
AUTOMATED VEHICLE ARTICULATION AND ANIMATION:

A MAXSCRIPT APPROACH

A Thesis

by

CHRISTOPHER COREY GRIFFIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Visualization Sciences

AUTOMATED VEHICLE ARTICULATION AND ANIMATION:

A MAXSCRIPT APPROACH

A Thesis

by

CHRISTOPHER GRIFFIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tim McLaughlin
Committee Members, Frederic I. Parke

John Keyser
Head of Department, Tim McLaughlin

December 2010

Major Subject: Visualization Sciences

iii

ABSTRACT

Automated Vehicle Articulation and Animation:

A Maxscript Approach. (December 2010)

Christopher Corey Griffin, B.E.D., Texas A&M University

Chair of Advisory Committee: Tim McLaughlin

This thesis presents an efficient, animation production-centric solution to the articulation

and animation of computer generated automobiles for creating animations with a high

degree of believability. The thesis has two main foci which include an automated and

customizable articulation system for automobile models and a vehicle animation system

that utilizes minimal simulation techniques. The primary contribution of this thesis is the

definition of a computer graphics animation software program that utilizes simulation

and key-frame methods for defining vehicle motion. There is an emphasis on maintaining

efficiency to prevent long wait times during the animation process and allow for

immediate interactivity. The program, when implemented, allows for animation of a

vehicle with minimal input and setup. These automated tools could make animating an

automobile, or multiple automobiles of varying form and dimensions much more

efficient and believable in a film, animation, or game production environment.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION... 1

II RELATED WORK.. 4

 II.1. Film and Animation... 4
 II.1.1. MadCar.. 4
 II.1.2. EzCarRig.. 5
 II.1.3. Smart Cars... 6
 II.2. Automated Articulation... 7
 II.3. Autonomous Vehicles.. 8
 II.3.1. Virtual Racing.. 8
 II.3.2. Autonomous Real-world Vehicles... 9
 II.4. Virtual Automobile Dynamics... 10
 II.5. Real-world Automobile Dynamics.. 11
 II.5.1. Darwinian / Ackermann Steering Geometry.......................... 11
 II.5.2. Maneuvering Vehicles... 12

III METHODOLOGY.. 14

 III.1. Automobile Articulation.. 14
 III.1.1. Rig Template... 14
 III.1.2. Fitting Articulation to Geometry... 15
 III.2. Automated Automobile Animation... 16
 III.2.1. Driving Controls... 16
 III.2.2. Path Step... 17
 III.2.3. Bezier Curve... 18
 III.2.4. Turning Radius.. 21
 III.2.5. Osculating Circle... 22
 III.3. Automated Ground Detection.. 23
 III.4. Secondary Animation.. 24
 III.5. Darwinian / Ackermann Steering Geometry...................................... 25

IV IMPLEMENTATION.. 27

 IV.1. Implementation Environment.. 27
 IV.2. Automated Articulation... 28
 IV.2.1. Initialization... 28
 IV.2.2. Rig Building... 28
 IV.2.3. Geometry Fitting.. 29
 IV.2.4. Save / Load Rig... 32

v

CHAPTER Page

 IV.3. Automated Animation.. 33
 IV.3.1. Callback Functions... 33
 IV.3.2. Bezier Curve Functions.. 34
 IV.3.3. Simulation Curve Functions... 35
 IV.4. Automated Ground Detection.. 38
 IV.4.1. Zero Plane Projection... 38
 IV.4.2. Raycasting.. 38
 IV.5. Automated Automobile Dynamics... 40
 IV.5.1. Secondary Animation... 40
 IV.5.2. Ackermann Geometry.. 41

V RESULTS... 43

 V.1. Specifications... 43
 V.2. Animation Sequence.. 44
 V.2.1. Articulation... 44
 V.2.2. Animation... 45

VI FUTURE WORK AND CONCLUSION.. 47

 VI.1. Future Work... 47
 VI.2. Conclusion... 47

REFERENCES.. 49

VITA.. 51

vi

LIST OF FIGURES

FIGURE Page

1 The Darwinian Criterion... 12

2 Path Step.. 18

3 Bezier Curve... 19

4 Bezier Controls... 20

5 Turning Radius... 21

6 Osculating Circle.. 23

7 Secondary Animation.. 24

8 New Rig... 28

9 GenGeo... 29

10 Wheel Measurements... 30

11 GenGeo Complete.. 31

12 Save Rig.. 32

13 Bezier Rig... 34

14 Zero Rig.. 35

15 Redefining the Animation Path.. 36

16 Ground Detection... 39

17 Animation Sequence Automobiles... 44

18 Chase!... 45

1

CHAPTER I

INTRODUCTION

Animated computer-generated automobiles are prevalent in today's entertainment

industries. Examples can be seen in the digitally recreated car races in the feature film

Speed Racer, the urban demolition derby of the Grand Theft Auto video game series or

the living, breathing automotive characters of the feature animated film Cars.

