume that the expected number of particles in the volume is large.

1.1.2 Eigenvalue Problems

We can utilize Equation 1.1 to solve steady-state or time-dependent problems that

are driven by fixed sources. However, in reactor analysis, the k-eigenvalue problem

is studied extensively to determine the criticality of a system [1]. A system is said to

be critical if it can support a self-sustaining time-independent chain reaction in the

absence of external sources of neutrons. This means the rate of neutron production

is just equal to the losses due to absorption and leakage from the system. If this

equilibrium is not established, the asymptotic distribution of neutrons will either

increase or decrease. Therefore, a system is critical if a time-independent nonnegative
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solution to the source-free transport equation, as shown in Equation 1.5, can be found

with appropriate boundary conditions.

−→
Ω · −→∇Ψ(−→r ,−→Ω , E)+σt(

−→r , E)Ψ(−→r ,−→Ω , E) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σf (
−→r , E ′)Ψ(−→r ,−→Ω , E ′)+

∫

4π

d
−→
Ω ′

∫ ∞

0

dE ′σs(
−→r ,−→Ω ′ · −→Ω , E ′ → E)Ψ(−→r ,−→Ω ′, E ′)

(1.5)

In order to determine the multiplication factor k, we replace ν with ν
k
as shown in

Equation 1.6:

−→
Ω · −→∇Ψ(−→r ,−→Ω , E)+σt(

−→r , E)Ψ(−→r ,−→Ω , E) =

1

k

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σf (
−→r , E ′)Ψ(−→r ,−→Ω , E ′)+

∫

4π

d
−→
Ω ′

∫ ∞

0

dE ′σs(
−→r ,−→Ω ′ · −→Ω , E ′ → E)Ψ(−→r ,−→Ω ′, E ′) .

(1.6)

A solution of this problem is a combination of k and Ψ – an eigenvalue-eigenfunction

pair – that satisfies the equation and boundary conditions. There is exactly one such

solution whose eigenfunction is positive throughout the domain of the problem. Its

associated eigenvalue is the largest of the eigenvalues; we shall refer to it simply as

k. If k > 1, k < 1, or k = 1, the system is supercritical, subcritical, or critical,

respectively.

1.2 Solving the Neutral-Particle Transport Equation

There are currently two categories of methods for solving the transport equation:

stochastic (Monte Carlo) and deterministic. These numerical methods have been

developed because the transport equation can be analytically solved only for highly

idealized problems. With both categories of methods, solutions of the transport

equation can be computationally expensive in both time and memory.
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1.2.1 Stochastic Methods

Stochastic methods are based on using the random nature of the particle inter-

acting with the medium to simulate the histories of representative particle. These

methods model the physics of the problem using probability functions. One benefit

of these methods is the ability to accurately represent arbitrary geometries. These

methods can use a continuous treatment of energy, space, and angle to avoid the

errors associated with discretizing or averaging. A disadvantage of these methods

is that they tend to consume a lot of computation time. Another is that it can be

difficult for them to produce solutions that are statistically relevant in all portions

of the problem domain.

1.2.2 Deterministic Methods

In this work, we will focus on deterministic methods. In these methods, we

discretize the transport equation in order to approximate the problem with systems

of algebraic equations that can be solved. The current methods associated with

solving these equations include methods that are applied to the first-order integro-

differential form of the equation, integral form, and the second-order forms (such

as even-parity). We will focus on the first-order integro-differential form. Methods

applied to this form can be further sub-divided based on the angular discretization

treatments: discrete ordinate (Sn), spherical harmonic (Pn), and finite-element. We

classify any method using discrete ordinates as a discrete ordinate method regardless

of whether finite-element methods are used to discretize the spatial variables.

1.3 Dissertation Layout

We will discuss the discretization and iterative solution method of the transport

equation in Section 2. We briefly describe methods for discretizing the time, energy,
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and spatial variables. We then give a detailed look at the discretization of the angular

variables. It should be noted that our angular discretization can be applied to most

spatial, time, and energy discretizations.

We then discuss the current state of the art methods employed to solve the

transport equation using discretizations in the angular variable in Section 3, including

a brief background in static quadrature sets. We give overviews of the Oak Ridge

National Laboratory’s DORT/TORT code, the University of Florida’s PENTRAN

code , and Los Alamos National Laboratory’s Adaptive Strategies. We discuss J.C.

Stone’s work in adaptive angular discretizations in two dimensions and how we have

extended this research.

In Section 4, we describe our derivation of four new static quadrature sets and

describe our method for adaptation using these sets. We detail when we test for

adaptation, where we perform these tests, how we refine our quadrature mesh in both

weights and ordinates, and how we map from one quadrature region to the next. We

define the implementation of our method in the Knolls Atomic Power Laboratory

slice-balance, neutral-particle transport code, Jaguar. This includes the structure

of the code, the structure of Jaguar, and the memory requirements necessary to

implement our method. We then discuss strengths and weaknesses of our method.

In Section 5, we describe a series of test problems and apply our methods to

each problem. We discuss the results from each problem and how they shaped our

understanding of this adaptive angular discretization method.

In Section 6, we summarize our main results, draw conclusions, and offer sugges-

tions for future work.
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2. DISCRETIZATION OF THE NEUTRAL-PARTICLE TRANSPORT

EQUATION AND SOLUTION

This research is focused on the discretization of the angular variable in the trans-

port equation, but for completeness we briefly describe the discretization of the time,

energy, and spatial variables. We begin with the neutral-particle transport equation:

1

v(E)

∂Ψ(−→r ,−→Ω , E, t)

∂t
+
−→
Ω · −→∇Ψ(−→r ,−→Ω , E, t) + σt(

−→r , E, t)Ψ(−→r ,−→Ω , E, t) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σf(
−→r , E ′, t)Ψ(−→r ,−→Ω , E ′, t)+

∫

4π

d
−→
Ω ′

∫ ∞

0

dE ′σs(
−→r ,
−→
Ω′ · −→Ω , E ′ → E, t)Ψ(−→r ,

−→
Ω′, E ′, t)+

q(−→r ,−→Ω , E, t) .

(2.1)

2.1 Time Discretization

Many time-discretization methods for the transport equation begin by integrating

over a given time step, ∆t. We utilize an over-bar to indicate average values of

function over the time step:

Ψ̄(−→r ,−→Ω , E) =
1

∆t

∫ tn+1

tn

dtΨ(−→r ,−→Ω , E, t) , (2.2a)

and

q̄(−→r ,−→Ω , E) =
1

∆t

∫ tn+1

tn

dtq(−→r ,−→Ω , E, t) . (2.2b)

We then define the flux-weighted average for a cross section as

σ̄(...) ≡
∫ tn+1

tn
Ψ(−→r ,−→Ω , E, t)σ(...)

∫ tn+1

tn
Ψ(−→r ,−→Ω , E, t)

. (2.3)

Equation 2.3 is usually approximated using the value at the beginning of the time

step or some extrapolated value. This is usually sufficient because the cross sections
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usually change very little over a given time step. We integrate over the time step,

divide by ∆t, and utilize Equations 2.2 and 2.3 to yield the following equation:

1

v(E)

Ψ(−→r ,−→Ω , E, tn+1)−Ψ(−→r ,−→Ω , E, tn)

∆t
+

−→
Ω · −→∇Ψ̄(−→r ,−→Ω , E) + σ̄t(

−→r , E)Ψ̄(−→r ,−→Ω , E) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σ̄f(
−→r , E ′)Ψ̄(−→r ,−→Ω , E ′)+

∫

4π

dΩ′
∫ ∞

0

dE ′σ̄s(
−→r ,
−→
Ω′ · −→Ω , E ′ → E)Ψ̄(−→r ,

−→
Ω′, E ′)+

q̄(−→r ,−→Ω , E) .

(2.4)

We assume the values of the functions at the previous time step, Ψ(−→r ,−→Ω , E, tn), are

known; therefore, there are two unknown functions: Ψ(−→r ,−→Ω , E, tn+1) and Ψ̄(−→r ,−→Ω , E).

Many time-discretization methods of interest can be viewed as providing a closure

equation that relates the two functions:

Ψ̄(−→r ,−→Ω , E) = βΨ(−→r ,−→Ω , E, tn+1) + (1− β)Ψ(−→r ,−→Ω , E, tn) , (2.5)

where β is a user-defined constant (most commonly 1
2
for Crank-Nicholson or 1 for

fully implicit). Some methods involve two or more steps, each of which can be cast

in the form of Equations 2.4 and 2.5. Substituting Equation 2.5 into Equation 2.4

to remove the Ψn+1 terms yields

1

v(E)∆tβ
(Ψ̄(−→r ,−→Ω , E)−Ψ(−→r ,−→Ω , E, tn))+

−→
Ω · −→∇Ψ̄(−→r ,−→Ω , E) + σ̄t(

−→r , E)Ψ̄(−→r ,−→Ω , E) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σ̄f(
−→r , E ′)Ψ̄(−→r ,−→Ω , E ′)+

∫

4π

dΩ′
∫ ∞

0

dE ′σ̄s(
−→r ,
−→
Ω′ · −→Ω , E ′ → E)Ψ̄(−→r ,

−→
Ω′, E ′)+

q̄(−→r ,−→Ω , E) .

(2.6)

We define the effective source and the effective cross-section as

q̄eff(
−→r ,−→Ω , E) ≡ q̄(−→r ,−→Ω , E) +

1

v(E)∆tβ
Ψ̄(−→r ,−→Ω , E, tn) (2.7a)
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and

σ̄eff,t(
−→r , E) ≡ σ̄t(

−→r , E) +
1

v(E)∆tβ
. (2.7b)

We suppress the over-bars and the eff subscript and use Equations 2.7a and 2.7b

to simplify Equation 2.6 to a “steady-state” problem that must be solved at a given

step of a time-dependent problem:

−→
Ω · −→∇Ψ(−→r ,−→Ω , E) + σt(

−→r , E)Ψ(−→r ,−→Ω , E) =

χ(E)

4π

∫ ∞

0

dE ′
∫

4π

dΩν(E ′)σf (
−→r , E ′)Ψ(−→r ,−→Ω , E ′)+

∫

4π

dΩ′
∫ ∞

0

dE ′σs(
−→r ,−→Ω ′ · −→Ω , E ′ → E)Ψ(−→r ,−→Ω ′, E ′)+

q(−→r ,−→Ω , E) .

(2.8)

Thus, time discretization can reduce a time-dependent problem to a sequence of

steady-state problems.

2.2 Energy Discretization

In order to discretize over energy, we assume the angular flux can be approximated

by a product of a function of energy, F (E), and an energy-independent angular flux,

Ψ(−→r ,−→Ω):

Ψ(−→r ,−→Ω , E) ≈ Ψ(−→r ,−→Ω)F (E) , (2.9)

where F (E) is the energy shape function. Dividing the energy range into G intervals

and defining all particles with energy less than Eg−1 and greater than Eg to be in

group g yields the following definition for the “group-g” angular flux:

Ψg(
−→r ,−→Ω) =

∫ Eg−1

Eg

dEΨ(−→r ,−→Ω , E) Eg<E≤Eg−1 . (2.10)

When we integrate the transport equation over the energy interval associated with

the g−th group, we can manipulate the result so that it contains cross sections
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that have been averaged with a weight function of F [1]. These “multigroup” cross

sections are as follows

σt,g(
−→r ) =

∫ g−1

g
dEσt(

−→r , E)F (E)
∫ g−1

g
dEF (E)

, (2.11a)

σs,g′→g(
−→r ,−→Ω · −→Ω) =

∫ g′−1

g′
dE ′ ∫ g−1

g
dEσs(

−→r ,−→Ω · −→Ω , E ′ → E)F (E ′)
∫ g′−1

g′
dE ′F (E ′)

, (2.11b)

and

σf,g(
−→r ) =

∫ g−1

g
dEσf (

−→r , E)F (E)
∫ g−1

g
dEF (E)

. (2.11c)

We also define

χg =

∫ g−1

g

dEχ(E) , (2.12)

qg(
−→r ,−→Ω) =

∫ g−1

g

dEq(−→r ,−→Ω , E) , (2.13)

and

Φg(
−→r ) =

∫

4π

dΩΨg(
−→r ,−→Ω) . (2.14)

We integrate Equation 2.8 over the g−th energy interval. Using Equations 2.10 -

2.14, we can re-write the integrated equation as a single group equation:

−→
Ω · −→∇Ψg(

−→r ,−→Ω) + σt,g(
−→r )Ψg(

−→r ,−→Ω) =
χg

4π

G
∑

g′=1

νg′σf,g′(
−→r )Φg′(

−→r )+

∫

4π

dΩ′
G
∑

g′=1

σs,g′→g(
−→r ,−→Ω ′ · −→Ω)Ψg′(

−→r ,−→Ω ′) + qg(
−→r ,−→Ω) for g = 1 : G .

(2.15)

We often rearrange the scattering term as follows

−→
Ω · −→∇Ψg(

−→r ,−→Ω) + σt,g(
−→r )Ψg(

−→r ,−→Ω) =

∫

4π

dΩ′σs,g→g(
−→r ,−→Ω ′ · −→Ω)Ψg(

−→r ,−→Ω ′) +
χg

4π

G
∑

g′=1

νg′σf,g′(
−→r )Φg′(

−→r )+

∫

4π

dΩ′
G
∑

g′=1,g′ 6=g

σs,g′→g(
−→r ,−→Ω ′ · −→Ω)Ψg′(

−→r ,−→Ω ′) + qg(
−→r ,−→Ω) for g = 1 : G .

(2.16)
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We then define

Sext,g(
−→r ,−→Ω) =

χg

4π

G
∑

g′=1

νg′σf,g′(
−→r )Φg′(

−→r )+

∫

4π

dΩ′
G
∑

g′=1,g′ 6=g

σs,g′→g(
−→r ,−→Ω ′ → −→Ω)Ψg′(

−→r ,−→Ω ′)+

qg(
−→r ,−→Ω) for g = 1 : G .

(2.17)

Inserting Equation 2.17 into Equation 2.16 results in

−→
Ω · −→∇Ψg(

−→r ,−→Ω) + σt,g(
−→r ,−→Ω)Ψg(

−→r ,−→Ω) =
∫

4π

dΩ′σs,g→g(
−→r ,−→Ω ′ → −→Ω)Ψg(

−→r ,−→Ω ′) + Sext,g(
−→r ,−→Ω) for g = 1 : G .

(2.18)

We suppress the group subscript and are left with the one-group transport equation:

−→
Ω · −→∇Ψ(−→r ,−→Ω) + σt(

−→r ,−→Ω)Ψ(−→r ,−→Ω) =
∫

4π

dΩ′σs(
−→r ,−→Ω ′ → −→Ω)Ψ(−→r ,−→Ω ′) + Sext(

−→r ,−→Ω) .
(2.19)

Thus, the multigroup approximation reduces an energy-dependent equation to a

series of coupled one-group equations. The coupling is through the scattering and

fission terms.

2.3 Angle Discretization /Quadrature

The discrete-ordinate (D-O) method replaces direction integrals with quadrature

sums. The quadrature sums use a quadrature set, which is a finite set of direc-

tions and associated weights. Each sum needs the angular flux at the quadrature

directions. Let us determine exactly what integrals need to be approximated by

quadrature sums. To do this we will manipulate the scattering term in the way

that has become standard in neutron transport. We begin by expanding the angular

flux, Ψ(−→r ,−→Ω), in spherical harmonics functions and the differential scattering cross

section, σs(
−→r ,−→Ω ′ → −→Ω), in Legendre polynomials:

Ψ(−→r ,−→Ω) =
∞
∑

l=0

2l + 1

4π

l
∑

m̃=−l

φlm̃(
−→r )Ylm̃(

−→
Ω) , (2.20)
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σs(
−→r ,−→Ω ′ → −→Ω) =

1

2π
σs(
−→r ,−→Ω ′ · −→Ω) =

L
∑

l′=0

2l′ + 1

4π
σsl′(
−→r )Pl′(µ0) , (2.21)

where

φlm̃(
−→r ) =

∫

4π

dΩΨ(−→r ,−→Ω)Y ∗
lm̃(
−→
Ω) , (2.22)

and

σsl′(
−→r ) =

∫ 1

−1

dµ0σs(
−→r , µ0)P

′
l (µ0) . (2.23)

In order to perform this expansion, we have assumed that the scattering probability

depends only on the scattering angle, whose cosine is

−→
Ω ′ · −→Ω = µ0 . (2.24)

We then insert Equations 2.20 and 2.21 into the scattering term,

∫

4π

dΩ′σs(
−→r ,−→Ω ′ → −→Ω)Ψ(−→r ,−→Ω ′)

, as shown below:

∫

4π

dΩ′σs(
−→r ,−→Ω ′ · −→Ω)Ψ(−→r ,−→Ω ′) =

∫

4π

dΩ′
L
∑

l′=0

2l′ + 1

4π
σsl′(
−→r )Pl′(µ0)

∞
∑

l=0

2l + 1

4π

l
∑

m̃=−l

φlm̃(
−→r )Ylm̃(

−→
Ω ′) .