When it comes to the animation of a real-world object such as an automobile, the

believability of motion contributes significantly to the viewer’s experience. Just as in the

case of human animation, vehicle animation is held to a higher standard of criticism due

to people's everyday interaction with automobiles. Meeting these high standards is a

difficult task that is achieved by accounting for the physical attributes and limitations of

automobiles such as velocity, turning radius, pitch, and roll. It is a time consuming and

tedious effort to process all these physical variables manually, and can be overwhelming

for an animator in a production environment.

Like all real-world objects, an automobile's motion is governed by physical

limitations. If these limitations are not respected in the motion of the vehicle, the results

may be unconvincing to an audience. These limitations are typically determined by the

dimensions of the vehicle and the positioning of key mechanical components including

the suspension arms and wheel knuckles. Hence, automobiles of varying dimensions

have distinguishing limitations and therefore unique motion patterns.

This thesis follows the style of IEEE Transactions on Visualization and Computer
Graphics.

2

Accounting for appropriate secondary motion of automobiles in a production

environment is difficult as well. In vehicle dynamics, secondary motions such as pitch,

roll and yaw rely heavily on physical calculations and the knowledge of physical

variables unique to an automobile such as the mass of key components and the structure

and spring coefficients of the suspension system. To manually calculate all the physical

forces acting on an automobile at all instances while it is in motion would be impractical

in a production.

To make a vehicle appear to drive accurately over complex terrain is another

problem prevalent in automobile animation. Again, this is a case where large amounts of

physical calculations would be required to get the desired results. Alternatively, to do this

animation manually would be time-consuming and negate immediate and production-

efficient editing changes.

The approach presented in this research alleviates several issues of automobile

articulation and animation; including the problem of variable automobile model

dimensions, limitation-based vehicle motion patterns and physically-based animation

effects such as secondary motion and ground detection. These issues are addressed with

the use of procedural and non-procedural techniques.

To answer the problem of varying automobile dimensions, an automated

articulation system was developed that utilizes geometry fitting techniques and allows for

rig dimension customization. When implemented, this system would allow for the

immediate articulation and animation of common automobile models of nearly any

dimension.

3

To resolve the issue of limitation-based vehicle motion, procedural functions

based on the real-world limitations and predictable motion patterns of automobiles were

implemented in conjunction with key-frame methods. These functions would allow for

the recreation of more accurate automobile motion.

To address the complications associated with physically-based animation effects

such as secondary motion and ground detection, complex physical calculations are

simplified and combined with procedural functions based on basic geometric

calculations. This method provides a production-friendly solution and believable

animation effects without the computational overhead and production delays that

commonly occur with conventional simulation techniques.

The techniques in this research differ in many ways from the methods already

applied to automobile articulation and animation. A key difference is that several past

approaches rely on a nearly exclusive implementation of one general technique, such as

simulation, path-interpolation or key frame animation. This research uses a combination

of all these techniques in orchestration to achieve the desired results.

This thesis focuses on the optimization of automobile articulation and animation.

The central motivation is the perceived realism, or believability, of vehicle motion rather

than the absolute physical accuracy of automobile animation. This ideal is achieved in

many aspects through the exploitation of simplified geometric models that can easily be

applied to automobile structure and motion. The research in this thesis could be

beneficial to several entertainment production environments such as film, animation and

gaming; as well as practical fields such as traffic studies, education and automobile

dynamics.

4

CHAPTER II

RELATED WORK

This thesis builds upon research in related fields including film and animation, automated

articulation, virtual and real-world autonomous vehicle design, virtual automobile

dynamics and real-world automobile dynamics.

II.1. Film and Animation

There have been several attempts to automate the rigging and animation of automobiles

in film and animation [Cars 2001; Grand Theft Auto 2004; Speed Racer 2008]. As

technology progresses in the entertainment fields, so do the expectations towards

believability and quality of animation. These expectations create strain on the

productions of films and animations and continuously push them into the development of

new and better techniques. Conversely, several innovative techniques in computer

graphics are often produced not in official production environments, but privately.

II.1.1. MadCar

Within the online open source community, Andrey Kozlov privately developed a

simulation-based technique for the animation of automobile models for entertainment

production. He created an open source program for the commercial software package

3DS Max [2] called MadCar [6]. When implemented, the system simulates physical

properties and limitations of an automobile while the user animates that automobile by

5

“driving” it within the computer generated scene. As the user drives the vehicle, the

system records the resulting, simulated animation.

This animation system provides an interesting approach to the problem of

believable automobile animation, but it has several production-centric problems. One

issue is that the physical simulation system central to the functionality of the program is

computationally expensive. While using this program, trying to animate more than one

vehicle in a scene at a time becomes noticeably problematic. The refresh rate slows down

considerably due to the computational overhead from the system simulating multiple

vehicles simultaneously. This limitation hinders the program's usefulness in productions

that require the animation of multiple vehicles efficiently.