(2.25)

The addition theorem states

Pl(
−→
Ω · −→Ω ′) =

1

2l + 1

l
∑

m=−l

Y ∗
lm(
−→
Ω ′)Ylm(

−→
Ω) . (2.26)

We will utilize the addition theorem to simplify Equation 2.25 to the following:

∫

4π

dΩ′σs(
−→r ,−→Ω ′ · −→Ω)Ψ(−→r ,−→Ω ′) =

∫

4π

dΩ′
L
∑

l′=0

2l′ + 1

4π
σsl′(
−→r ) 1

2l′ + 1

l′
∑

m=−l′

Y ∗
l′m(
−→
Ω ′)Yl′m(

−→
Ω)∗

∞
∑

l=0

2l + 1

4π

l
∑

m̃=−l

φlm̃(
−→r )Ylm̃(

−→
Ω ′) .

(2.27)
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We realize Y ∗
lm(
−→
Ω) and Yl′m′(

−→
Ω) are orthogonal and the following equation is true:

∫

4π

dΩY ∗
lm(
−→
Ω)Yl′m′(

−→
Ω) = 4πδll′δmm′ . (2.28)

Using this result yields the following representation of the scattering term:
∫

4π

dΩ′σs(
−→r ,−→Ω ′ · −→Ω)Ψ(−→r ,−→Ω ′) =

L
∑

l=0

2l + 1

4π
σsl(
−→r )

l
∑

m=−l

Ylm(
−→
Ω)φlm(

−→r ) .
(2.29)

Inserting Equation 2.29 into Equation 2.19 results in

−→
Ω · −→∇Ψ(−→r ,−→Ω) + σt(

−→r )Ψ(−→r ,−→Ω) =

L
∑

l=0

2l + 1

4π
σsl(
−→r )

l
∑

m=−l

Ylm(
−→
Ω)φlm(

−→r ) + Sext(
−→r ,−→Ω) .

(2.30)

We see that our quadrature set must be able to accurately integrate the integrals

that appear in Equation 2.22:

M
∑

m=0

wmΨ(−→r ,Ωm)Y
∗
lm̃(Ωm) ≈

∫

4π

dΩΨ(−→r ,−→Ω)Y ∗
lm̃(
−→
Ω) . (2.31)

In many applications, we assume isotropic scattering, or L = 0, which reduces Equa-

tion 2.30 to

−→
Ω · −→∇Ψ(−→r ,−→Ω) + σt(

−→r )Ψ(−→r ,−→Ω) =
1

4π
σs(
−→r )φ(−→r ) + Sext(

−→r ,−→Ω) . (2.32)

We can solve Equation 2.32 along a given direction,
−→
Ωm, and use the following

equation to close the system:

φ(−→r ) ≡
∫

4π

dΩΨ(−→r ,−→Ω) ≈
M
∑

m=0

wmΨ(−→r ,−→Ωm) . (2.33)

Using the subscript m, we can re-write Equation 2.32 along a given direction as:

−→
Ωm ·

−→∇Ψm(
−→r ) + σt(

−→r )Ψm(
−→r ) = 1

4π
σs(
−→r )φ(−→r ) + Sext,m(

−→r ) . (2.34)

Therefore, we solve for the angular flux along specific directions and use Equation

2.33 to determine the scalar flux (and Equation 2.22 to form higher flux moments if

scattering is anisotropic).



15

2.4 Spatial Discretization

In order to discretize the spatial variable, we divide our problem geometry into

three-dimensional regions. Each region consists of an arbitrary number of non-

overlapping cells. Each cell can be an arbitrary polyhedron with an arbitrary number

of faces. For a standard rectangular mesh, the cells would be regular cuboids with six

rectangular faces. Once the mesh is defined, the transport equation is approximated

on each cell so that the approximate solution has a small number of unknowns per

cell. Exactly how this is done is different for different spatial discretization meth-

ods. Below we briefly outline some of the many spatial discretization methods in use

today.

2.4.1 General

In three-dimensional Cartesian coordinates, the three-dimensional transport equa-

tion, Equation 2.34, becomes:

(µm
∂

∂x
+ ηm

∂

∂y
+ ξm

∂

∂z
)Ψm(

−→r ) + σt(
−→r )Ψm(

−→r ) =
1

4π
σs(
−→r )φ(−→r ) + Sext,m(

−→r ) for m = 1 : M ,

(2.35)

where

µm =
−→
Ωm · −→n x , (2.36a)

ηm =
−→
Ωm · −→n y , (2.36b)

and

ξm =
−→
Ωm · −→n z . (2.36c)

For simplicity we assume that cross sections are constant in a given cell:

(µm
∂

∂x
+ ηm

∂

∂y
+ ξm

∂

∂z
)Ψm(

−→r ) + σtΨm(
−→r ) =

1

4π
σsφ(
−→r ) + Sext,m(

−→r ) for m = 1 : M .

(2.37)
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On our rectangular cell, we define the following:

V = ∆x∆y∆z , (2.38a)

1

V

∫

V

dVΨm(
−→r ) ≡ Ψm,V , (2.38b)

1

V

∫

V

dV Sext,m(
−→r ) ≡ Sext,m,V , (2.38c)

and
1

V

∫

V

dV φ(−→r ) ≡ φV . (2.38d)

We define the boundary angular fluxes as

ΨT,m ≡
∫

∆x

∫

∆y

dxdyΨm(
−→r T ) , (2.39a)

ΨBOT,m ≡
∫

∆x

∫

∆y

dxdyΨm(
−→r BOT) , (2.39b)

ΨR,m ≡
∫

∆y

∫

∆z

dydzΨm(
−→r R) , (2.39c)

ΨL,m ≡
∫

∆y

∫

∆z

dydzΨm(
−→r L) , (2.39d)

ΨF,m ≡
∫

∆x

∫

∆z

dxdzΨm(
−→r F ) , (2.39e)

and

ΨBACK,m ≡
∫

∆x

∫

∆z

dxdzΨm(
−→r BACK) , (2.39f)

where −→r T ,
−→r BOT,

−→r R,
−→r L,

−→r F , and
−→r BACK are the points on the top, bottom,

right, left, front, and back faces, respectively. We will now integrate Equation 2.37

over the spatial phase-space (∆x,∆y,∆z) and divide by the volume, V:

µm

V
(ΨR,m −ΨL,m) +

ηm
V

(ΨF,m −ΨBACK,m)+

ξm
V

(ΨT,m −ΨBOT,m) + σtΨm,V =

1

4π
σsφV + Sext,m,V for m = 1 : M .

(2.40)

This equation is exact, to the extent that Equation 2.37 is exact; however, it is one

equation for four unknown quantities: the volume-averaged angular flux, Ψm,V , and
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three of the six surface-averaged angular fluxes (the ones on “outgoing” surfaces for

the given direction). Different spatial-discretization methods make different approx-

imations to provide three independent equations that relate the four unknowns to

each other. Once these equations are known, the system can be solved for the four

unknowns. If this is done for each direction in the quadrature set then it is a sim-

ple matter to use Equation 2.33 to determine the scalar flux and thus update the

scattering source for a new iteration.

2.4.2 Slice Balance Approach

Because this research was performed using the Knolls Atomic Power Laboratory’s

neutral-particle transport code, Jaguar, we utilize a slice-balance approach (SBA) for

spatial discretization in our testing [2] [3] [4]. This method uses an angle-dependent

spatial decomposition, as does the method of characteristics, to divide the three-

dimensional cells into slices for each discrete ordinate direction. The SBA uses a

multiple balance approach using exact spatial moments balance equations on cells

and slices along with auxiliary relations on slices [3]. The three-dimensional decom-

position of cells into slices can be seen in Figure 2.1. This figure shows a 12-sided

polyhedron decomposed into 17 slices for direction
−→
Ω. The ability to decompose

Fig. 2.1. Decomposition of a 3D polyhedron into slices.



18

cells into slices allows the transport equation to be solved on each slice in a cell and

then summed to get cell averaged and face values. These slices are cell local which

ensures the slice does not extend into adjacent cells, unlike the method of charac-

teristics. This is obvious in the two-dimensional example shown in Figure 2.2. The

mathematics of the SBA is described in detail in R.E. Grove’s work [3] [4].

While we have used the SBA for this research, our method is applicable to most

spatial discretization methods with the restriction on the spatial grid that the in-

terface between spatial regions that may have different quadrature sets must be

perpendicular to the coordinate axes. This forces a clean separation between in-

coming and outgoing portions of the direction domain and thereby allows accurate

mapping from one quadrature region to the next. However, the interior cells can be

of arbitrary size, shape, and complexity.

2.5 Iterative Solution

In order to solve this discretized system, we utilize a nested iterative approach.

An outer iteration is a loop over energy groups from the highest-energy group to the

Fig. 2.2. Decomposition of an arbitrary 2D mesh into slices.
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lowest-energy group. In each energy group, we perform inner iterations. A single

inner iteration includes a transport sweep, which is the solution of Equation 2.40

using the previous inner iteration’s scalar flux for the within-group scattering source

and the latest available scalar fluxes for the scattering source from other energy

groups. The within-group scalar flux is then updated using Equation 2.33. The

latest and previous within-group scalar flux are compared on each cell. If they are

“close enough” in every cell, the inner iteration for the current group is considered

converged and we move to the next group and update its source using the latest scalar

fluxes from other groups. After the inner iterations for all groups have converged,

the scalar fluxes on each cell and each group are compared against those from the

previous outer iteration. If they are “close enough” for each cell and each group, we

consider the outer iteration to be converged.

2.6 Summary

Using the discretization techniques described in this section, the neutral-particle

transport equation can be simplified into a system of algebraic equations. This allows

a solution to be found using finite computational resources in an iterative process.

However, these approximations create discretization errors in the solution. For ex-

ample, Discrete Ordinate (D-O) methods suffer from discretization errors including

“ray effects” [5]. Figure 2.3 shows the scalar flux as a function of spatial location for

a point source in a low-scattering region for a two-dimensional problem. We show a

pseudo-color plot of scalar flux using eight discrete ordinates and the “ray effects”

are quite clear. The errors arise from the inability of a fixed quadrature set to ac-

curately integrate functions that are not smooth. The more “peaky” the angular

flux, the more ordinates are needed to accurately integrate this function. Even in

seemingly simple transport problems, the angular flux is not smooth. We illustrate

this non-smooth behavior with an infinite square lattice of circular fuel pins in water.

Implementing a multi-group D-O method, we see that the fast-group angular flux at
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a certain point in the infinite lattice as function of azimuthal angle is quite complex

as shown in Figure 2.4 [6]. Over the years, there have been numerous schemes for

mitigating ray effects using specific quadrature sets [7] [8] [9] [10] [11] [12] [13] [14].

In the next section, we discuss methods devised for reducing or controlling the errors

introduced by this D-O approximation.

Fig. 2.3. Ray effects of simple 2D problem with 8 discrete ordinates.
The values in the legend are powers of ten.
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Fig. 2.4. Fast-group angular flux at a certain point in an infinite
square lattice of circular fuel pins in water, as a function of azimuthal
angle. The polar angle is 90◦, so the particles move in the xy plane.
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3. STATE OF THE ART IN DISCRETE-ORDINATE QUADRATURE

METHODS

3.1 Static Quadrature Sets

To our knowledge, all discrete-ordinates codes that are widely used today use

static quadrature sets. These sets are chosen before the problem is run and kept

constant throughout the solution process. In this section we describe several kinds

of quadrature sets that are used in multi-dimensional discrete-ordinates calculations.

We will see that a common guiding principle in the creation of such quadrature sets

is to integrate spherical-harmonics functions as accurately as possible. Normally,

quadrature set directions are described using the three variables µ, η and ξ which are

derived from the angles θ and γ which completely describe the direction as illustrated

in Figure 3.1 and shown Equation 3.1:

Ωx = µ = cos(γ)sin(θ) = cos(γ)
√

1− ξ2 , (3.1a)

Ωy = η = sin(γ)sin(θ) = sin(γ)
√

1− ξ2 , (3.1b)

and

Ωz = ξ = cos(θ) . (3.1c)

The direction cosines are related because the squares of the cosines must sum to

one as shown below:

µ2 + η2 + ξ2 = 1 . (3.2)

In most quadrature sets, the ordinates are defined on given ξ values which we call

a polar level (because ξ is dependent only on the polar angle θ). In many cases,

“triangular” quadrature sets are utilized. A “triangular” quadrature set refers to the

shape of the location of the ordinates in a given octant. The triangular quadrature

set’s largest ξ level will have one ordinate, the next largest ξ level will have two
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Fig. 3.1. Coordinate system for direction Ω.

ordinates, the next level will have three ordinates, etc. This gives the appearance of

a triangle. There are also “square” quadrature sets which have a given number of

levels, Nl, and Nl ordinates on each level, as well as, “rectangular” quadrature sets

which have a given number of levels, Nl, and 2Nl ordinates on each level.

3.1.1 Level Symmetric

The Level Symmetric (Sn) quadratures require that the set of ordinates be rota-

tionally symmetric about the three axes for a given octant. Because of this constraint,

it can be shown that once the location of the first ordinate has been chosen, all other

ordinates are determined [1]. This single degree of freedom in location of the ordinate

along with the weights of each ordinate are determined by requiring that the set be

able to integrate the highest order spherical-harmonic function over the unit sphere.

This set is generally considered an extension of a Gaussian set from one-dimension.

The Sn quadrature set is triangular and has n
2
ξ levels in each octant. This creates

n(n+2)
8

directions in each octant. As n is increased, some of the weights of this set
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decrease and eventually go negative when the quadrature order n is equal to or larger

than 20. This can lead to unphysical solutions when the angular flux is not smooth.

The Level Symmetric S16 quadrature set is shown in Figure 3.2.

Fig. 3.2. Level symmetric S16 quadrature set.

3.1.2 Gauss-Chebyshev

If the symmetry constraints imposed by level-symmetric sets are eased, then,

other quadrature sets can be devised. Some of these alternative sets are considered

“product” sets because they combine a one-dimensional quadrature set along the po-

lar axis with a one-dimensional set in the azimuthal variable, in a way that involves

products of the weights from the two sets. The Gauss-Chebyshev set utilizes a one-

dimensional Gaussian polar quadrature and an equally-weighted Chebyshev quadra-

ture in the azimuthal variable [15]. Different azimuthal quadrature orders may be

associated with different polar ordinates. A benefit of these sets is the ability to

have an arbitrary number of angles without limitations from potentially problematic
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negative weights. The Gauss-Chebyshev quadrature set with a level-symmetric-like

appearance is shown in Figure 3.3.

Fig. 3.3. Gauss-Chebyshev S16-like quadrature set.

3.1.3 Quadruple Range

Abu-Shumays developed the Quadruple Range (QR) quadrature sets to accu-

rately integrate functions that are discontinuous across octant boundaries [12] [13]

[14]. They are product sets in which the polar and azimuthal quadrature sets are

determined by requiring exact integration of certain spherical-harmonic functions

over each individual octant instead of the entire unit sphere. An example of a QR

S16-like quadrature set that Abu-Shumays developed is seen in Figure 3.4, which il-

lustrates that the ordinates are closer to the axes and the central weights are larger,

compared to either the level-symmetric or triangular Gauss-Chebychev sets. These

sets are limited in an octant to eighteen polar levels and thirty-six azimuthal direc-

tions. This limitation arises from the incredibly difficult set of nonlinear algebraic

equations that must be solved to arrive at the QR sets.
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3.2 Oak Ridge National Lab’s DORT/ TORT Code

To address ray effects and other quadrature-induced errors, methods have been

developed that use different quadrature sets in different spatial regions, user-defined

problem-specific quadrature sets, or algorithms that attempt to adapt the quadra-

ture to the solution. Oak Ridge National Laboratory maintains two- and three-

dimensional neutral-particle transport codes (DORT and TORT, respectively) that

can utilize different quadrature sets in different spatial regions [16]. The user selects

each quadrature set. These codes map the angular flux exiting a region in a given

quadrature direction for that region to the nearest ordinate (quadrature direction)

in the region on the other side of the boundary, and then use a multiplicative factor

to ensure conservation of the particle flow rate across the boundary.

Fig. 3.4. Abu-Shumays’ S16-like quadrature set.
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3.3 University of Florida’s PENTRAN Code

G. Longoni and A. Haghighat developed quadratures based on ordinate splitting

which they called Regional Angular Refinement (RAR) [17] [18] [19]. Their method

begins with an existing quadrature set and refines a given ordinate that is chosen by

the user. They used product quadrature sets in which each ordinate was associated

with an area on the unit sphere (∆γ × ∆ξ). Their method replaced the chosen

quadrature point and weight with a local product set on the associated patch of

area. A single point can be split into an n×n set of points in this way, with n

chosen by the user. The user selects an initial quadrature set and selects which

ordinates to split. The user also decides how many new ordinates to create from

the original ordinate. The method makes no attempt to retain the ability of the

original quadrature set to integrate high-order spherical-harmonics functions, with

the exception that it does require that if the user refines one patch of direction space,

the corresponding patch in the opposite direction must also be refined. The method

did not introduce different quadrature sets in different regions, but used a single

modified set throughout the problem domain.

3.4 P.N. Brown’s Locally Refined Quadrature Rules

Brown, Chang, and Clouse developed a user-defined locally refined quadrature

set on triangular elements on the sphere [20]. A key difference between Brown,

Chang, and Clouse’s quadrature set and Longoni and Haghighat’s quadrature set is

that Brown and Chang chose to determine the weights by a solving a “Quadratic

Programming Problem,” which ensures that locally refined sets retain the ability to

integrate spherical-harmonics functions through a specified order. They also start

with a user-defined cone of refinement, as performed in Longoni and Haghighat’s

RAR work, and thus do not introduce a method that refines based on the behavior

of the solution.
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3.5 J.C. Stone’s 2D Adaptive Strategies

Stone and Adams developed a two-dimensional D-O method that is truly adap-

tive (not user-defined) [21] [22] [23]. It allows different quadrature sets in different

spatial regions and employs a simple algorithm to map angular fluxes across region

boundaries. It uses a “finite element view” of the angular flux to guide the definition

of weights, interpolations, and mapping methods. To make refinement decisions, the

method solves for the angular flux at certain directions and compares those results

with the interpolated values that come from the basis functions and the angular

fluxes at the already-existing quadrature points. The method we propose in the next

section directly builds upon this work and extends it to three dimensions.

3.6 Extension to Three Dimensions

There are a number of difficulties that arise when the phase space is expanded

from two to three spatial dimensions. The definition of the basis functions has more

possibilities and the integration of those basis functions on the surface of the sphere is

difficult. The limits of integration for these basis functions are based on patches (such

as spherical triangles) on the unit sphere and therefore the method for refinement is a

two-dimensional refinement versus a one-dimensional refinement. Another difficulty

is passing information from one quadrature region to the next. The conservation

of scalar flux and current can be difficult to apply without significantly altering the

angular flux’s angular-dependent shape. We describe these challenges and how we

have addressed these issues in the following section.
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4. ADAPTIVE QUADRATURE METHOD

4.1 Overview

Previous work indicates that local adaptation of the quadrature set can be useful

for solving particle-transport problems. In this work, we extend previous methods

from two to three dimensions and also introduce some new ideas, with the goal of

developing a powerful tool to address difficult problems. Our method includes:

• Division of the spatial domain into “quadrature regions,” each of which may

have a different quadrature set;

• A linear-discontinuous finite-element (LDFE) approximation of the angular

flux on sub-polygons (initially triangles) on the surface of the unit sphere;

• Use of the LDFE basis functions to create interpolated angular fluxes for com-

parison against calculated fluxes at certain “test” directions to determine if

coarsening or refinement is necessary;

• Each quadrature weight defined as the integral of the quadrature point’s basis

function;

• Local refinement and local coarsening on sub-polygons;

• A mapping scheme that conserves the discrete-ordinate version of partial cur-

rent normal to each interface between quadrature regions;

• An attempt to estimate the errors in the scalar flux and current introduced

by the D-O method and its use of quadrature sums to approximate angular

integration.
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4.2 Timing of Refinement and Coarsening Testing

In our method, refinement and coarsening testing in a steady-state problem is

performed after every n sweeps, where n is a user-defined number. In time-dependent

problems, which we do not solve in this work, there could be several time steps

between refinement and coarsening testing. The frequency of this testing would

initially be user-defined. At some point, this frequency could also be determined by

an adaptive method. This would enable the code to refine and coarsen more often

where necessary and less often when conditions permit.

4.3 Location of Refining and Coarsening Testing

We define contiguous or periodic spatial regions that have the same quadrature

set and we call these “quadrature” regions. The testing for refinement and coars-

ening occurs only on the boundaries of these quadrature regions. If the boundary

is composed of many cell faces, each cell face is tested. If on ALL cell faces of all

boundaries of a region, coarsening is found to be permitted, the quadrature points are

removed from the quadrature set. If on ANY cell face on any boundary of the region,

refinement is found to be needed, the test directions are added to the quadrature set

and no further cell faces are tested for those directions.

4.4 Method for Defining Refined Quadrature

Our method for refining our quadrature mesh is based on a polyhedron’s pro-

jection onto the unit sphere. Our base case is the regular octahedron (made up of

eight equilateral flat triangles), which corresponds to the octant-based view normally

used in transport theory, as seen in Figure 4.1. A point on each flat triangle can

be defined using two variables, which we call ũ and v as shown in Figure 4.2, and

each such point uniquely defines a point on the surface of the sphere, or equivalently
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a direction vector from the sphere center to the point. We refine each equilateral

triangle by dividing it into 4 equilateral sub-triangles as shown in Figure 4.3. Each

triangle contains four discrete ordinate points. The center point lies at the centroid

of the triangle. The other three points can be defined in a variety of manners. The

locations of the four points in a triangle are the locations where basis functions are

defined to have values of unity or zero; thus, given that the quadrature weights are

integrals of basis functions, the locations of the four points completely determine

the four quadrature weights. Our initial method insisted that the three non-central

Fig. 4.1. Basic octahedron view of discrete ordinates.

Fig. 4.2. Flat view of triangle using ũ and v.
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Fig. 4.3. One triangle refinement.

Fig. 4.4. Original octant-based triangle.

points be at the centroids of their respective sub-triangles, as shown in Figure 4.4.

This choice leads to negative weights and the problems associated with them, as we

discuss below. We have devised alternative locations that ensure that the center

point’s weight on any triangle always equals the spherical surface area of its sub-

triangle. One variant ensures that each sub-triangle spherical surface area is equal

to the weight of its associated point.

Figure 4.5 illustrates the method for defining discrete ordinates, where the black

stars represent the points on each of the four flat triangles and the blue spheres repre-

sents their projections onto the unit sphere, where the sphere’s volume represents the
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point’s weight. This refinement process can continue for as many steps as necessary

Fig. 4.5. Projection from the flat triangle to the unit sphere to
produce discrete ordinates.

to achieve a given accuracy of solution. Several uniform refinements are shown in Fig-

ure 4.6, where each triangle contains four ordinates. We define the first refinement,

shown in Figure 4.6, as the base triangle. A localized refinement with four levels of

refinement for the base-top, -left, and -right triangles, five levels of refinement for

the base-center triangle’s top, left, and right sub-triangles, and 6 levels of refinement

for the base-center triangle’s center sub-triangle is shown in Figure 4.7. Because of

this hierarchy, our method of refinement is relatively simple to implement. Because

we use the flat triangle to determine our refinement methodology, the surface area of

the spherical triangles for a given refinement level are different. Because the weights

of the four points in any triangle sum to the associate spherical surface area, these

surface areas give some indication of the magnitude of our quadrature weights. A

comparison of the surface area as a function of the level of uniform refinement can

be seen in Table 4.1. Even with seven levels of uniform refinement (16384 triangles

and 65536 directions per octant), the maximum ratio of surface areas is 5.12.
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Fig. 4.6. Refinement of quadrature triangles: First, Second, Fourth,
and Fifth Refinements.
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Fig. 4.7. An example of local quadrature mesh refinement. The
base-top, -left, and -right triangles have been refined four times. The
base-center triangle’s top, left, and right sub-triangles have been re-
fined five times, and the base-center triangle’s center sub-triangle has
been refined six times.

4.5 Basis Function Definitions

Each flat triangle contains four points, corresponding to the discrete ordinates

used in the quadrature set. The coordinate system utilized can be seen in Figure 4.8.

The weights are determined using a discontinuous linear finite element approximation

Table 4.1

Comparison of largest and smallest surface area.

Refinement Step Minimum SA Maximum SA Ratio

1 3.34e-001 5.51e-001 1.62

2 5.27e-002 1.55e-001 2.95

3 1.01e-002 4.01e-002 3.97

4 2.22e-003 1.01e-002 4.56

5 5.20e-004 2.54e-003 4.88

6 1.26e-004 6.34e-004 5.03

7 3.10e-005 1.59e-004 5.12
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in the direction cosines (Ωx,Ωy,Ωz), which are defined as

Ωx = µ = cos(γ)sin(θ) = cos(γ)
√

1− ξ2 , (4.1a)

Ωy = η = sin(γ)sin(θ) = sin(γ)
√

1− ξ2 , (4.1b)

and

Ωz = ξ = cos(θ) . (4.1c)

On each triangle, we define four basis functions, bm, where m = 1, 2, 3, 4:

bm(
−→
Ω) = cc,m + cµ,mµ+ cη,mη + cξ,mξ . (4.2)

On our coarsest quadrature mesh, the four basis functions are plotted in Figure 4.9.

Here we convert the basis functions from the (µ, η, ξ) space to the (θ, γ) space using

Equation 4.1. The basis functions as a function of ũ and v can be seen in Figure 4.10.

The constants of Equation 4.2 are determined by specifying that the basis functions

are “cardinal” functions at the four ordinates, meaning that each has a value of unity

at its quadrature point and zero at the other three points. The constants are found

Fig. 4.8. Spherical coordinate system.
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by solving the following equation:
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. (4.3)

Here {µi, ηi, ξi} are the components of the four ordinates in the triangle.

4.6 Weight and Ordinate Determination

We define the weight of each ordinate as

wm =

∫

Ωtriangle

dΩbm(
−→
Ω) . (4.4)

We have been unable to perform this integral analytically, largely because the bound-

aries of our spherical triangles are not simple functions of θ and γ. We have utilized

a numerical method for this integration, as shown in Appendix A.

We have developed four methods for defining the points on the triangle, which

in turn define the directions and weights in the quadrature set. We describe each of

these methods below.

4.6.1 Linear Discontinuous Finite Element Quadrature Sets with Ordinates at the

Centroids of the Sub-Triangles (LDFE-Center)

This method specifies that the four points lie at the centroids of the flat sub-

triangles. This method re-uses the four points from the parent triangle and introduces

12 new ordinates as shown in Figure 4.3. Because the triangle is defined recursively,

the center ordinate of each sub-triangle has the same ordinate as the original parent

triangle. Unfortunately, this method creates large differences between the surface

area of a given spherical sub-triangle and the weight associated with the correspond-
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Fig. 4.11. Surface area versus associated discrete-ordinate weights
for the first LDFE-Center refinement in the first octant. Quadrature
weights are indicated by the size of the blue dots. Note that they
bear little relation to the areas of the sub-triangles in which they
reside.

ing point. Figure 4.11 graphically shows the surface area of a given spherical triangle

and the associated weight produced using this centroid method. In this figure there

are four main triangles, each with four sub-triangles. The figure shows that the

center point of each main triangle has a strikingly small weight relative to the other

points. In fact, as refinement continues, the center weights in some triangles become

negative. This caused significant difficulties in our mapping algorithms and led us

to seek alternative locations for the quadrature points.

4.6.2 Linear Discontinuous Finite Element Quadrature Sets Specifying That the

Center Sub-Triangle’s Surface Area Equals Its Weight, Using Θ on the Unit

Sphere (LDFE-Θ)

We noted that the center weight of each triangle was increasingly small and in

some situations negative if we specified the three outer points ( top, left, and right)

lie at the centroids of the their respective sub-triangles. In order to alleviate this
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Fig. 4.12. Example of Θ method for determining three outer or-
dinates on a triangle. The ratio of the black arc length to the red
arc length represents the “Θ” ratio. This ratio is determined on the
surface of the sphere.

problem, we developed a method in which the outer locations were chosen to force

the center point’s weight to equal the surface area (SA) of the center triangle:

wm,center = SAcenter . (4.5)

There are many ways to choose the outer points to achieve this outcome. Here we

describe a method that uses a “Θ ratio.” This method requires the center point to

be at the centroid of the triangle and the three outer points to lie along the great

circles between the center point and the associated corners of the spherical triangle

as shown in Figure 4.12. For example, the top point’s ratio along this path can be

described as a ratio of the arc length from the center point to the top point divided

by the arc length from the center point to the top corner of the spherical triangle,

as shown in Equation 4.6:

ratioΘ,top ≡
scenter-top

scenter-topCorner
≡ arccos(Ωcenter · Ωtop)

arccos(Ωcenter · ΩtopCorner)
. (4.6)

We then require all ratios to be equal as follows:

ratioΘ,top = ratioΘ,left = ratioΘ,right = ratioΘ . (4.7)
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We define a variable rT such that

rT = Ωcenter · Ωtop . (4.8)

Letting
−→
ΩCT ,

−→
ΩC , and

−→
Ω T stand as the ordinates of the top corner point, the center

point, and the top point, respectively allows the definition of the top point to be

−→
Ω T = rT

−→
Ω c + (1− r2T )

1/2

−→
ΩCT − (

−→
Ω c ·
−→
ΩCT )

−→
Ω c

|−→ΩCT − (
−→
Ω c ·
−→
ΩCT )

−→
Ω c|

. (4.9)

Equations 4.5, 4.7, and 4.9 completely define the location of the four points. However,

these equation must be solved iteratively. We use a secant method to approximate

the derivative of the relative error (RE) with respect to ratioΘ:

REcenter ≡
SAcenter − wcenter

SAcenter
(4.10)

and
(

∂REcenter

∂ratioΘ

)[1]

≈ RE
[1]
center − RE

[0]
center

ratio
[1]
Θ − ratio

[0]
Θ

. (4.11)

We utilize Equation 4.11 to approximate the derivative and the equation for the next

ratio becomes

ratio
[n]
Θ = ratio

[n−1]
Θ − RE

[n−1]
center

(

∂REcenter

∂ratioΘ

)[n−1]
. (4.12)

While the secant method is not guaranteed to converge in all situations, our function

of relative error verses ratio is a smooth, monotonically decreasing function. If we

start with two bounding guesses, we can guarantee convergence.

4.6.3 Linear Discontinuous Finite Element Quadrature Sets That Specify the

Center Sub-Triangle’s Surface Area Equals Its Weight, Using L in the Flat

Triangle (LDFE-L)

The Θ method is computationally difficult because of multiple tan, cos, arccos,

and arctan used in evaluating ratioΘ. We developed an alternative method that
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Fig. 4.13. Example of L method for determining three outer or-
dinates on a triangle. The ratio of the black line to the red line
represents the “L” ratio. This ratio is determined on the flat trian-
gle.

also specifies the surface area of the center triangle be equal to its weight but uses

a different constant ratio. For the top point, we define this “L” ratio as the ratio

of the distance on the original flat triangle from the center point to the top point

compared to the distance on the flat triangle from the center point to the top corner

point as illustrated in Figure 4.13.

ratioL,top ≡
dcenter-top

dcenter-topCorner
≡ ((ũc − ũt)

2 + (vc − vt)
2)

1/2

((ũc − ũcornerTop)2 + (vc − vcornerTop)2)
1/2

. (4.13)

We then specify that all three ratios must be equal:

ratioL,top = ratioL,left = ratioL,right = ratioL . (4.14)

We therefore can do all the mathematics on the flat triangle, which eliminates the

inverse trigonometric functions. The (ũ, v) of the top point is

(ũ, v)top = ratioL ∗ (ũ, v)center + (1− ratioL) ∗ (ũ, v)topCorner . (4.15)

The left and right points can be described using equations similar to Equation 4.15.

Equations 4.5, 4.14, and 4.15 completely define the location of the four points. How-

ever, this set of equations must also be solved in an iterative manner. We use a
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secant method to approximate the derivative of the relative error (RE) with respect

to ratioL:
(

∂REcenter

∂ratioL

)[1]

≈ RE
[1]
center − RE

[0]
center

ratio
[1]
L − ratio

[0]
L

. (4.16)

In the same manner as we used the secant method for the Θ method, we utilize the

secant method for the L method:

ratio
[n]
L = ratio

[n−1]
L − RE

[n−1]
center

(

∂REcenter

∂ratioL

)[n−1]
. (4.17)

While the secant method is not guaranteed to converge in all situations, our function

of relative error verses ratio is again a smooth, monotonically decreasing function. If

we start with two bounding guesses, we can guarantee convergence.