Also, one cannot manually edit the animation after it is recorded with this

technique. In order to make animation changes, a user must rerecord the act of driving

the vehicle again from the beginning. This limitation makes this program become more

of a “performance” system, rather than a conventional animation system. The repeated

iterations that might be required to get the desired motion and the lack of editing

capabilities would make this program unreliable and inefficient in a production.

II.1.2. EzCarRig

Also within the online open source community, Laurent Renaud approached the problem

of automobile articulation and animation in entertainment production with a technique

called EzCarRig [11]. The program developed is an automobile animation system that

combines key-frame data, NURBS B-spline path-interpolation and a ground detection

function. The system includes an automobile rig limited to a user-defined path derived

6

from a NURBS curve, and a function that keeps the wheels of the automobile adhered to

a ground surface geometry.

This technique is effective at producing believable vehicle animation, yet it

doesn't provide any automation for rigging articulation in a vehicle model. Another

limitation is that the animation of the vehicle is completely dependent on the user-defined

interpolation along the path curve. Animating exclusively through path-interpolation

differs greatly from conventional animation techniques and may produce some undesired

results. Path-based systems decouple positioning and timing: animators create a path in

space without regard to timing, and then time character motion along that path [9].

According to Tim Milliron, this technique is awkward for many animators, and makes

animation revisions particularly difficult, since altering the path changes its parametric

space, which in turn alters the animator's carefully tuned timing [9].

II.1.3. Smart Cars

For Pixar Animation Studios’ animated feature film Cars, Tim Milliron's team developed

an automobile animation system that combined path-based animation techniques with

conventional animation techniques [9]. They built specialized procedural-motion systems

that allowed animators to simulate physically-plausible motion, but without sacrificing

animator control.

Milliron's team also developed a “space-time spline” technique for animating

characters along the motion path and timeline. They created a curve through space with

time built-in, where each control vertex is defined by the knots of the usual animation

channels at a particular frame. This approach helps to alleviate the awkwardness of

7

switching between path-based animation techniques and conventional animation

techniques.

These techniques provided excellent animated performance results. A fault may

be found in the lack of definition in the term “physically-plausible motion.” Using path-

interpolation for automobile animation may provide physically-plausible results, but

these results may not prove to be realistic enough to convince the audience. Accounting

for the motion of automobiles, as defined by an automobile's physical limitations, may

require more functions than just path-interpolation.

II.2. Automated Articulation

One of the most daunting tasks in computer animation today is appropriately fitting

articulation to geometry. A typical digital character requires manual articulation, also

known as rigging, to specify its internal skeletal structure and to define how the input

motion deforms its surface [3]. Traditionally, rigging has consisted of placing each bone

of the skeleton in the approximate location of the desired pivot of rotation [13]. However,

as the complexity of the rig grows, this quickly becomes impractical on a large scale.

This process becomes even more tedious when a user is expected to rig similar

characters of varying dimensions. There have been attempts to develop functions that

automate this process, such as Ilya Baran and Jovan Popovic's program known as

Pinocchio [3]. Their system when implemented takes a geometric model of a character,

analyzes the volumetric characteristics of it through a process called sphere packing and

then resizes and positions a rigging skeleton to fit inside the character.

8

This method is similar to Jason Smith and Jeff White's BlockParty system [13],

developed at Industrial Light & Magic to economize the rigging of many digital

characters with similar animation control systems but variable sizes. They developed an

approach that also derived the positions needed for rigging and deformations from the

geometry, as opposed to defining them by hand. Differing from Baran and Popovic's

Pinocchio system, Smith and White's technique follows the method of first creating a

standardized “volume guide” geometry template for characters. Next, rigging,

deformations and muscle elements are created to fit this standard geometry. Following

that, the position of each rig element relative to the geometry is recorded. As the volume

guide geometry is sculpted to match the high resolution character geometry, the internal

rigging elements of the character are accurately re-positioned to track with the geometric

changes.

These techniques of automatically positioning articulation elements based on the

analysis or manipulation of a character's geometric characteristics have proven to be

successful in films [Transformers 2007; Chronicles of Narnia: The Lion, the Witch and

the Wardrobe 2005]. These methods could be used as models of how to approach the

procedural rigging of various articulated objects, including automobiles.

II.3. Autonomous Vehicles

II.3.1. Virtual Racing

Hobart Chan approached the issue of automobile animation with the development of a

virtual automobile racing simulation system that utilizes a flocking behavior model. One

9

aspect of his research was the development of a system where the motion of each car is

determined by a response to its environment [4]. Rather than explicitly describing the

motion of each character individually, the animation for all the cars is automated.

Essentially, the system determines the motion of the car based upon elements of the

“track” it travels down and the positions of its neighboring cars.