4.6.4 Linear Discontinuous Finite Element Quadrature Sets That Require All

Sub-Triangles’ Surface Areas to be Equal to Their Associated Ordinate

Weights (LDFE-SA)

Both of the previous methods were devised in order to alleviate the problem of

the center ordinate weight being drastically different than its associated surface area

and in some cases going negative. Once we established that we could force the center

surface area equal to the weight, we realized that we could ensure all surface areas

were equivalent to their weights on a given spherical triangle. Our method begins

with an initial guess for the location of the four points generated by either the L or

Θ method. We will label these weights as w0
t , w

0
l , w

0
r , and w0

c , where t=top, l=left,

r=right, and c=center. Our initial weight establishes that w0
c = SAc, where SA =

surface area. These weights have a certain ratio associated with them ρ0t , ρ
0
l , and ρ0r

which are currently equal. We now allow the ratios to change independently by an

amount δ:

ρnt = ρ
[n−1]
t + δ

[n−1]
t , (4.18a)

ρnl = ρ
[n−1]
l + δ

[n−1]
l , (4.18b)
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and

ρnr = ρ[n−1]
r + δ[n−1]

r . (4.18c)

We want a set of equations in which
−→
δ [n] ≡

[

δ
[n]
t , δ

[n]
r , δ

[n]
l

]t

converges to 0. We

will use the following equation to find
−→
δ [n−1]:

A[n−1]−→δ [n−1] =
−→
b [n−1] , (4.19)

where

A[n−1] =











∂wt

∂ρt
∂wt

∂ρl

∂wt

∂ρr

∂wl

∂ρt

∂wl

∂ρl

∂wl

∂ρr

∂wr

∂ρt
∂wr

∂ρl

∂wr

∂ρr











[n−1]

, (4.20)

and

−→
b [n−1] =











SAt − w
[n−1]
t

SAl − w
[n−1]
l

SAr − w
[n−1]
r











. (4.21)

We again use a secant two point method to evaluate the partial derivative terms in

the A matrix:
(

∂wx

∂ρy

)[n−1]

≡ w
[n−1]
x − w

[n−2]
x

ρ
[n−1]
y − ρ

[n−2]
y

. (4.22)

We invert A and solve for
−→
δ [n−1] to determine the next ratio points using Equation

4.18, and evaluate the relative error of each of the discrete ordinate weights verse the

surface areas. If the errors are not less than a given tolerance, we go through this

process again. We require two points to initially evaluate the partial derivative so

we have arbitrarily chosen the first guess for the ratios as

ρy =
ρ0y + 1

2
, (4.23)

for y = l, r, t. This is equivalent to setting the first guess equal to the average of the

current ratio and the corner of the triangle (ratio=1). Again, this method is based

on the secant method and a linear perturbation method that are not guaranteed to



46

converge. However, the relative error functions as a function of the ratios are smooth

and generally decrease monotonically. We note that this quadrature set is a “geomet-

ric” quadrature set where the weight of each point corresponds to a surface area on

the unit sphere. Another interesting result is that, as the number of refinements in-

crease, the spherical triangle gets more and more spherically equilateral. This means

that the three arcs defining the triangle approach the same value. This forces the

surface areas of the three outer sub-triangles to converge to the same value.

The four choices of point locations described above lead to four quadrature sets

that share much in common but differ in detail. In our numerical testing we will

compare and contrast the four methods.

4.7 Mapping across Quadrature Boundaries

Because there can be different numbers and/or locations of quadrature points

in adjacent quadrature regions, a simple one-to-one mapping is not always possible

or desirable. The mapping of one quadrature set to another requires compromises.

An optimal mapping technique would ensure conservation of as many moments of

the spherical harmonics functions as possible, would not create negative fluxes, and

would preserve the angular shape of the flux. Difficulties and compromises arise

because no mapping can accommodate all of these requirements. We will first discuss

coarse-to-fine mapping algorithms and then discuss fine-to-coarse.

4.7.1 Coarse-to-fine Mapping

Consider a boundary between two regions that have different quadrature sets, and

consider an octant of directions for which the upstream region has fewer quadrature

points than the downstream region. In this case a coarse-to-fine mapping must be

performed as illustrated in Figure 4.14. This moves information from a coarse triangle

with four ordinates and fluxes to a fine triangle with sixteen ordinates and fluxes.
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Fig. 4.14. Example of coarse-to-fine mapping.

(There are many other cases, such as going from four ordinates to 64 ordinates, but

these can be handled by a series of four-to-sixteen mappings.) We therefore have

sixteen degrees of freedom to determine the optimal way to pass information across

a boundary.

Conservation of φ, Jx, Jy, and Jz

The first mapping technique was determined to ensure conservation of four quan-

tities judged to be important to an accurate transport solution: face scalar fluxes

and face currents. On each sub-triangle on the coarse triangle, there is one coarse

point and four fine points. On each sub-triangle, we conserve these four moments

using the following equation:

AΨ = b , (4.24)

where

A ≡

















w0 w1 w2 w3

w0µ0 w1µ1 w2µ2 w3µ3

w0η0 w1η1 w2η2 w3η3

w0ξ0 w1ξ1 w2ξ2 w3ξ3

















(4.25)
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and

b ≡

















wcoarseΨcoarse

wcoarseµcoarseΨcoarse

wcoarseηcoarseΨcoarse

wcoarseξcoarseΨcoarse

















. (4.26)

We invert A and solve for Ψ at the four fine points on each sub-triangle. Unfortu-

nately, this method skews the angular flux and can introduce unphysical negative

fluxes.

Conservation of φ using linear discontinuous finite element basis functions

Another method is to use linear basis functions on the coarse triangle to inter-

polate/extrapolate the flux values at the sixteen fine points and then ensure conser-

vation of the scalar flux across the face. This method maps from the coarse region

N with 4 directions to the fine region M with 16 directions using the following

equations:

Ψm(
−→
Ωm) =

4
∑

n=1

Ψ(
−→
Ω n)bn(

−→
Ωm) for m = 1 : 16, (4.27)

Fconserve =

∑4
n=1wnΨn

∑16
m=1wmΨm

, (4.28)

and

ΨM(
−→
Ωm)← FconserveΨM(

−→
Ωm) for m = 1 : 16 . (4.29)

This algorithm ensures conservation of the discrete-ordinate scalar flux on a face.

However, this scalar flux on the face is an unphysical quantity and does not ensure

conservation of particles. Also, the linear basis functions have to extrapolate at some

points which can introduce negative flux values at those points.
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Conservation of partial current normal to the face using linear discontinuous finite

element basis functions

The next method is to use linear basis functions on the coarse triangle to inter-

polate/extrapolate the flux values at the sixteen fine points and then ensure conser-

vation of the current normal to the face. This method maps from the coarse region

N with 4 directions to the fine region M with 16 directions using the following

equations:

Ψm(
−→
Ωm) =

4
∑

n=1

Ψ(
−→
Ω n)bn(

−→
Ωm) for m = 1 : 16, (4.30)

Fconserve =

∑4
n=1(
−→
Ω n · −→n )wnΨn

∑16
m=1(
−→
Ωm · −→n )wmΨm

, (4.31)

and

ΨM(
−→
Ωm)← FconserveΨM(

−→
Ωm) for m = 1 : 16 . (4.32)

This routine will ensure conservation of the discrete-ordinate current normal to the

face, which conserves particle flow rate across a boundary. However, the linear basis

functions will have to extrapolate at some points which can introduce negative flux

values at those points.

Conservation of partial current normal to the face using constant discontinuous

finite element basis functions

The last method is to use a constant basis function on the sub-triangles of the

coarse triangle to interpolate/extrapolate the flux values at the four fine points on

each sub-triangle and then ensure conservation of the current normal to the face.

This makes each of the four points on the coarse sub-triangle equal to Ψfine,st which

is defined as:

Ψfine,st =
Ψcoarse(

−→
Ω coarse·−→n )wcoarse

∑I=4
i=1 (
−→
Ω fine,i·−→n )wfine,i

for each sub-triangle st = 1 : 4 . (4.33)
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Fig. 4.15. Example of fine-to-coarse mapping.

This method loses information about the variation of the angular flux within a sub-

triangle, but will not introduce negative fluxes if the weights are positive, and will

still conserve partial current across the face.

Implementation

After testing many options, we settled on implementing conservation of partial

current normal to the face using linear finite element basis functions. This high-order

method conserves particles and uses the finite element basis functions. However,

this method does introduce negative fluxes in some situations. If negative fluxes

are introduced, we move to the method of conserving partial current normal to

the face using constant basis functions. The idea of moving from a higher order

approximation to a lower order approximation if negative values are introduced is

common in numerical methods.

4.7.2 Fine-to-coarse Mapping

If particles flow from a region with a more refined quadrature set to one with

a less refined set, coarsening must be performed as illustrated in Figure 4.15. This

moves information from a fine triangle with sixteen ordinates and fluxes to a coarse

triangle with four ordinates and fluxes. (Again there are many possible cases, but all
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can be handled by recursive application of sixteen-to-four mappings.) We therefore

have four degrees of freedom to determine the optimal way to pass information across

a boundary.

Conservation of φ, Jx, Jy, and Jz

The first mapping technique we developed ensured conservation of face scalar

fluxes and face currents. Because we have four degrees of freedom, we utilize four

equations to solve for Ψ as follows

AΨcoarse = b , (4.34)

where

A ≡

















w0 w1 w2 w3

w0µ0 w1µ1 w2µ2 w3µ3

w0η0 w1η1 w2η2 w3η3

w0ξ0 w1ξ1 w2ξ2 w3ξ3

















(4.35)

and

b ≡

















∑I=16
i=1 wfine,iΨfine,i

∑I=16
i=1 wfine,iµfine,iΨfine,i

∑I=16
i=1 wfine,iηfine,iΨfine,i

∑I=16
i=1 wfine,iξfine,iΨfine,i

















. (4.36)

We invert A and solve for Ψcoarse at the four coarse points on the triangle. Unfor-

tunately, this method skews the angular flux and can introduce unphysical negative

fluxes.

Conservation of φ using linear discontinuous finite element basis functions

Another method is to use the fine triangle linear basis functions on each of the

sub-triangles to interpolate the flux value at the coarse point in that sub-triangle

and then ensure conservation of the scalar flux across the face. This method maps
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from the fine region N with 16 directions to the coarse region M with 4 directions

using the following equations:

ΨM(
−→
Ωm) =

4
∑

n=1

Ψ(
−→
Ω n)bn(

−→
Ωm) for each sub-triangle , (4.37)

Fconserve =

∑16
n=1wnΨn

∑4
m=1wmΨm

, (4.38)

and

ΨM(
−→
Ωm)← FconserveΨM(

−→
Ωm) for m = 1 : 4 . (4.39)

This algorithm will ensure conservation of the discrete-ordinate scalar flux on a face.

However, this scalar flux on the face is an unphysical quantity and does not ensure

conservation of particles. Also, interpolating the linear basis functions can introduce

negative flux values at the coarse points.

Conservation of current normal to the face using linear discontinuous finite element

basis functions

Another method is to use the fine triangle linear basis functions on each of the

sub-triangles to interpolate the flux value at the coarse point in that sub-triangle and

then ensure conservation of the partial current normal to the face. This method maps

from the fine region N with 16 directions to the coarse region M with 4 directions

using the following equations:

ΨM(
−→
Ωm) =

4
∑

n=1

Ψ(
−→
Ω n)bn(

−→
Ωm) for each sub-triangle , (4.40)

Fconserve =

∑16
n=1(
−→
Ω n · −→n )wnΨn

∑4
m=1(
−→
Ωm · −→n )wmΨm

, (4.41)

and

ΨM(
−→
Ωm)← FconserveΨM(

−→
Ωm) for m = 1 : 4 . (4.42)
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This algorithm will ensure conservation of the partial current normal to the face,

which ensures particle conservation. However, interpolating the linear basis functions

can introduce negative flux values at the coarse points.

Even though we are not extrapolating in this mapping, it is possible to introduce

negative flux values. The linear basis functions have regions of the triangle where

their values are negative. If the angular flux associated with one basis functions

was positive and the other three basis function’s angular fluxes were zero, the basis

function associated with the non-zero flux would interpolate to a negative value in

certain regions on the triangle.

Conservation of current normal to the face using constant discontinuous finite

element functions on each sub-triangle

The last method we consider is to use conservation of current normal to the face

on each sub-triangle. This makes each coarse point equal to

Ψcoarse,j =

∑I=4
i=1 Ψfine,i(

−→
Ω fine,i·−→n )wfine,i

(
−→
Ω coarse,j·−→n )wcoarse,j

for j = 1 : 4 . (4.43)

This method loses detailed information about the variation of the angular flux within

a sub-triangle but will not introduce negative fluxes if the weights are positive and

will still conserve partial current across the face.

Implementation

We chose to implement conservation of partial current normal to the face using

linear finite element basis functions. This high order method conserves particles and

still uses the finite element basis functions. However, this method will introduce

negative fluxes in some situations. If negative fluxes are introduced, we move to the

method of conserving partial current normal to the face on each sub-triangle. Again,
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the concept of moving from a high order interpolation scheme to a low order scheme

if negativities are introduced is not new.

4.7.3 Same Level Mapping

If the same four directions are contained in each quadrature set, we simply do

a one-to-one mapping to determine the angular flux in the mapped quadrature.

Mapping from region N with 4 directions to region M with 4 directions takes the

form of

ΨM(
−→
Ωm) = ΨN(

−→
Ω n) for

−→
Ωm =

−→
Ω n for m = 1 : 4 . (4.44)

4.8 Method for Determining if Coarsening Is Necessary

We specify that coarsening of triangles can only occur on a parent triangle. Each

parent triangle contains four daughter triangles. In order for coarsening to occur, all

four daughter triangles in a parent triangle must be determined to be unnecessary.

The basic steps for coarsening on a parent triangle can be seen in Table 4.2. Because

Table 4.2

Coarsening steps for the triangle.

1
Use basis functions on parent triangle to determine Ψinterp

at 16 ordinates

2 Compare Ψinterp and Ψcalc

3

If on all faces and for all Ψ’s, the values are “close enough,”

remove the 16 daughter points from the quadrature set

and add the 4 parent points to the quadrature set

the four coarse (parent) points are not necessarily in the fine (daughter) quadrature

set, we must determine appropriate angular flux values to use at the parent points.
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It would be cumbersome to initiate a new transport sweep to obtain these values,

and it should not be necessary since there will always be daughter points that are

very close to the parent points. We therefore obtain the parent-point values by using

the fine linear basis functions on each sub-triangle to interpolate the coarse Ψ as

follows:

Ψcoarse,j =
I=4
∑

i=1

bfine,i(
−→
Ω coarse,j)Ψfine,i for j = 1 : 4 . (4.45)

We then use the coarse basis functions with the calculated coarse Ψs to determine

the interpolated values at the 16 fine directions:

Ψinterp(
−→
Ωm) =

I=4
∑

i=1

bcoarse,i(Ωm)Ψcoarse,i for m = 1 : 16 . (4.46)

These values, interpolated from parent-point values, are then compared against the

actual values (denoted Ψcalc). If they are within the specified tolerance, then the

coarse (parent) points are considered sufficient and coarsening is permitted.

4.9 Method for Determining if Refinement Is Necessary

The basic steps for testing for refinement on each triangle can be seen in Table

4.3 and graphically in Figure 4.3. We provide below a more detailed description of

each step in our refinement process.

4.9.1 Solving Ψcalc

We execute a transport sweep to determine the angular fluxes at the test ordinates

on all faces of a given region using the latest scattering and fixed source as well as

the same boundary conditions in the previously executed transport sweep. Note that

the boundary conditions for a region include exiting fluxes from neighboring regions,

calculated during the previous iteration.
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4.9.2 Determination of Ψinterpolated

We use the basis functions on the parent triangle to determine an interpolated

angular flux at the test (daughter) ordinates. There are four basis functions on the

triangle and the interpolated angular flux on each face for each of the directions is

shown in Equation 4.47.

Ψinterpolated(
−→
Ωm) =

I=4
∑

i=1

bcoarse,i(
−→
Ωm)Ψcoarse,i for m = 1 : 16 . (4.47)

4.10 Comparison of Angular Fluxes

We compare the angular fluxes on each face using a user-defined point-wise error

tolerance, εPW , and a user-defined octant current tolerance, εOC . εOC is used to

ensure that over-adaptation does not occur if the angular fluxes are dramatically

Table 4.3

Refinement steps for the triangle.

1
Solve Ψcalc at test ordinates (candidate daughter points)

using scattering source and boundary conditions

2
Use basis functions of parent triangle to determine Ψinterp

at candidate daughter ordinates

3a
If Ψcalc and Ψinterp are “close enough” for each of the test points

on each cell face on the boundary of the quadrature region, do nothing

3b

Else, add all sixteen new daughter points to the quadrature set

Remove four coarse (parent) points from the quadrature set

Solve four basis functions on each sub-triangle

Solve new weights for the four points in each sub-triangle

Sub-triangles are now defined as standard triangles
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smaller in one section of the angular domain. We define the test direction difference

as

∆Ψtest = |Ψcalc −Ψinterp|test . (4.48)

In order to refine, we must pass BOTH the following tests for ANY test ordinate on

ANY face

∆Ψtest > εPWΨcalc (4.49a)

and

∆Ψtest > εOC
j̄octant

(
−→
Ω test · −→n )

. (4.49b)

We define j̄octant for a given octant as

j̄octant ≡
∑M

m=1wm(
−→
Ωm · −→n )Ψm

∑M
m=1wm

, (4.50)

where the directions m = 1..M are all of the directions in the same octant as the

test direction. We emphasize that refinement will take place even if only one test

direction on one cell face satisfies the inequalities defined above.