This approach to vehicle animation could be highly effective if expanded into the

study of racing dynamics. As for its usefulness for a production in the entertainment

industries, it has limitations. Due to the program's lack of direct user input into the

animation of the automobiles, animators concerned with creating specific performance

requirements would find it limiting. However, it might prove useful for the animation of

background vehicles.

One helpful method that can be drawn from this research is its development of

position and orientation relationships created directly between the automobile model and

the race track. The techniques used in these relationships may be reproduced for other

functions such as in the development of ground detection techniques.

II.3.2. Autonomous Real-world Vehicles

In James Massey's research [8] into the automated-driving of real-world vehicles, the

problem of automobile motion is approached with the development of a program that

helps in the navigation of real-world vehicles based on GPS data. The program

implements a series of functions that employ physical calculations involving variables

such as longitudinal and latitudinal velocities, steering angle, tire traction, wind

resistance, rolling resistance, engine torque, axle torque, and the inertia of the wheels.

10

Massey's techniques for determining automobile motion are capable of easily being

applied to vehicle animation in computer graphics.

For example, in his writings he describes performing many of the navigation

functions based on a flat Cartesian plane, no matter how dynamic the actual terrain may

be, to simplify the technique [8]. This approach may be expanded upon to more

efficiently animate virtual automobiles. Instead of trying to calculate the driving motion

of an automobile model over complex terrain, one could use a “zero plane” approach by

determining the driving motion of an automobile model on a flat plane and then

projecting its position and orientation onto the surface of a terrain.

Also presented in Massey's research are equations depicting the forces and

variables to determine the lateral acceleration of the vehicle in motion. Although used for

the simulated driving of an actual, real world vehicle, these functions and techniques are

helpful when simulating automobile motion in computer generated vehicles. For

example, the equations Massey used for calculating lateral acceleration may be easily

converted to determine the amount of roll in a virtual vehicle in motion. Then, a

procedural function to animate an automobile model's secondary animation can be

derived.

II.4. Virtual Automobile Dynamics

Russell Mueller's research into the recreation of an automobile as a physically-accurate

computer model demonstrates a simulation approach to automobile articulation and

dynamics [10]. To create a complete vehicle dynamics model of a 2002 TAMU FSAE

racecar, Mueller used MSC Software's ADAMS/Car program and FSAE templates of the

11

actual car [10]. The templates divide elements of the vehicle model into sub-models in

order to simplify the full vehicle model and to reduce computational requirements, while

still providing an accurate representation of the overall vehicle dynamics. Using

repeatable templates of key components in a hierarchy structure allows for modularity.

This is highly beneficial for the reproduction of complex models and adding variation

efficiently. This approach can easily be applied to other methods of automobile rigging.

Mueller also breaks down the entire automobile structure system into subsystems

including suspension, steering, powertrain, tires, brakes, and anti-roll bars . Within these

subsystems, each moveable part of the automobile is treated as a physically-accurate

rigid body. When the virtual automobile is simulated, data is extracted to make accurate

predictions of what the real automobile might do under similar driving conditions. This

approach is excellent for producing accurate data for real world application, yet it is

computationally expensive and inefficient in an entertainment production environment.

II.5. Real-world Automobile Dynamics

II.5.1. Darwinian / Ackermann Steering Geometry

In 1759, Erasmus Darwin designed a steering model to improve the efficiency and safety

of horse-drawn carriages. The design was later replicated and patented by Rudolph

Ackermann [5]. Darwin's principle states that in a carriage the two front wheels should

turn about a center that lies on the (extended) line of the back axle of the carriage [5].

12

Fig. 1. The Darwinian Criterion

Darwin's optimized steering model paved the way for improved steering geometry

in wheeled vehicles (See Figure 1). This basic principle is still the key to modern

automobile design and technology today. His efforts to optimize carriage steering helped

to advance the field of vehicle safety and performance analysis and encouraged the

application of advanced geometric models. Through the implementation of basic

trigonometric functions, one could utilize this geometric principle to accurately project

the motion patterns of automobile models of any dimension in a virtual environment.

II.5.2. Maneuvering Vehicles

Following in the footsteps of Darwin nearly two hundred and fifty years later, J.C.

Alexander and J.H. Maddock take a more in-depth mathematical approach to the analysis

and optimization of automobile design with respect to steering. They recreated a

mathematical model of a vehicle on rolling wheels [1]. Next, they investigated the

general kinematics of such vehicles and developed an Euler-Savary formula relating the

center of rotation of the vehicle with the centers of curvature of the trajectories of the

axles. They then made a determination of optimal steering for a vehicle turning around a

corner, and also how tight a corner a given vehicle can traverse.

13

Their research not only proves Darwin's research, but also provides an excellent

dissection of many of the geometric principles that are acting upon an automobile in

motion and the limitations that govern that motion. This research provides a plethora of

dynamic functions that can be directly implemented in a virtual environment to determine

the motion patterns of automobile models.