In order to coarsen, we must pass BOTH the following tests for ALL test ordinates

on ALL faces

∆Ψtest ≤ εPWΨcalc (4.51a)

and

∆Ψtest ≤ εOC
j̄octant

(
−→
Ω test · −→n )

. (4.51b)

These adaptive tolerances relate to the cell-average scalar flux in the following man-

ner. If we insist εOC is 1%, we are insisting that the addition of more directions will

not impact the surface flow rate in the specific octant by more than 1%. The region’s

particle balance equation is

FACES
∑

f=1

(Jf,exit)Af + σaΦregVreg =

FACES
∑

f=1

(Jf,inc)Af +QFixed,regVreg +QFission,regVreg

(4.52)
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where Af is the area of the face, Vreg is the volume of the region, Jf,exit is the particle

flow rate per unit area leaving the region through face f , Φreg is the scalar flux in

the region, Jf,exit is the particle flow rate per unit area entering the region through

face f , QFixed,reg is the fixed source in the region, and QFission,reg is the fission source

in the region. If we solve for Φreg, we see:

Φreg =

∑FACES
f=1 (Jf,inc − Jf,exit)Af +QFixed,reg +QFission,reg

σaVreg

. (4.53)

4.11 Updating the Quadrature Set

When refinement or coarsening is determined to be necessary, the quadrature set

must be updated. If refinement needs to occur, we add the sixteen new directions

to the quadrature set and remove the four old directions from the set. If coarsening

needs to occur, we remove the sixteen directions from the quadrature set and add

the four new directions to the set.

4.12 Implementation of Method

Our method was implemented in the Knolls Atomic Power Laboratory’s slice-

balance neutral-particle transport code, Jaguar [24] [25] [26].

4.12.1 Jaguar

Jaguar is a three-dimensional neutral-particle transport code. It solves the neutral-

particle transport equation using the Slice Balance Approach (SBA) [2] [3] [4]. It is

written in C++ with certain subroutines written in FORTRAN. It is uses an arbi-

trary polygonal mesh, multiple groups in energy, and discrete ordinates in direction.

It is currently not time dependent; our version is not parallel. The code has the

ability to define spatial quadrature regions made up of cells. All cells in given region

have the same quadrature set. For description, we assume that the code has a vec-
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tor of angular flux values,
−→
V Ψ, a vector of scalar flux values,

−→
V Φ, and a vector of

discrete ordinates,
−→
V quadrature for each spatial quadrature region, which is not energy

dependent.

4.12.2 Code Structure and Implementation

We have created an adaptive quadrature class. This class contains a tree structure

of “triangles.” Each triangle has data associated with it, including geometric descrip-

tions, basis functions, weights, and knowledge of which directions in the
−→
V quadrature

belong to the triangle. Because Jaguar only has one quadrature set for each region

regardless of energy, we test for refinement and coarsening only in the highest energy

group. We chose the first group because the angular flux in the group tends to be the

most peaky and unsmooth. In general neutronics problems, as particles slow down

their angular dependence becomes more smooth.

Our algorithm can be outlined as follows:

• Input:

– problem description including geometry, cross-sections, and boundary con-

ditions;

– initial quadrature set;

– adaptive user-defined constants including number of sweeps between test-

ing, how many sweeps to perform before the first adaptation sweep, max-

imum number of adaptation tests, and adaptive tolerances;

– scalar-flux convergence criteria.

• Non-Adaptive Group Transport Sweep:

– uses the most recent quadrature set, scattering source, and fixed source;

– uses quadrature mapping algorithms to conserve partial current normal

to the boundary faces;
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– performs SBA transport sweeps, which solves for
−→
V Ψ on the region bound-

aries and
−→
V Φ on the cells in inner iterations;

– tests if
−→
V Ψ and

−→
V Φ of this iteration satisfy the scalar-flux convergence

requirements.

• Adaptive Group Transport Sweep:

– creates a list of test directions for each region;

– uses the last boundary conditions, scattering source, and fixed source to

solve an SBA transport sweep to determine the angular flux values on the

boundary faces of the region for these test directions;

– compares the swept values on the boundary faces to the interpolated val-

ues on the faces using the basis functions described in Section 4.5.

• Updating Scalar Flux, Angular Flux, and Quadrature Set (
−→
V Φ,
−→
V Ψ,
−→
V quadrature)

– If Refinement criteria is not satisfied, add directions to
−→
V quadrature and

update
−→
V Φ and

−→
V Ψ;

– If Coarsening criteria is satisfied, remove directions from
−→
V quadrature and

update
−→
V Φ and

−→
V Ψ.

4.12.3 Memory Requirements

Because our test code is meant to evaluate algorithms (not to solve a large number

of large problems), we did not constrain ourselves to make highly efficient use of

computer memory. However, the current general memory requirements for a triangle

are as follows:

• three sets of two variables to describe the corners of the triangle in u, v space;

• four pointers to the directions in the
−→
V quadrature associated with this triangle;
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• four pointers to the sub-triangle objects;

• one pointer to the parent triangle object.

On the triangle, we also must employ methods to

• Determine the weights and basis functions associated with the triangle, which

includes integrating a function of the form c0+ c1µ+ c2η+ c3ξ over a spherical

triangle on the unit sphere;S

• Determine the coordinates (µ, η, ξ) of the associated directions;

• Determine the values of interpolated angular fluxes for the triangle;

• Determine the number of refinements it took to get to the triangle (depth);

• Map the triangle’s angular flux values to its sub-triangle’s angular flux values;

• Map the triangle’s angular flux values to its parent-triangle’s angular flux val-

ues;

• Find the same triangle or its parents in a different region’s quadrature set.

Generally, we must also be able to

• Add directions to
−→
V quadrature and values associated with those directions to

−→
V Ψ;

• Remove directions from
−→
V quadrature and values associated with those directions

from
−→
V Ψ;

• Sweep a region for a given number of test directions which includes finding

correct incoming angular fluxes, finding correct scattering source and fixed

source values, and performing the SBA on these directions;

• Compare swept values to interpolated values;

• Determine if Coarsening or Refinement is necessary.
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4.13 Method Drawbacks

While this method has the capability to give accurate results with fewer directions

and control the error introduced by the discrete ordinate method, we compromised

in some areas.

• Because we test for refinement only on the region boundary, certain self-

shielding effects and spatial mesh effects that cause peaked interior angular

fluxes and smooth boundary angular fluxes would not be captured in our adap-

tation scheme.

• If the tests for refinement occur only after n sweeps, we could pass the scattering-

source convergence test before the refinement test was activated. This would

create a false sense of accuracy.

• If the refinement adds directions to the quadrature and the associated flux

values to the solution vector, we could meet the user-defined scattering-source

convergence tolerance (normally on the order of 1e-8) without ensuring that

the angular tolerance was satisfied.

• If the center point method is employed, the weights at the centers of the trian-

gles are reduced in such a way that they can become negative. This can cause

unphysical negative fluxes and major difficulties in the mapping scheme.

• From a code analysis perspective, there is a large amount of data associated

with each triangle compared to the relatively little data associated with the

standard quadrature set. However, because adaptation occurs in the same

hierarchical manner that originated from the unit sphere, all adaptations could

be performed through a given number of refinement steps and stored in a

different file. This would allow the code to use previously computed basis

values, weight values, and ordinates without having to recompute these values

each time adaptation was determined to be necessary.
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5. RESULTS

In this section, we discuss the ability of our quadrature sets to integrate different

functions in the direction cosines, µ, η and ξ. We also present results using our differ-

ent quadrature sets. We begin with simple problems and move to more challenging

problems.

5.1 Order of Accuracy of New Quadrature Sets

As discussed in the previous section, four new quadrature sets have been devel-

oped. The first is the centroid set, discussed in Section 4.6.1, which requires each

point in a triangle to be at the centroid of its sub triangle (LDFE-Center). This set

begins to introduce negative weights after only a few refinement steps. The next is

the Θ-weighted quadrature set, discussed in Section 4.6.2, which ensures that the

center weight and center sub-triangle’s surface area are equal (LDFE-Θ). It estab-

lishes a Θ ratio which defines the location of the other three points in the triangle.

The third set is the L weighted quadrature set, discussed in Section 4.6.3, which

also ensures that the center weight and center sub-triangle’s surface area was equal

(LDFE-L). It establishes a different L ratio which defines the location of the other

three points in the triangle. The final quadrature set is the same-surface-area set, dis-

cussed in Section 4.6.4, which ensures that all weights (not just the center weights)

are equal to their associated sub-triangles’ surface areas (LDFE-SA). Because the

quadrature sets are based on the integration of linear functions of the cosines, we

expect the quadrature sets to exactly integrate linear combinations of the direction

cosines, µ, η, and ξ. However, the ability of these sets to integrate higher order

polynomials in the cosines needs to be explored.
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5.1.1 Uniform Quadrature Sets

We first examine uniform quadrature sets without localized adaptation. Because

the quadrature sets do not treat any direction cosine differently from any other, each

octant is a rotation of the first octant. Because of this symmetry, the integration

analysis need be performed only on the first octant and only for one permutation

of each polynomial in the direction cosines (i.e., µ2η and η2ξ give the same result).

Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 show the relative error of the integrations of

µη, µ2, µ3, µ4, µ3ηξ, and µ2η2ξ2 versus the angular mesh length for the uniform

quadrature sets. This angular mesh length (h) can be thought of as the “h” term

normally seen in a truncation-error analysis. In this case, because the direction

domain is two-dimensional, the mesh length is proportional to 1√
number of directions

.

However, if there are multiple cells with different quadrature sets, we use the following

equation to get the cell average angular mesh length for a problem:

hcell average ≡
1

√∑numCells
c=1 Ndirections,c

numCells

. (5.1)

We can also define an angular mesh length for a given region, which computes

hcell average for just the cells in a given region. Because all cells in a given region

have the same number of directions, this reduces the region’s angular mesh length

to

hregion ≡
1√

number of directions in a cell
. (5.2)

The uniform sets exactly integrate µ2, η2, and ξ2 but fail to exactly integrate

µη cross-terms or any moments higher than µ2. However, as the quadrature sets

mesh length is reduced by a given factor, the error goes down by approximately that

factor to the fourth power for all polynomial functions in the cosines that we tested,

which include functions up through sixth order. Thus we call these uniform sets

fourth-order accurate for integration of high-order polynomials in the cosines.
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Fig. 5.1. Relative error of µη integration on the first octant versus
mesh length for the uniform quadrature sets.
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Fig. 5.2. Relative error of µ2 integration on the first octant versus
mesh length for the uniform quadrature sets.
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Fig. 5.3. Relative error of µ3 integration on the first octant versus
mesh length for the uniform quadrature sets.
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Fig. 5.4. Relative error of µ4 integration on the first octant versus
mesh length for the uniform quadrature sets.
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Fig. 5.5. Relative error of µ3ηξ integration on the first octant versus
mesh length for the uniform quadrature sets.
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Fig. 5.6. Relative error of µ2η2ξ2 integration on the first octant
versus mesh length for the uniform quadrature sets.
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5.1.2 Locally-refined Quadrature Sets

Once local refinement occurs, the behavior of the quadrature sets’ integrations

of high-order polynomials in the cosines changes dramatically. Our locally refined

sets are produced using a simple one-region, one-cell, fixed-source, purely-absorbing,

one-group problem as illustrated in Figure 5.7. A more detailed description of this

Fig. 5.7. Test problem with one-region, one-cell, one-group, fixed
source, isotropic scattering, vacuum boundary conditions, and a pure
absorber.

problem can be seen in Section 5.2. The adaptive sets use a Piece-Wise tolerance of

0.0 and a Octant-Current tolerance of 0.001. We analyze the locally refined set after

each refinement iteration. The exact integration of µ2, η2, and ξ2 is not guaranteed

and the fourth-order reduction in error as a function of mesh length is lost. Figures

5.8, 5.9, 5.10, 5.11, 5.12, and 5.13 show the error in integrating µη, µ2, µ3, µ4, µ3ηξ,

and µ2η2ξ2 versus the angular mesh length using a locally refined quadrature set

that approaches the uniform sets. For this problem, the locally refined quadrature

set is almost uniform; this allows integration of µ2 to continue to be almost exact.

In fact, each octant is a rotation of the first octant. The almost uniform quadrature

set with 808 points, which corresponds to a mesh length of 3.52e-2, can be seen in

Figure 5.14.
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Fig. 5.8. Relative error of µη integration on the first octant versus
mesh length in locally refined quadrature sets for a simple one-region,
one-cell problem.
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mesh length in locally refined quadrature sets for a simple one-region,
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Fig. 5.10. Relative error of µ3 integration on the first octant versus
mesh length in locally refined quadrature sets for a simple one-region,
one-cell problem.
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Fig. 5.11. Relative error of µ4 integration on the first octant versus
mesh length in locally refined quadrature sets for a simple one-region,
one-cell problem.
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Fig. 5.12. Relative error of µ3ηξ integration on the first octant
versus mesh length in locally refined quadrature sets for a simple
one-region, one-cell problem.
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Fig. 5.13. Relative error of µ2η2ξ2 integration on the first octant
versus mesh length in locally refined quadrature sets for a simple
one-region, one-cell problem.
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Fig. 5.14. Almost uniform quadrature set for 808 directions for the
one-region problem.

The three points with the largest angular mesh length in these figures are actually

truly uniform sets. However, the two points with the smallest angular mesh length are

locally refined sets. From these points, one can easily see the polynomial-integration

behavior changing.

We now look at a problem where the angular flux is more peaked. It is a three-

cell, one-region, fixed-source in the first cell, purely-absorbing, one-group problem

illustrated in Figure 5.15. We give a more detailed description of this problem in

Section 5.4. Our locally refined quadrature sets are produced using a Piece-Wise

tolerance of 0.0 and a Octant-Current tolerance of 0.3. We show the integration

properties of the quadrature set after each refinement step. Figures 5.16, 5.17, 5.18,

5.19, 5.20, and 5.21 show the error in integration of µη, µ2, µ3, ,µ4, µ3ηξ, and µ2η2ξ2

using a locally refined quadrature set that is highly refined in a localized direction.

The highly localized quadrature set for 1012 directions, which corresponds to a mesh

length of 3.14e−2, can be seen in Figure 5.22.
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Fig. 5.15. Three-cell, one-group, pure absorbing problem with vac-
uum boundary conditions.

These figures show that there is no reduction in polynomial-integration error

when directions are added locally and, in some cases, an increase in error occurs. For

integration of higher-order polynomials in the cosines, the locally adapted quadrature

sets are not guaranteed to be more accurate as more local refinement occurs, whereas

the uniform quadrature sets become much more accurate as refinement occurs. The

quadrature sets that approach the uniform sets still retain some ability to decrease

the error in integration as the number of directions is increased, but even that cannot

be guaranteed, especially for the higher-order polynomials. Moreover, in the highly

localized quadrature sets, the integrations can get dramatically worse as directions

are added locally. We state simply that as the quadrature sets get more locally

refined the integration error of polynomials in the cosines cannot be guaranteed to

improve and with highly localized refinement may become substantially worse.
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Fig. 5.16. Relative error of µη integration on the first octant versus
mesh length for locally refined quadrature sets for a long one-region,
three-cell problem.
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Fig. 5.17. Relative error of µ2 integration on the first octant versus
mesh length for locally refined quadrature sets for a long one-region,
three-cell problem.
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Fig. 5.18. Relative error of µ3 integration on the first octant versus
mesh length for locally refined quadrature sets for a long one-region,
three-cell problem.
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Fig. 5.19. Relative error of µ4 integration on the first octant versus
mesh length for locally refined quadrature sets for a long one-region,
three-cell problem.
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Fig. 5.20. Relative error of µ3ηξ integration on the first octant
versus mesh length for locally refined quadrature sets for a long one-
region, three-cell problem.

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Mesh Length

|R
el

at
iv

e 
E

rr
or

|

 

 

Same Surface Area, Highly Localized
Theta Weighted, Highly Localized
L Weighted, Highly Localized
Center Point Method, Highly Localized

Fig. 5.21. Relative error of µ2η2ξ2 integration on the first octant
versus mesh length for locally refined quadrature sets for a long one-
region, three-cell problem.
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Fig. 5.22. Localized quadrature set for 1012 directions for the one-
region, three-cell problem.

5.2 One-region Problem

We turn now from integrating polynomials to solving transport problems (which

requires quadrature integrations of angular fluxes). The first problem analyzed was

a one quadrature region, one-cell, one-group, isotropic scattering, fixed-source prob-

lem. We utilized a step-characteristic spatial method and applied vacuum boundary

conditions. The region was a 1 cm × 1 cm × 1 cm cube with a constant isotropic

source of 1.0 neutron
cm3s∗ster . As shown in Figures 5.7 and 5.23, we initially analyzed a

purely absorbing problem with a total macroscopic cross section of Σt = 1.0 cm−1,

which ensures that the cell is 1×1×1 mean-free paths (mfp), and a purely scattering

problem with a total macroscopic cross section of Σt = 5.0 cm−1, which ensures that

the cell is 5x5x5 mfps. This simple one-region problem was utilized to debug the

adaptation method as well as to guide the adaptive tolerance descriptions. The first

step was to ensure that the new quadrature sets (LDFE-Center, LDFE-Θ, LDFE-L,

and LDFE-SA) were converging to the same solution as established quadrature sets

such as QR, LS, or GC. Once this was established, the reference solution scalar flux
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Fig. 5.23. Test problem with one region, one cell, one group, fixed
source, isotropic scattering, vacuum boundary conditions, and a pure
scatterer.

was defined as the scalar flux from a very fine uniform LDFE-SA set ( 524288 direc-

tions) with a very tight convergence criterion that forced the L2 norm of the residual

divided by the L2 norm of the source vector to be less than of 1e-13. As an aside,

the purely absorbing problem converges to computer precision in one sweep because

the directions are independent of each other.