14

CHAPTER III

METHODOLOGY

III.1. Automobile Articulation

Visually, a typical automobile follows the model of four wheels and a chassis. The

structural differences between most vehicles can be reduced to variations in chassis and

wheel dimensions. When approaching the problem of rigging articulation for automobile

models, one focus of this research was the creation of a standard vehicle articulation

template. This template would allow a user to automatically rig articulation for nearly

any type of automobile of various dimensions.

III.1.1. Rig Template

Rigging is a process used in computer graphics to bridge the gap between

modeling and animation. Typically, an animated object is initially constructed using a

series of tools to manipulate the virtual geometry into a particular form. This is

commonly known as modeling. Next, rigging elements are constructed and linked to the

geometry of the object. These elements allow the animator to manipulate the form and

position of the geometry of the object.

The use of modularity is highly valued in the process of rigging. It can be

achieved through the implementation of standard templates. This is ideal for rapidly

constructing multiple models of similar structures when needed. It also provides the

opportunity for a user to make changes to one or several models efficiently.

15

In the program developed for this thesis, a system was created that utilizes

customizable automobile rigging templates to allow the user to produce a multitude of

automobiles of varying dimensions. Within one of these templates the user may alter the

dimensions of the vehicle including chassis length, front and rear axle width, front and

rear suspension width, front and rear wheel radius, and front and rear wheel width. With

the control of these dimension variables, a user may produce articulation for nearly any

type of automobile.

To initiate the customization process the automobile rig is automatically

constructed with dimension values provided by a default template. Once the default

template is implemented, the user can then change the dimension values to set the

appropriate proportions for the automobile model they are rigging. Finally, the user may

save those values into a new template so they may reproduce the articulation for that

particular automobile model immediately for future use. This process also allows for easy

interchangeability between automobile rigs and models while animating.

III.1.2. Fitting Articulation to Geometry

For this program, an automated geometry fitting function was developed to aid in

the rigging process. Initially, the user would be expected to provide the function with the

geometry of the automobile's four wheels and chassis. Next, the function analyzes the

dimensions of each piece of geometry and their positions relative to each other, and resets

the dimensions of the automobile rig to fit this geometry appropriately.

This process is achieved by simplifying the structure of the four wheels into the

common geometric form of a cylinder. This form can ultimately be broken down into a

16

few simple geometric equations that can be used to manipulate the position and form of

elements in an automobile model's rigging.

III.2. Automated Automobile Animation

Conventional automobile motion follows a pattern based on the automobile's structure as

defined in Darwin's Criterion. A common automobile follows the structural pattern of

two steerable wheels in the front and two non-steerable wheels in the rear. This structure

limits maneuverability and produces a predictable motion pattern that can be reproduced

with a series of trigonometric functions.

For this thesis, an animation system was developed based on such principles and

the motivations of user-friendliness and production efficiency. The system utilizes

intuitive “driving” controls and path-interpolation functions in the user interface, Bezier

curve functions for animation path construction and manipulation, and techniques reliant

on the turning radius and osculating circle principles for the accurate replication of real-

world automobile motion limitations and the accurate projection of vehicle position,

orientation and steering.

III.2.1. Driving Controls

To ensure efficiency with this program, the number of controls for animating the

automobile model has been kept to a minimum. To set the automobile's initial layout

position and orientation, or to parent the model to another object in the scene, a control

object called the Root Control is used as the model's root node. A control object is a node

built into a model's rigging that allows the animator to manipulate the model through

17

direct manipulation of the control object's attributes; including position, orientation and

scale. In common rigging practices, the root node is the top level control object in a

model's articulation hierarchy.

To create the “driving” animation of the automobile model, a control object called

the Driver Control is used to set the initial vehicle position and orientation, and to

manipulate the path curve that the model follows through the user-defined manipulation

of the Driver Control's position and orientation. Additional animatable variables are

added to the Driver Control to allow a user to manipulate the path curve, set parameters

in the simulation, set the forward or reverse direction for driving, edit secondary

animation values and set dimensions of the automobile rig.

III.2.2. Path Step

Using Milliron's “space-time spline” technique as a model, a function called the Path

Step was developed to combine path-interpolation animation with conventional

animation. This technique is achieved by utilizing position and rotation animation data

from the Driver Control object.

18

Fig. 2. Path Step

As the user animates the position and rotation of the Driver Control object, a

single animation curve is built with key frame values corresponding in time to key frame

values in the Driver Control object's position and rotation animation data (See Figure 2).

The values of the Path Step curve determine the parametric distance the automobile

model should travel along the animation path curve between keyed time values.

Essentially, each keyed value of the Driver Control represents a normalized start and end

value of a section in the animation curve. These individual animation curve sections are

combined together to form a single animation curve. The user may manipulate the shape

of this curve to modify position values of the vehicle model over time.

III.2.3. Bezier Curve

Pierre Bezier was a French engineer with the Renault car company who set out in the

early 1960's to develop a curve formulation which would lend itself to shape design [12].

19

He utilized a geometric algorithm developed by Paul de Casteljau to create editable

parametric curves to aid in automobile body design. These curves are still used today in

nearly all fields of computer graphics and design due to their precision and user-friendly

nature.

Fig. 3. Bezier Curve

For the program developed in this research, Bezier curves were implemented for

creating the initial animation paths and trajectory curves of the animated automobile

models. These parametric curves rely on “control points” to determine their structure and

curvature (See Figure 3). This is ideal for manipulating with user defined control objects

in a virtual environment.

20

Fig. 4. Bezier Controls

As the user animates the Driver Control in the program, third degree Bezier

curves are constructed between each keyed position of the Driver Control in the virtual

environment. A Bez In Control object and a Bez Out Control object are used to set the

positions for the In Tangent and Out Tangent points of each knot at the ends of each

Bezier curve. To maintain continuity between each Bezier Curve, the Bez In Control and

the Bez Out Control positions are limited to positive and negative values along the local

Y-Axis of the Driver Control object (See Figure 4). The individual Bezier curves are

linked together to create the entire animation path that the automobile model initially

follows along.

21

III.2.4. Turning Radius

The radius of the smallest circular turn a vehicle is capable of making is commonly

known as the turning radius, or turning circle. In accordance with Darwin's Criterion, the

two front wheels of a turning automobile will follow a circular path around a center point

that lies on the extended line of the back axle of the vehicle.

Fig. 5. Turning Radius

As the automobile is in motion, the paths of all four wheels will draw curves

equivalent to portions of circles at varying radii from the aforementioned center point

(See Figure 5). The smallest circle drawn by one of the four wheels (typically the rear

interior wheel on a modern automobile) is where the turning radius, or turning circle,

variable is derived.

In a typical automobile, the turning radius is derived from the structural and

mechanical limitations of the vehicle's steering mechanisms. If an automobile did not

22

have steering limitations, according to Darwin's Criterion, the minimum turning radius

would be equivalent to the distance between the front and rear wheel axles.

With this principle implemented in conjunction with trigonometric functions, one

could ascertain the position of a turning center point projected alongside an automobile at

any given steering angle. For example, if a vehicle were turning at its maximum steering

angle, the “live turning radius” of the vehicle would be equivalent to its turning radius

limit. Conversely, as a vehicle's steering angle approaches zero, or the equivalent to

driving perfectly straight, its “live turning radius” approaches infinity.

A series of functions based on this principle were developed for this project. They

were implement to allow the user to set a minimum turning radius limit for each vehicle

model as it is animated. This ultimately helps to more realistically define the path the

automobile model will follow.

III.2.5. Osculating Circle

At any given position along a smooth curve, the curvature of a point on that curve can be

matched to the curvature of a tangential circle. This geometric principle is known as the

Osculating Circle (See Figure 6). When implemented, position and orientation data for

points on any smooth curve can be calculated using circle geometry models and

trigonometric functions.

23

Fig. 6. Osculating Circle

This principle was used in this project in conjunction with the turning radius

principle to correct a vehicle's animation path. The system would take in the user-defined,

turning radius variable and apply it to the Osculating Circle principle to re-project an

animation path that respected the automobile's steering limitations. As a result, the

vehicle model would have more realistic automobile motion.

III.3. Automated Ground Detection

One of the major contributions to the believable animation of a computer generated

character is its dynamic response to other elements in the virtual environment. For

example, if a character model were not able to respond appropriately to changes in

elevation as it walked across a ground surface, the believability of the animation would

become questionable.

For this thesis project, an automated ground detection function was implemented

in the program to maintain the vehicle's believable adherence to ground surface geometry

while in motion. As a vehicle model is animated driving over a surface, rays are cast

down from the center of each of the vehicles wheels to determine the distance to the

24

surface geometry. A comparison is made between the projected distance and the radius of

each wheel. An elevation and orientation value for the automobile is calculated by

averaging the values of all four wheel elevations. The automobile is then translated and

rotated appropriately to maintain believable motion as it traverses the geometric surface.

III.4. Secondary Animation

Secondary animation is motion that results directly from other animation [7]. Examples

may be seen in the jiggling of body mass as a character walks or the swaying of an

antenna as an automobile turns. A secondary action is always kept subordinate to the

primary action [7]. This motion applies not only to soft, deforming objects, but to rigid

articulated objects including automobiles with suspension systems.

Fig. 7. Secondary Animation

For the automated animation system in this project, a series of functions were

used to determine the automobile's rolling, pitching and yawing motion (See Figure 7)

based on the automobile model's turning and velocity values as it is animated. The

implemented rolling and yawing functions required the use of centripetal force

calculations. One of the major factors needed in calculating any force is the mass of the

object in motion.