5.2.1 Pure Absorber

We first compared the uniform quadrature sets (LDFE-SA, LDFE-Θ, LDFE-L,

and LDFE-Center) to the Level-Symmetric (LS), Gauss-Chebyshev (GC), Double

Gauss-Chebyshev (DGC), and Quadruple Range (QR) sets [1] [15] [12] [13] [14].

The LS sets were run at all orders through 16 and also at order 20. Order 18 and

orders greater than 22 yield negative weights. The GC sets were run as “square”

product sets from 2x2 through 100x100 and as triangular LS-like sets from order 2

through 300. The DGC sets were also run as “square” product sets from 2x2 through

100x100 and as triangular LS-like sets from order 2 through 300. The QR sets were

run as “square” sets from 2x2 through 18x18, as “rectangular” sets from 2x4 through
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18x36, and as triangular LS-like sets from order 2 through 36. The four LDFE sets

were run for refinement numbers 0 through 7. The initial 0 set contains 32 directions

and each set after that contains four times the number of directions as the previous

set, i.e: the 0 set contains 8 ∗ 41 = 32 directions, the 1 set contains 8 ∗ 42 = 128

directions, ..., the 7 set contains 8 ∗ 48 = 524288 directions. The relative error in

the cell-centered scalar flux for uniform LDFE sets, QR sets, DGC, GC, and LS sets

as a function of angular mesh length can be seen in Figure 5.24. (The reference

solution was taken as the LDFE-SA solution with 524288 directions.) As evident in

Fig. 5.24. Relative error for LDFE, QR, DGC, GC, and LS uniform
quadrature sets versus mesh length for a one-region, one-cell, one-
group, purely absorbing, fixed-source problem with vacuum bound-
ary conditions.

Figure 5.24, all LDFE Quadrature sets converge quickly to the reference solution. We

computed the order of convergence using the “Microsoft Excel” built-in, least-squares

approach to find the best p in the equation c ∗ hp. We used all calculated points for



80

Table 5.1

Convergence order of uniform quadrature sets’ cell-centered scalar
fluxes as a function of mesh length for a pure absorbing, one-region
problem.

Type of Quadrature Convergence Order

LDFE Quadrature Uniform Surface Area Weights 4.57

LDFE Quadrature Uniform Old Weights 4.41

LDFE Quadrature Uniform New Weights L 4.12

LDFE Quadrature Uniform New Weights Θ 4.71

Level-Symmetric Quadrature 1.50

QR LS-Like Quadrature 4.52

QR Square Quadrature 3.95

QR Rectangular Quadrature 3.94

GC Square Quadrature 2.01

GC LS-Like Quadrature 1.93

DGC Square Quadrature 2.09

DGC LS-Like Quadrature 1.84

this evaluation. The QR sets and LDFE quadrature sets converge to the correct

scalar flux at approximately 4th order, the GC and DGC sets at approximately 2nd

order, and the LS sets at approximately 1.5 order as shown in Table 5.1.

We employ tests using two different tolerances when deciding whether or not to

refine a quadrature set as discussed in Section 4.10. The Point-Wise Tolerance (PW

Tol) compares values using the linear finite element basis functions. The Octant

Current Tolerance (OC Tol) compares the normal component of the angular current

density (−→n · −→ΩΨ) at the test direction versus the average normal component of the

angular current density over the entire octant. In order for refinement to occur, the

test points must fail both tolerances. Therefore, setting one of the tolerances equal

to zero allows the refinement to be governed solely by the other tolerance. This

one-region problem was first analyzed using a OC Tol of 0 and varying the PW Tol

from 30% to 0.01% for the LDFE-SA sets, LDFE-L sets, LDFE-Θ sets, and the

LDFE-Center. Labels for these results in the figure include “PW Tol.” It was then

analyzed using a PW Tol of 0 and varying the OC Tol from 30% to 0.01% for each

quadrature set. Labels for these results include “Octant Current.” The results can

be seen in Figure 5.25. Figure 5.25 shows that the locally adaptive sets approach
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Fig. 5.25. Relative error for QR uniform sets, LDFE-L, LDFE-
Θ, LDFE-SA, and LDFE-Center adaptive and uniform quadrature
sets versus mesh length for a one-region, one-cell, one-group, purely
absorbing, fixed-source problem with vacuum boundary conditions.
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Table 5.2

Convergence order of locally refined quadrature sets’ cell-centered
scalar fluxes as a function of mesh length for a pure absorbing, one-
region problem.

Type of Quadrature Convergence Order

PW Tol - Center Weights 3.37

PW Tol - Θ Weights 3.90

PW Tol - SA Weights 3.74

PW Tol - L Weights 3.70

Octant Current - Center Weights 3.38

Octant Current - Θ Weights 3.88

Octant Current - SA Weights 3.76

Octant Current - L Weights 3.52

the correct solution but are not producing better region-averaged, scalar-flux results

than the uniform sets. The order of convergence of each locally adaptive case can be

seen in Table 5.2. We see that the locally adaptive sets approach the true solution

at orders between 3.3 and 3.9 for each tolerance method. It should be noted that we

are able to obtain more accurate solutions with the new sets than is possible with the

QR sets, because the QR sets are limited to eighteen polar levels and thirty-seven

azimuthal directions in a given octant.

5.2.2 Pure Scatterer

The purely scattering problem was analyzed in a similar fashion. The relative

errors in cell-averaged scalar flux for the uniform LDFE quadrature sets, QR sets,

DGC sets, GC sets, and the LS sets can be seen in Figure 5.26 and the order of

convergence can be seen in Table 5.3. Again, the LDFE uniform sets have approxi-

mately 4th-order convergence to the reference solution. In this problem, the QR sets

exhibit approximately 5th order convergence.

The performances of LDFE quadrature sets with localized adaptation were also

analyzed. The first locally refined sets were generated using a OC Tol of 0.0 and

varying the PW Tol from 30% to 0.01% for the LDFE-SA sets, the LDFE-L sets,
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Fig. 5.26. Relative error in the cell-centered scalar flux for LDFE,
QR, DGC, GC, and LS uniform quadrature sets versus mesh length
for a one-region, one-cell, one-group, purely scattering, fixed-source
problem with vacuum boundary conditions.
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Table 5.3

Convergence order of uniform quadrature sets’ cell-centered scalar
fluxes as a function of mesh length for a purely scattering, one-region
problem.

Type of Quadrature Convergence Order

LDFE Quadrature Uniform Surface Area Weights 4.13

LDFE Quadrature Uniform Old Center Weights 3.76

LDFE Quadrature Uniform New WeightsL 3.91

LDFE Quadrature Uniform New WeightsTheta 4.08

Level-Symmetric Quadrature 1.59

QR LS-Like Quadrature 4.76

QR Square Quadrature 5.03

GC Square Quadrature 2.00

GC LS-Like Quadrature 1.95

DGC Square Quadrature 2.09

DGC LS-Like Quadrature 1.86

Table 5.4

Convergence order of locally adaptive quadrature sets’ cell-centered
scalar fluxes as a function of mesh length for a purely scattering,
one-region problem.

Type of Quadrature Convergence Order

PW Tol - Center Weights 3.68

PW Tol - Θ Weights 3.46

PW Tol - SA Weights 3.54

PW Tol - L Weights 3.57

Octant Current - Center Weights 3.70

Octant Current - Θ Weights 3.67

Octant Current - SA Weights 4.05

Octant Current - L Weights 3.56

the LDFE-Θ sets, and the LDFE-Center sets. Labels for these results in the figure

include “PW Tol.” The next locally refined sets were generated using a PW Tol

of 0 and varying the OC Tol from 30% to 0.01% for each quadrature set. Labels

for these results in the figure include “Octant Current.” The results can be seen in

Figure 5.27 and the order of convergence can be seen in Table 5.4. The localized

sets generally agree with the uniform LDFE sets but rarely produce a more accurate

solution than the uniform LDFE sets. We hypothesize that this occurs because the

locally adaptive sets are less accurate in their integrations of high-order polynomials

in the cosines, as we showed in a previous section.
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Fig. 5.27. Relative error for QR uniform sets, LDFE-L, LDFE-
Θ, LDFE-SA, and LDFE-Center adaptive and uniform quadrature
sets versus mesh length for a one-region, one-cell, one-group, purely
scattering, fixed-source problem with vacuum boundary conditions.
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Fig. 5.28. Two-region, one cell per region, one-group, fixed-source,
vacuum boundary conditions, purely absorbing problem.

5.3 Two-region Problem

The next problem analyzed was a two-region problem with one cell in each region

as illustrated in Figure 5.28. It was a one-group, purely absorbing problem with a

constant source in each region and vacuum boundary conditions which was solved

using the step-characteristics method. The source was 1.0 neutrons
cm3s∗ster and the macro-

scopic total cross section was Σt = 1.0 cm−1. Each region was a 1 cm × 1 cm ×
1 cm cube or a 1 mfp × 1 mfp × 1 mfp cube. This problem was run to test the

mapping algorithms developed for these new LDFE quadrature sets. We defined the

reference solution to be the uniform LDFE-SA quadrature set solution with 524288

directions.
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5.3.1 Uniform Quadrature Sets

The absolute value of the relative errors in the cell-centered scalar flux as a

function of angular mesh length for the uniform LDFE sets, the QR sets, the LS

sets, the GC sets, and the DGC sets are shown in Figure 5.29. Because all sets have

Fig. 5.29. Relative error for LDFE, QR, DGC, GC, and LS uniform
quadrature sets versus mesh length for two-region, one cell per re-
gion, one-group, purely absorbing, fixed-source problem with vacuum
boundary conditions.

the same quadrature sets in both regions, the mapping on the interior boundary

is a simple one-to-one mapping. In reality, this problem is the same as a single

region, two-cell problem. The order of convergence is quite similar to the one-region

case as shown in Table 5.5. Again, the LDFE sets and the QR sets have 4th-order

convergence, the GC and DGC sets have 2nd-order convergence, and the LS sets

have a convergence order of about 1.5.



88

Table 5.5

Convergence order of uniform quadrature sets’ cell-centered scalar
fluxes as a function of mesh length for a purely absorbing, two-region
problem.

Type of Quadrature Convergence Order

LDFE Quadrature Uniform Surface Area Weights 4.33

LDFE Quadrature Uniform Old Weights 4.25

LDFE Quadrature Uniform New WeightsL 4.07

LDFE Quadrature Uniform New WeightsTheta 4.38

Level-Symmetric Quadrature 1.55

QR LS-Like Quadrature 4.03

QR Square Quadrature 3.64

QR Rectangular Quadrature 3.56

GC Square Quadrature 1.99

GC LS-Like Quadrature 1.92

DGC Square Quadrature 2.07

DGC LS-Like Quadrature 1.86

5.3.2 Locally Refined Quadrature Sets

The locally adaptive quadrature sets were analyzed in order to judge the impact

of the mapping algorithms. The problem was analyzed using a OC Tol of 0 and

varying the PW Tol from 30% to 0.01% for the LDFE-SA sets, LDFE-L sets, LDFE-

Θ sets, and the LDFE-Center sets, which are labeled PW Tol. It was then analyzed

using a PW Tol of 0 and varying the OC Tol from 30% to 0.01% for each quadrature

set, which are labeled OC Tol. The results can be seen in Figure 5.30 and the orders

of convergence can be seen in Table 5.6. The locally adaptive order of convergence

is lower than the uniform quadrature sets’ convergence, which we hypothesize can be

attributed to the lack of accuracy when integrating higher order polynomials in the

cosines. However, the two-region problem’s adaptive convergences were lower than

the one-region problem’s adaptive convergences for all eight adaptive cases. This

drop in convergence can be attributed, we believe, to the mapping scheme, which

introduces some distortion in the angular distribution that is transmitted across the

boundary between regions with different quadrature sets.
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Fig. 5.30. Relative error for QR uniform sets, LDFE-L, LDFE-Θ,
LDFE-SA, and LDFE-Center adaptive and uniform quadrature sets
versus mesh length for two-region, one cell per region, one-group,
purely absorbing, fixed-source problem with vacuum boundary con-
ditions.
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Table 5.6

Convergence order of locally adaptive quadrature sets’ cell-centered
scalar fluxes as a function of mesh length for a purely absorbing, two
region problem.

Type of Quadrature Convergence Order

PW Tol - Center Weights 3.35

PW Tol - Θ Weights 3.62

PW Tol - SA Weights 3.66

PW Tol - L Weights 3.27

Octant Current - Center Weights 3.20

Octant Current - Θ Weights 3.67

Octant Current - SA Weights 3.66

Octant Current - L Weights 3.29

5.3.3 Quadrature-to-quadrature Mapping

While this problem has fairly uniform quadrature sets mapping from one region

to then next, errors still arise. It is difficult to pass information from a fine to a coarse

angular grid or a coarse to a fine angular grid and still preserve an accurate solution

in the downstream region. All methods for mapping that were discussed in Section

4.7 have downsides. In our scheme, we have given high priority to conserving the

partial current normal to the face; this preserves conservation of particle flow across

the boundary. Every mapping technique that we have considered has the potential to

artificially induce refinement and coarsening in select problems and skew the angular

flux and scalar flux solutions. The quadrature-mapping field is in its infancy and has

many opportunities for future work.

5.4 Three-cell Problem

Having established that the LDFE uniform sets yield accurate results for simple

problems, we move toward analyzing a more difficult problem. This one-group, purely

absorbing problem with vacuum boundary conditions contains three cells and was

solved using the step-characteristics method for spatial discretization as shown in

Figure 5.15. The first cell is 1 cm × 1 cm × 100 cm and consists of a fixed source of



91

100 neutrons
cm3s∗ster with a total macroscopic cross section of Σt = 0.3 cm−1. The second is a

8 cm × 1 cm × 100 cm cell with no fixed source and a total macroscopic cross section

of Σt = 0.3 cm−1. The third cell is 1 cm × 1cm × 100 cm, contains no fixed source,

and has a total macroscopic cross section of Σt = 0.3 cm−1. The reference solution

is considered to be the LDFE-SA uniform set solution with 524288 directions. This

problem can be analyzed using two different refinement approaches.

5.4.1 One-region, Three-cell Analysis

The first approach uses one quadrature region with all three cells contained in

that region. This is important for our adaptive method for the following reasons:

1. Comparisons of the angular fluxes for refinement purposes occur only on the

region boundaries, not the cell boundaries.

2. The quadrature-to-quadrature mapping is invoked only if more than one quadra-

ture set exists in the problem.

By encapsulating all three cells in a single region, we can explore the adaptive

scheme without having the mapping scheme impact the results. We initially ran

this problem with the uniform LDFE quadrature sets, the QR quadrature sets, and

the LS quadrature sets. The absolute value of the relative error in the cell-centered

scalar flux for each cell versus the cell-averaged angular mesh length can be seen in

Figures 5.31, 5.32, and 5.33. We then ran adaptive cases with the PW tolerance

at zero and the OC tolerance varying from 30% to 1% for LDFE-SA, LDFE-Θ,

LDFE-L, and LDFE-Center set with the absolute value of the relative error in the

cell-centered scalar fluxes as a function of cell-averaged angular mesh length shown in

Figures 5.34, 5.35, and 5.36. Unfortunately in some cases, the number of directions

became so large the memory requirements became impossible to manage with our

serial code. Our solution was to restrict the number of directions in a given region.

If the number of directions in a region became larger than 100, 000, we stopped
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Fig. 5.31. The relative error in the first cell associated with the
LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center, QR, and LS quadra-
ture sets for the one-region, one-group, three-cell, purely absorbing
problem with vacuum boundary conditions.
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Fig. 5.32. The relative error in the second cell associated with the
LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center, QR, and LS quadra-
ture sets for the one-region, one-group, three-cell, purely absorbing
problem with vacuum boundary conditions.
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Fig. 5.33. The relative error in the third cell associated with the
LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center, QR, and LS quadra-
ture sets for the one-region, one-group, three-cell, purely absorbing
problem with vacuum boundary conditions.
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Fig. 5.34. The relative error in the first cell associated with the
adaptive and uniform LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center,
QR, and LS quadrature sets for the one-region, one-group, three-cell,
purely absorbing problem with vacuum boundary conditions.
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Fig. 5.35. The relative error in the second cell associated with the
adaptive and uniform LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center,
QR, and LS quadrature sets for the one-region, one-group, three-cell,
purely absorbing problem with vacuum boundary conditions.
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Fig. 5.36. The relative error in the third cell associated with the
adaptive and uniform LDFE-SA, LDFE-Θ, LDFE-L, LDFE-Center,
QR, and LS quadrature sets for the one-region, one-group, three-cell,
purely absorbing problem with vacuum boundary conditions.
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testing for refinement. This number of directions corresponds to a mesh length of

3.16e-3 in our figures. This led to certain smaller tolerance problems containing

fewer directions than those quadrature sets that had a higher tolerance. As these

figures show, the scalar flux using a locally refined quadrature set for the first and

second cell are not calculated as efficiently as the uniform set’s scalar fluxes while

the third cell’s scalar flux is calculated almost as efficiently. It is not difficult to

understand why this occurs. In this problem, with its single quadrature region, the

highly peaked angular flux in the third cell causes a large number of directions to

be added to the quadrature set to resolve the peak. These added directions do not

help much with the scalar-flux integrals in the first two cells; thus the adapted set in

this problem is not at all efficient for those two cells. The angular flux on the third

cell’s outermost boundary can seen in Figure 5.37, which also shows the adapted

quadrature mesh (with each triangle containing one quadrature point). Notice that

it is strongly peaked near the µ = 1 direction.

5.4.2 Three-region, One Cell per Region

In order to allow each cell to have a different quadrature set, we made each cell its

own region. While this allows different quadrature sets, this introduces quadrature-

to-quadrature mapping which can limit the accuracy of the solution. The uniform

sets give the same scalar flux solutions as the one-region, three-cell problem which

we see in Figures 5.31, 5.32, and 5.33. However, the locally adaptive solutions are

different. When we plot the cell-centered scalar flux as a function of unknowns for

each region (instead of the entire problem), we see behavior as shown in Figures 5.38,

5.39, and 5.40. The first region’s adaptive sets produce approximately the same

efficiency as the uniform refinement sets. However, the second region has much lower

efficiency. We believe that this is due to the quadrature-to-quadrature mapping from

cell one to cell two. We are mapping from a region with hundreds of directions to a

region with many thousands of directions. This coarse-to-fine mapping significantly
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Fig. 5.37. Pseudocolor plot of the angular flux on the boundary
face of the third cell as a function of direction.
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Fig. 5.38. The absolute value of the cell-centered scalar-flux relative
error in the first cell versus the first region’s angular mesh length as-
sociated with the adaptive and uniform LDFE-SA, LDFE-Θ, LDFE-
L, LDFE-Center, QR, and LS quadrature sets for the three-region,
one cell per region, one-group, pure absorbing problem with vacuum
boundary conditions.
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Fig. 5.39. The absolute value of the cell-centered scalar-flux rela-
tive error in the second cell versus the second region’s angular mesh
length associated with the adaptive and uniform LDFE-SA, LDFE-Θ,
LDFE-L, LDFE-Center, QR, and LS quadrature sets for the three-
region, one cell per region, one-group, purely absorbing problem with
vacuum boundary conditions.



102

Fig. 5.40. The absolute value of the cell-centered scalar-flux rel-
ative error in the third cell versus the third region’s angular mesh
length associated with the adaptive and uniform LDFE-SA, LDFE-
Θ, LDFE-L, LDFE-Center, QR, and LS quadrature sets for the three-
region, one cell per region, one-group, purely absorbing problem with
vacuum boundary conditions.
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impacts the accuracy of the solution. The third region’s adaptive sets are almost as

efficient as the uniform sets in some cases. If we force the second and third regions

to have the same quadrature set, thus eliminating mapping-induced perturbations

at the interface, we see much more accurate results. We note that the incident flux

on cell three comes from a narrow cone of exiting directions from cell one. The

details of the distribution in that cone are not important to the cell-one scalar flux;

thus, cell one does not adapt to resolve them. However, they are very important

to the cell-three scalar flux, yet cell three has no control over their resolution. No

matter how much the cell three quadrature set is refined, it does not improve the

accuracy of the distribution that emerges from cell one, given the algorithm that we

are using. Again, we believe that the perturbations introduced by the mapping from

one quadrature set to the next significantly impacts the accuracy of the solution. In

all cases, we observe scalar flux accuracy to one percent in all cells.

In these test problems, the cell-averaged scalar-flux errors are always significantly

smaller – usually by orders of magnitude – than the tolerances that go into refinement

and coarsening decisions. Thus, if the input imposes a 1% tolerance, the scalar fluxes

in these problems have errors that are substantially smaller than 1%. There is a need

for an algorithm that estimates the actual cellwise scalar-flux error that will result

from a given Point-Wise tolerance and Octant-Current tolerance, but we have not

developed a theory or algorithm for this. Perhaps a starting point for such a theory

would be the conservation equation, Equation 4.52.

5.5 Skewed Duct Problem

The last problem we analyzed was a three-region problem with a skewed duct

going through the second region as shown in Figure 5.41. This problem is a purely

absorbing problem with almost all the particles reaching region three reaching it by

coming through the skewed duct. All boundary conditions are vacuum and the first

region has a constant fixed source of 100 neutrons
cm3s∗ster . The problem is a two-dimensional
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Fig. 5.41. Purely absorbing, three-region, skewed duct problem with
vacuum boundary conditions from a two-dimensional view.

figure extruded up the z-axis 20 cm as shown in Figure 5.42 and was solved using

the step-characteristics spatial discretization method. The reference solution was

considered to be the LDFE-SA solution with 131072 directions. We were restricted

to this number of directions because of the memory requirements of the SBA scheme

as it is currently implemented in the Jaguar code coupled with the physical memory

of the computer we were using. Because of this memory limitation, we also had to

limit the number of directions in a region for adaptive refinement to 35000. The

purpose of this problem is to assess the performance of existing and new (including

adaptive) quadrature sets for a problem that does not have a strictly Cartesian

mesh. In this problem, we believe it is appropriate to look at each region and cell

separately, so that the source region does not overly impact the accuracy of the

adaptive quadrature sets. If we look at a cell-by-cell comparison of the cell-centered

scalar flux, we see the benefits of the locally adaptive sets. The cells of interest in

this problem are the third region’s middle cell and right-most cell. These cells’ fluxes

arise almost solely from the particles coming up the skewed duct. Therefore, if we

can accurately capture the streaming coming up the duct, we should get reasonably
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Fig. 5.42. Purely absorbing, three-region, skewed duct problem with
vacuum boundary conditions from a three-dimensional view.

accurate solutions for the cell’s scalar flux. The third region’s middle cell’s absolute

value of the relative errors in the cell-centered scalar flux as a function of problem

cell-averaged angular mesh length for uniform and adaptive quadrature sets can be

seen in Figure 5.43 and the third region’s last cell’s absolute value of the relative

errors in the cell-centered scalar flux as a function of problem cell-averaged angular

mesh length for uniform and adaptive quadrature sets can be seen in Figure 5.44.

The convergence orders from uniform (not adapted) quadrature sets for the third

region’s middle cell as a function of region’s cell-averaged angular mesh length can

be seen in Table 5.7.

In this case, the LDFE sets do an excellent job of convergence compared to

standard quadrature sets. From Figures 5.43 and 5.44, we can see that the adaptive

sets produce more accurate results than the uniform sets for the same total number

of unknowns.
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Fig. 5.43. Purely absorbing, three-region, skewed duct problem’s
third region’s middle cell’s scalar flux as a function of problem cell-
averaged angular mesh length for uniform and adaptive quadrature
sets.
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Fig. 5.44. Purely absorbing, three-region, skewed duct problem’s
third region’s last cell’s scalar flux as a function of problem cell-
averaged angular mesh length for uniform and adaptive quadrature
sets.
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Table 5.7

Convergence order of uniform quadrature sets’ third region’s middle
cell’s scalar flux as a function of problem cell-averaged angular mesh
length for the skewed duct problem.

Type of Quadrature Convergence Order

Level-Symmetric Quadrature 0.41

QR-Triangular Quadrature 2.26

QR-Square Quadrature 0.77

LDFE-Center Quadrature 2.76

LDFE-Θ Quadrature 2.46

LDFE-L Quadrature 2.43

LDFE-SA Quadrature 2.44

5.6 Summary

The results shown in this section illustrate the properties of our new quadrature

sets. The performance of our uniform sets (no local refinement) on our test problems

is dramatically better than that of commonly used quadrature sets (level-symmetric

(LS), Gauss-Chebyshev (GC) and variants) and is comparable to that of the Abu-

Shumays QR sets. On simple problems the QR sets have slightly better performance

and on difficult problems the new sets have better performance. On simple problems

the QR sets and the new sets tend to exhibit 4th-order convergence in the scalar flux

as the directional mesh is refined, whereas the LS and GC sets exhibit 1.5-order and

2nd-order convergence, respectively. On difficult problems (in which there are near

discontinuities in the direction domain along directions that are not perpendicular

to coordinate axes), these convergence orders diminish and the new sets outperform

the others.

For simple problems the new adaptive sets typically do not outperform the new

uniform sets or the QR sets. We have carefully studied this result and believe we

understand that it arises from a combination of factors: 1) the new uniform sets have

unexpectedly high convergence orders and are thus very accurate; 2) the uniform sets

integrate polynomials in the cosines with high-order accuracy, but this high-order

behavior is destroyed by local refinement; 3) our refinement testing is purely local
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and thus does not force an upstream region to resolve directional variations that

may be important to a downstream region; 4) mapping from one quadrature set to

another introduces perturbations in directional distribution that can be detrimental.

Even so, for truly difficult problems (by the above description) the new adaptive sets

do outperform all other quadrature sets that we have tested.

We observe that errors in cell-averaged scalar fluxes tend to be smaller (by orders

of magnitude) than the tolerances that govern refinement and coarsening decisions.

That is, these tolerances have proven to be very conservative upper bounds on scalar-

flux errors.

In the next section we draw conclusions from our work and offer suggestions for

future work.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusions

In this dissertation, we discussed development of four new quadrature sets derived

from the linear discontinuous finite element (LDFE) approach on spherical triangles

on the unit sphere. These quadrature sets can be used as standard uniform quadra-

ture sets or can be locally refined. In the adaptive algorithm that we have developed

and tested, local refinement of these quadrature sets is driven by a difference be-

tween interpolated angular fluxes using the LDFE basis functions and the calculated

angular fluxes at test directions that are candidates for addition to the quadrature

set. We discussed the decision processes for both adding directions to the quadrature

set and removing directions from the quadrature set. We also derived methods for

mapping angular fluxes from one quadrature set to a different quadrature set, which

is necessary if different spatial regions are allowed to have different quadrature sets,

as they are in our implementation. We discussed advantages and disadvantages of

both the locally adaptive LDFE quadrature sets and the uniform LDFE quadrature

sets.

The uniform LDFE quadrature sets exactly integrate zeroth and first order spher-

ical harmonic functions. Our numerical testing indicates that the integrals calculated

by these uniform sets converge to the exact integration of higher-order spherical har-

monics at fourth order in what we call the “angular mesh length,” which is inversely

proportional to the square root of the numbers of directions. This is based on numer-

ical testing of integrals of polynomials in the direction cosine ranging from second

through sixth orders. On simple problems the QR sets and the new sets exhibit

approximately 4th-order convergence in the scalar flux as the directional mesh is

refined, whereas the LS and GC sets exhibit 1.5-order and 2nd-order convergence,

respectively. On more difficult problems, in which there are near discontinuities in

the angular flux along directions that are not perpendicular to coordinate axes, the
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convergence orders diminish for all methods. In such problems, the new quadrature

sets outperform the others. We believe that this behavior stems from the new sets’

property that their directions and weights are based upon mathematical consider-

ations on local spherical triangles, not on integration over entire octants (as is the

case with QR sets) or the entire sphere (as with LS and GC sets). These LDFE

sets have the desirable property of having no limitation on refinement, whereas the

QR sets are limited by the mathematical complexity of their derivations. Further,

three of the LDFE sets (SA, Θ, and L) have strictly positive weights regardless of

the level of refinement. The Gauss-Chebyshev and other product-based quadrature

sets can be produced with any number of directions but in our test problems they

perform far less efficiently than our LDFE sets. We conclude that even without

local refinement, our new quadrature sets offer considerable advantages in solving

practical discrete-ordinates transport problems.

The new LDFE quadrature sets can be refined locally, one spherical triangle at a

time, which opens the possibility of adaptive discrete-ordinates algorithms in which

the algorithm adds directions where the angular flux is not smooth. Unfortunately,

as the quadrature set becomes more locally refined, which is often what is required to

resolve the angular flux shape, the quadrature integration of higher-order spherical

harmonics becomes less accurate. This dynamic makes the adaptive quadrature set’s

accuracy difficult to exactly predict. From our analysis and testing, we find that our

adaptive sets can be beneficial in certain problems with streaming gaps that are

not perpendicular to the Cartesian axes. Furthermore, we believe that with some

extension to our work, which we outline in the next section, the adaptive quadrature

sets have the potential to improve the accuracy of transport solutions for an even

broader class of problems.

We can give a conservative bound on the scalar flux in a given problem based

on the adaptive tolerances but, in general, that bound is orders of magnitude more

conservative than the true accuracy of the solution for the problems we analyzed.
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6.2 Future Work

6.2.1 Cubic/Linear DFE Quadrature

Our analysis and testing has led us to hypothesize that our locally refined quadra-

ture sets would be much more accurate, especially on “simple” problems, if they could

more accurately integrate spherical harmonics of second and higher orders. Here we

describe a method in which we can guarantee the exact integration of third-order

spherical harmonic functions even if local refinement occurs. We continue to use

the octant triangle described in this dissertation and describe a “base” quadrature

set that is built from a cubic finite element basis function on each octant. This

set would consist of sixteen ordinates defined at the ordinates from the LDFE-SA,

LDFE-Θ, LDFE-L, or LDFE-Center ordinates. We would make the cubic finite el-

ement basis functions be cardinal functions at each of the sixteen ordinates. (We

note that there are exactly sixteen linearly independent third-order polynomials in

the direction cosines, or equivalently, exactly sixteen third-order spherical-harmonics

functions. Thus there are sixteen linearly independent basis functions that span the

space of third-order spherical-harmonics functions.) These basis functions are defined

as

bbm(
−→
Ω) for m = 1 : 16 . (6.1)

The weight associated with a given point is the octant integral of the point’s cubic

basis function. This completely defines a base quadrature set as

Base Set ≡ {wb
m,
−→
Ω b

m} where m = 1..16 . (6.2)

If we refined the quadrature set, we want the introduction of new ordinates to main-

tain the accuracy of integration of the base quadrature set. Suppose that the next

set of points to be added to the quadrature set is defined as

First Adaptive Set ≡ {wa
n,
−→
Ω a

n} where n = 1..Na . (6.3)
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We can maintain the accuracy of our integrations by applying the adaptive set only to

the difference between the actual angular flux and the third-order interpolant through

the base set’s points. That is, we define the adapted quadrature set’s integration as

∫

δΩ

dΩf(
−→
Ω) =

16
∑

m=1

wb
mf(
−→
Ω b

m) +
Na
∑

n=1

wa
n[f(
−→
Ω a

n)− f interp
b (

−→
Ω a

n)] , (6.4)

where

f interp
b (

−→
Ω) ≡

16
∑

m=1

f(
−→
Ω b

m)b
b
m(
−→
Ω) . (6.5)

Note that this adapted quadrature integration remains perfect for any third-order

polynomial f , because for any such function the difference in square brackets will be

zero. Equation 6.4 can be factored in the following manner:

∫

δΩ

dΩf(
−→
Ω) =

16
∑

m=1

[wb
m −

Na
∑

n=1

wa
nb

b
m(
−→
Ω a

n)]f(
−→
Ω b

m) +
Na
∑

n=1

wa
nf(
−→
Ω a

n) . (6.6)

We then define the updated weights of the base set w̃b
m as

w̃b
m ≡ wb

m −
Na
∑

n=1

wa
nb

b
m(
−→
Ω a

n) , (6.7)

which simplifies Equation 6.6 to

∫

δΩ

dΩf(
−→
Ω) =

16
∑

m=1

w̃b
mf(
−→
Ω b

m) +
Na
∑

n=1

wa
nf(
−→
Ω a

n) . (6.8)

This method has the potential to guarantee the exact integration of up through third

order spherical harmonic functions for both uniform and locally refined quadrature

sets. The drawbacks to this method include the possibility of introducing nega-

tive weights and the increased complexity of incorporating the method in a discrete

ordinate code.

6.2.2 Alternative Tesselations of the Sphere

Another area for that has potential for future work is using different polyhedra as

bases for dividing the surface of the sphere into spherical polygons. Our quadrature
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sets were defined using an octahedron’s projection to the unit sphere. The possibility

of defining a finite element quadrature set from the unit cube is interesting. In this

case the corners of the cube would lie at the centers of the octants and the centers of

the faces of the cubes would be pierced by the x, y, and z axes. Each square face of

the cube could be refined into four squares, and any square could be further refined

into four others, etc. The projection of these squares onto the surface would form

spherical quadrilaterals whose edges were great circles. It would be natural to define

four quadrature points per quadrilateral with each point having an associated basis

function that would be linear in the direction cosines. In many ways this square-based

tesselation seems better suited to LDFE quadratures than does the triangle-based

tesselation that we explored in this dissertation.