25

 Force = ma = d(mv) / dt

 Centripetal Force = mac = mv2 / r

To bypass the necessity for an animator to input the automobile's mass, the mass

value is completely removed from the calculations. The system calculates the modified

secondary motion values throughout the entire timeline and records the maximum pitch,

roll and yaw value. These maximum values are used to derive normalized values for the

secondary motion per frame. The normalized values are then multiplied by a user-defined

pitch, roll and yaw rotation angle value to allow the user to customize the amount of

rotation that will act upon the vehicle chassis at any given time in the animation. As a

result, the input of the automobile's mass is no longer required.

Another variable that is usually required in calculating secondary motion of an

automobile is the spring coefficients of the suspension system. Due to the user-defined

nature of this technique and the focus on the velocity and turning values of the vehicle,

the spring coefficients are no longer necessary.

III.5. Darwinian / Ackermann Steering Geometry

Since Darwin's steering geometry, also known as Ackermann steering geometry, is such a

common attribute of modern automobiles, it seemed appropriate to include it in the

rigging model. And since it is an attribute that changes in value between automobile

designs, it also seemed appropriate to make it a value the user may edit in the

customization process.

26

For this project, a series of functions were created for the animation portion of the

program that utilize trigonometric equations based on Darwin's Criterion (see Figure 1)

to replicate accurate Ackermann steering geometry.

Initially, when the automobile model is animated and the motion is calculated in

the simulation function, the front wheels of the model are set to be parallel to an acting

simulation node to capture the simulated steering values. When the Ackermann function

is applied to the front wheel rigging, trigonometric equations offset the steering values of

each of the front wheels to match the angles Darwin specified for optimal steering. This

produces the desired results as defined by the animator in the user-defined Ackermann

Variable.

 27

CHAPTER IV

IMPLEMENTATION

The following section discusses aspects of the implementation including the software and

programming language used for the implementation environment and the functions

implemented in the initialization of the program, the automated articulation, the

automated animation, automated ground detection and automated automobile dynamics.

IV.1. Implementation Environment

For the development of this automated articulation and animation tool, a commercial 3D

modeling, animation and rendering software package called 3DS Max [2] was used. This

program was chosen due to the accessibility of its interfaces, the flexibility of its

programming language, its robustness as a solid, reliable program, and its popularity

among the gaming, film, and animation industries.

The virtual objects, functions, and simulations necessary for the development of

this tool were written in 3DS Max's native programming language Maxscript. The user-

interfaces and control objects were also implemented through Maxscript. These include a

series of control attributes for each rig and a floating interface window for the

management of the automobile model rig list. Ultimately, the program is executed as a

loadable script in 3DS Max.

28

IV.2. Automated Articulation

IV.2.1. Initialization

Upon the user's initialization of the program script, the system creates an array of all the

elements in the current scene and runs a filter on them, searching for an included string

(“AutoRig”) flag within each element's attributes. Once the program has identified and

collected all the appropriate rig elements containing the search flag attribute, the system

reconstructs the internal connections and variables of each automobile rig, and adds the

newly reconstructed rigs to the main Rig List array. From here, the user may continue to

edit the articulation and animation of the automobile models.

IV.2.2. Rig Building

Fig. 8. New Rig

When the user clicks the New Rig button in the Car Rig List interface (See Figure 8), a

new, default automobile rig is added to the scene Rig List array. Following that, a new

29

rigging template is constructed to store the rig's variables and attributes with initial

default values. Then, the buildrig function is called to construct the elements of the rig in

the virtual scene.

 When the buildrig function is called, it constructs the control objects, NURBS

curve paths, display texts, simulation rigging, automobile rigging, ground detection

rigging and default geometry for the new automobile rig. Finally, the dimensions of the

new rig are altered to match the values stored in the rigging template.

IV.2.3. Geometry Fitting

Fig. 9. GenGeo

After the user selects the appropriate chassis and wheel geometry for an automobile rig,

and clicks the Generate button in the GenGeo section of the Geometry user interface (See

Figure 9), the newly selected geometry is set as the automobile's temporary geometry and

the GenGeo function is called.

30

Fig. 10. Wheel Measurements

When the GenGeo function is called, it first calculates the dimensions of the

target automobile model geometry. This includes extrapolating the length and width of

the automobile chassis rigging. The front axle width is calculated by measuring the

distance between the target front wheel geometry objects. To calculate the rear axle

width, the system measures the distance between the target rear wheel geometry objects.

To calculate the length of the chassis rigging, the distance between the target front and

rear wheel geometry objects is measured (See Figure 10).