6.2.3 Implementation with Other Spatial Discretizations

The work in this dissertation shows that the adaptive quadrature sets have more

accurate solutions while using less directions in certain problems. It would be in-

teresting to add this adaptive method to a standard transport code instead of a

Slice Balance Approach (SBA) code. Because Jaguar is based on the SBA, slices

are required to be produced and stored for each direction. Once tens and hundreds

of thousands of directions are being utilized, a large amount of memory is required.

Other types of codes would have less memory restrictions and could therefore add

many more directions than we are currently limited to. We could, therefore, analyze

more complicated problems. We also note that Jaguar’s SBA could be written in a

more computationally efficient manner; this includes decomposing the problem into

specific “chunks” and recomputing the slices “on the fly” instead of storing them.
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6.2.4 Error Bounds

Our numerical results demonstrate that our adaptive sets yield relative errors in

volume-averaged scalar fluxes that are far smaller than the tolerances used in our

refinement tests. That is, the tolerances that govern refinement decisions provided

extremely conservative upper bounds on the error in the scalar flux. This is not

difficult to understand if we examine the region-wise conservation equation arranged

into an expression for the region-averaged scalar flux:

Φreg =

∑FACES
f=1 (Jf,inc − Jf,exit)Af +QFixed,reg +QFission,reg

σaVreg
. (6.9)

We have examined many test problems in which the source (Q) terms in the above

equation are zero, which means that the relative error in the scalar flux equals the

relative error in the difference between the incident and exiting partial currents. Our

refinement algorithm guarantees that each Jf,exit and each Jf,inc is accurate to within

the “Octant-Current” tolerance. This does not guarantee that the difference of the

two is accurate to within that tolerance and thus does not guarantee that the scalar

flux will be accurate to within that tolerance. However, our results indicate that the

scalar flux is always much more accurate than the tolerance. This suggests that in

the problems we have studied, the errors in angular current on the many triangles

that make up an incident or exiting half-space are in large part canceling each other

when the contributions from the triangles are summed. This in turn suggests that it

may be possible to accumulate an error estimate in partial currents and use this in

the balance equation (above) to estimate the error in volume-averaged scalar flux.

It would be interesting to explore this in the future.

6.2.5 Other Future Work

The version of Jaguar that we implemented our method in was a serial code. It

would be interesting to see how this adaptive quadrature method scales for parallel
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codes. Load balancing tends to be an issue in any parallel implementation of any

adaptive method. Because the code tests for adaptation only on region boundaries,

we may miss information on the cell boundaries, and furthermore a given region has

no way (in our current algorithm) to tell an upstream region that it needs detailed

information in part of the directional domain. One way to address this latter issue is

to base refinement on “goal-oriented” tests, which usually take advantage of adjoint

solutions to determine where errors arise and thus where refinement should occur

[27] [28] [29] . Other interesting areas for future work include: testing for refinement

on all cell boundaries not just the region boundaries, analyzing how the timing

of refinement testing impacts the solution, and increasing the finite element basis

functions from linear functions to quadratic, cubic, or higher order functions.
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APPENDIX A

MATH OF SPHERICAL INTEGRATION

A.1 Background

In order to determine the weights of the discrete ordinates for our method, the

basis functions must be integrated over the spherical triangle formed by three great

circles. The spherical coordinates, as shown in Figure A.1, are mathematically de-

fined as follows:

ξ = cos(θ) , (A.1a)

µ = cos(γ)sin(θ) = cos(γ)
√

1− ξ2 , (A.1b)

and

η = sin(γ)sin(θ) = sin(γ)
√

1− ξ2 . (A.1c)

We define the linear basis functions, based on Equations A.1a, A.1b, and A.1c, as

b(
−→
Ω) = cc + cµµ+ cηη + cξξ . (A.2)

Based on Figures A.1, A.2, A.3, and A.4, the following geometric properties are true:

h =

√

R2 +

(

R√
2

)2

= R
√

3/2 , (A.3)

b =
2h

3
, (A.4)

b = R
√
2 , (A.5)

sin (α) =
1√
3
, (A.6)

and

cos (α) =

√

2

3
. (A.7)
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Fig. A.1. Spherical coordinate system.

Fig. A.2. Original octant with 45◦ triangle.
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Fig. A.3. Side view of flat triangle.

Fig. A.4. Flat view of triangle using ũ and v.
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A.2 Flat Triangle Definition and Change of Variables

From Figures A.2 and A.4, we see that the flat triangle lies in the plane that

intersects the xy, yz, and xz planes with an angle of 45◦. We perform our calculations

on this flat triangle. If we begin with the flat triangle illustrated in Figure A.4, we

can transform from the (ũ, v) variables to the (u, v) variables. On our flat triangle,

the vertical range, v, ranges from 0 to h. For a given v, the range of ũ is

(

−h− v

h

b

2
,
h− v

h

b

2

)

. (A.8)

The area of the triangle is

A =

∫ h

0

dv

∫ h−v
h

b
2

−h−v
h

b
2

ũ =

∫ h

0

dv
h− v

h
b =

1

2
bh . (A.9)

We can relate u to ũ by Equation A.10.

u =
ũ

ũmax
=

2hũ

b(h− v)
(A.10)

Therefore, the derivative of ũ is

dũ =
b(h− v)

2h
du . (A.11)

A.3 Relationship between Spherical and Flat Triangle Coordinates

A.3.1 The Relationship between γ and u

Figure A.5 illustrates the view looking down the z-axis towards the xy plane.

Projecting v onto the xy plane yields:

vxy = v
b

2h
=

v√
12

, (A.12)

hxy =
b

2
, (A.13)

(h− v)xy =
b

2

h− v

h
= hxy

h− v

h
, (A.14)
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Fig. A.5. View looking down the z-axis towards the xy plane.

and

⇒ (h− v)xy
hxy

=

(

h− v

h

)

. (A.15)

Thus, using the trigonometric definitions, we realize that

tan
(π

4
− γ

)

=
|ũ|

(h− v)xy
=

|ũ|/ũmax

(h− v)xy/ũmax

=
|u|

(h− v)xy

b(h− v)

2h
= |u|

h−v
h

(h−v)xy
hxy

= |u| .

(A.16)

If u < 0, γ < π
4
and if u > 0, γ > π

4
. This allows the transformation of Equation

A.16 to

tan
(π

4
− γ

)

= −u . (A.17)

In the 2nd, 3rd, and 4th quadrants, Equation A.17 becomes, respectively:

tan

(

3π

4
− γ

)

= −u , (A.18a)

tan

(

5π

4
− γ

)

= −u , (A.18b)
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and

tan

(

7π

4
− γ

)

= −u . (A.18c)

We take the derivative of Equation A.17:

∂u

∂γ
= sec2

(π

4
− γ

)

⇒ ∂γ

∂u
= cos2

(π

4
− γ

)

. (A.19)

We then solve for cos2
(

π
4
− γ

)

using geometry:

cos2
(π

4
− γ

)

=
(h− v)2xy

ũ2 + (h− v)2xy
=

(

b
2

)2 (h−v
h

)2

(

b
2

)2 (h−v
h

)2
u2 +

(

b
2

)2 (h−v
h

)2

⇒ cos2
(π

4
− γ

)

=
1

1 + u2
.

(A.20)

Similarly, solving for sin2
(

π
4
− γ

)

using geometry results in

sin2
(π

4
− γ

)

=
1

1 + u−2
. (A.21)

Finally, regardless of the octant, this results in

∂γ

∂u
=

1

1 + u2
. (A.22)

If we simplify Equation A.17, we get

γ =
π

4
− tan−1(−u) . (A.23)

We can then determine cos(γ):

cos(γ) = cos(
π

4
− tan−1(−u))

=

√
2

2

(

cos(tan−1(−u)) + sin(tan−1(−u)
)

=

√
2

2

1− u√
1 + u2

.

(A.24)

Thus the relationship between µ, ξ, u, and v is

µ = cos(γ)sin(θ)

=

√
2

2

1− u√
1 + u2

√

1− ξ2 .
(A.25)
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Fig. A.6. View of ellipse from γ = 45◦.

Similarly, sin(γ) is determined as

sin(γ) = sin(
π

4
− tan−1(−u))

=

√
2

2

(

cos(tan−1(−u))− sin(tan−1(−u)
)

=

√
2

2

1 + u√
1 + u2

.

(A.26)

Therefore, the relationship between η, ξ, u, and v is:

η = sin(γ)sin(θ)

=

√
2

2

1 + u√
1 + u2

√

1− ξ2 .
(A.27)

A.3.2 Relationships between ξ, u, and v

Figure A.6 illustrates that a great circle looks like an ellipse when viewed from a

perspective not in the plane of the circle. In the γ = 45◦ view, the equation is
(

h

v

)2
ξ2ũ2

R2
+

R2ξ2

R2ξ2max

= 1 . (A.28)

This is simplified to

ξ2 =

(

v
h

)2
ξ2max

ũ2ξ2max

R2 +
(

v
h

)2 . (A.29)

Equation A.29 shows ξ’s dependence on ũ. There is also a dependence on v in ξ2max

and ũ2. From Figure A.7, the following geometric relations are derived:
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Fig. A.7. A more detailed side view of the triangle.

v

R/
√
2− c′

=
h

R/
√
2

⇒ c′ =
R√
2

(

h− v

h

)

,

(A.30a)

b′

R/
√
2− c′

=
R

R/
√
2
⇒ b′ = R− c′

√
2

⇒ b′ = R
v

h
,

(A.30b)

a′2 =
R2

2

(

h− v

h

)2

+R2
(v

h

)2

, (A.30c)

and
a′

R
=

b′

Rξmax

⇒ ξmax =
b′

a′
. (A.30d)

For simplicity, we defined

d =
(v

h

)2

+
1

2

(

h− v

h

)2

. (A.31)

We solve for ξ2max:

ξ2max = d−1
(v

h

)2

. (A.32)

The derivative of ξmax with respect to v is

∂ξmax

∂v
=

(

h− v

h

)

d−3/2

2h
. (A.33)
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Using Equation A.32, Equation A.29 can be reduced to

ξ2 =
v2

(u2 + 1)1
2
(h− v)2 + v2

. (A.34)

This is then further reduced to

ξ =
v

√

(u2 + 1)1
2
(h− v)2 + v2

. (A.35)

Taking the derivative of Equation A.35 with respect to v yields

∂ξ

∂v
=

1
√

u2+1
2

(h− v)2 + v2
− v(v − u2+1

2
(h− v))

(

u2+1
2

(h− v)2 + v2
)3/2

. (A.36)

This is then reduced to

∂ξ

∂v
=

u2+1
2

h(h− v)
(

u2+1
2

(h− v)2 + v2
)3/2

. (A.37)

We also note:

1− ξ2 =
(u2 + 1)1

2
(h− v)2

(u2 + 1)1
2
(h− v)2 + v2

(A.38)

and

√

1− ξ2 =

√

u2+1
2

(h− v)
√

(u2 + 1)1
2
(h− v)2 + v2

. (A.39)

A.3.3 Representation of µ, η, and ξ in Terms of u and v

Finally, we restate the following derivations for the first octant, where the sub-

script 1 represents the first octant:

ξ1 =
v

√

(u2 + 1)1
2
(h− v)2 + v2

, (A.40)

η1 =

√
2

2

1− u√
1 + u2

√

u2+1
2

(h− v)
√

(u2 + 1)1
2
(h− v)2 + v2

, (A.41)
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and

µ1 =

√
2

2

1 + u√
1 + u2

√

u2+1
2

(h− v)
√

(u2 + 1)1
2
(h− v)2 + v2

. (A.42)

After simplification, Equations A.40 , A.41, and A.42 become:

ξ1 =
v

√

(u2 + 1)1
2
(h− v)2 + v2

, (A.43)

µ1 =
1− u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

, (A.44)

and

η1 =
1 + u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

. (A.45)

The relationship between the first octant (µ1, η1, ξ1) and the other seven octants can

be seen in Table A.1.

Table A.1

Mapping from first octant to other seven octants.

Octant µ η ξ

1 µ1 = µ1 η1 = η1 ξ1 = ξ1

2 µ2 = −η1 η2 = µ1 ξ2 = ξ1

3 µ3 = −µ1 η3 = −η1 ξ3 = ξ1

4 µ4 = η1 η4 = −µ1 ξ4 = ξ1

5 µ5 = µ1 η5 = η1 ξ5 = −ξ1
6 µ6 = −η1 η6 = µ1 ξ6 = −ξ1
7 µ7 = −µ1 η7 = −η1 ξ7 = −ξ1
8 µ8 = η1 η8 = −µ1 ξ8 = −ξ1
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A.4 Derivation of the Jacobian

We have explained the relationship between the flat triangle and the spherical

coordinates and can now derive the Jacobian relating the two coordinate systems.

This is necessary because the following equation describes changing variables from

the surface of the sphere to the flat triangle:

∫

∂ξ

dξ

∫

∂γ

dγf(ξ, γ) =

∫ umax

umin

du

∫ vmax

vmin

dv|J |f(u, v) , (A.46)

where the Jacobian, |J |, is defined as

|J | =

∣

∣

∣

∣

∣

∣

∂ξ
∂v

∂ξ
∂u

∂γ
∂v

∂γ
∂u

∣

∣

∣

∣

∣

∣

. (A.47)

Because of the specific coordinate systems chosen,

∂γ

∂v
= 0 , (A.48)

which simplifies Equation A.47 to

|J | =
∣

∣

∣

∣

∂ξ

∂v

∂γ

∂u

∣

∣

∣

∣

. (A.49)

Inserting Equations A.36 and A.22 into Equation A.49 results in

|J | = h(h− v)

2
(

u2+1
2

(h− v)2 + v2
)3/2

(A.50)

A.5 Putting It All Together

The integration of the linear basis function, which depend on µ, η, and ξ, takes

the form of

∫ umax

umin

du

∫ vmax

vmin

dv
h(h− v)

2
(

u2+1
2

(h− v)2 + v2
)3/2

(cc + cµµ+ cηη + cξξ) . (A.51)
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We insert Equations A.43, A.44, and A.45 into Equation A.51:
∫ umax

umin

du

∫ vmax

vmin

dv
h(h− v)

2
(

u2+1
2

(h− v)2 + v2
)3/2
∗ (cc

+ cµ
1− u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

+ cη
1 + u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

+ cξ
v

√

(u2 + 1)1
2
(h− v)2 + v2

) .

(A.52)

Because we are integrating over a triangle, the limits of integration are not con-

stant. We choose to use a one dimensional Gaussian quadrature in each of the two

variables to solve Equation A.52. We combine these sets using in a product quadra-

ture set. On the base flat triangle, we are using the coordinates u and v, where

−1 ≤ u ≤ 1 and 0 ≤ v ≤ h. On each sub-triangle, we initially divide v using the

Gaussian quadrature:

∫

u

du

∫

v

dvF (u, v) ≈
∫

u

du

J
∑

j=0

F (u, vj)wv,j , (A.53)

where vj and wv,j are the one dimensional Gaussian quadrature with J points and

F (u, v) is an arbitrary function of u and v. We will do all calculations on a right-side

up triangle as shown in Figure A.4. There are examples of sub-triangles being upside

down but the nomenclature is the only thing that changes. For each vj, we determine

the range of u (umin, umax):

umin =
vj − c̃p

c̃p(1− vj
h
)
, (A.54a)

and

umax =
vj − c̃n

c̃n(1− vj
h
)
, (A.54b)

where c̃n and c̃n were determined from the geometric properties of the flat sub-

triangle:

c̃p ≡ vtop −
2h

b
ũtop , (A.55a)
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and

c̃n ≡ vtop +
2h

b
ũtop. (A.55b)

We then utilize a one dimensional Gaussian quadrature in u over the range (umin, umax):

∫

u

du

∫

v

dvF (u, v) ≈
∫

v

dv
I

∑

i=0

F (ui, v)wu,i , (A.56)

where ui and wu,i are the one dimensional Gaussian quadrature with I points and

F (u, v) is an arbitrary function of u and v. Combining Equations A.53 and A.56, we

find
∫

u

du

∫

v

dvF (u, v) ≈
J

∑

j=0

I
∑

i=0

F (ui, vj)wu,iwv,j . (A.57)

We use Equation A.57 to evaluate Equation A.52. To a user-determined accuracy,

we determine the integration of the linear basis functions over a spherical triangle

on the unit sphere:

∫

Ωtriangle

dΩb(Ω) ≈
J

∑

j=0

I
∑

i=0

b(ui, vj)wu,iwv,j , (A.58)

where

b(u, v) = cc + cµ
1− u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

+ cη
1 + u

2

h− v
√

(u2 + 1)1
2
(h− v)2 + v2

+ cξ
v

√

(u2 + 1)1
2
(h− v)2 + v2

.

(A.59)
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