31

Fig. 11. GenGeo Complete

After the dimensions of the chassis articulation are calculated, GenGeo calls a

series of SnapGeo functions. These functions calculate and set the widths and radii of the

wheel articulation by analyzing the vertex position data of the new wheel geometry using

3DS Max's BoundingBox function. The BoundingBox function is a tool common to

several commercial 3D modeling, animation and rendering software packages. This tool

extrapolates the length, width and height of an object's geometry with respect to a user-

defined coordinate system. SnapGeo then repositions and reorients the new wheel and

chassis geometry objects to the automobile rigging based on their local offset values (See

Figure 11).

32

IV.2.4 Save / Load Rig

Fig. 12. Save Rig

When the user clicks the Save Rig button in the Car Rig List interface, the system

prompts the user to save the template data of the currently selected automobile rig to a

custom text file (.arg) and location on the user's computer (See Figure 12). After the user

chooses the name and location of the .arg file, the system writes the template data to it.

Following that, the system also saves the geometry data of the automobile model as a

separate .max file in the same directory with the same name as the .arg file, but with an

additional “_geo” suffix.

When the user clicks the Load Rig button in the Car Rig List interface, the system

prompts the user to load an automobile rig file (.arg) from a user-defined location. When

the rig file is loaded, the buildrig function is called again and a new rig is built with the

dimension values described in the rig file. Then, the geometry stored in the

33

corresponding .max file is loaded into the current scene and reattached to the rig using the

SnapGeo functions.

IV.3. Automated Animation

IV.3.1. Callback Functions

One of the key elements to animating the automobile in the program is the use of 3DS

Max's Callback function. Whenever an object in the scene is selected and transformed,

the Callback tool searches through a list of the objects currently selected and determines

if the selection is a control object in an automobile rig or not.

 If the selection is determined to be a Driving Control object and an attribute of

that object is modified during animation the system implements the Solver function. The

Solver function is essentially a list of all the procedural functions the animation system

calls to update the animation data. These include a series of Bezier curve, simulation,

ground detection, secondary animation, and Ackermann solving functions.

34

IV.3.2. Bezier Curve Functions

Fig. 13. Bezier Rig

In the Bezier section of the Solver function, a simplified vehicle model called the Bezier

Rig, is animated along a motion path defined by Bezier curves constructed from the

position and rotation animation data of the Driver Control object (See Figure 13).

The Bezier Root Path function constructs the Bezier curves of the initial

animation path curves located between the key-framed Driver Control positions. It takes

in the keyed position data of the Driver Control to set the Bezier control knot positions of

each curve. It then takes in the Bez In Control and the Bez Out Control position values to

define the In Tangent and Out Tangent values of each control knot, and thus defining the

shape of path curve. The Bezier Rotation / Position function determines the position and

rotation of the Root Node of the Bezier Rig. To determine the position of the node, the

system implements 3DS Max's Path Interpolation function. The function derives the

35

position value on the path curve based on its parametric position according to the user-

defined Path Step value. To determine the rotation of the node, the system implements

3DS Max's Path Tangent function. This function produces a tangent vector value of the

path curve based on its parametric position according to the Path Step value. Using

trigonometric calculations, a rotation value about the Z-Axis is determined for the Bezier

Root Node using the given vector.

To determine the Bezier Rig's steering values, the Bezier Nose Path function

generates a curve based on the Bezier Nose Bone's position per frame. Then, the Bezier

Steer function generates steering data based on that curve using the same Path Tangent

function just like the Bezier Rotation / Position function before.

IV.3.3 Simulation Curve Functions

Fig. 14. Zero Rig

36

The next portion of the Solver consists of a series of functions that analyze the curvature

of the Bezier Path Curve and construct a new animation path curve shaped with respect

to the user-defined automobile speed and steering limitations. These functions redefine

the automobile model's animation with another simplified vehicle model known as the

Zero Rig (See Figure 14). The Zero Rig follows the newly constructed animation path

and provides a more accurate representation of automobile driving motion than the

Bezier Rig. It is called the Zero Rig because it is the last rig in the process to be

calculated through the “Zero Plane” ideal as described by Massey.

Fig. 15. Redefining the Animation Path

 To construct the animation path curve for the Zero Rig, the Zero Root Path

function evaluates the animation data of the Bezier Rig to define the automobile model's

37

speed and steering angle. Those values are then adjusted appropriately with respect to the

user-defined limitations (See Figure 15). First, it records the changes in position and

rotation of the Bezier Rig Root node per frame. This data is then piped through an

equation based on the Osculating Circle (See Figure 6) to get the immediate turning

radius of the automobile model per frame.

radius = (dpos / 2) / sin(drot / 2)

Once the radius is calculated, the steering angle of the car can be computed using

an equation based on the Vehicle Turning Radius geometric model (See Figure 5).

angle = atan(chassis length / radius)

The steering angle is then compared to the user-defined steering limit and altered

to respect the limitation. The function then calculates the speed of the car from the

change in position value per frame. The speed is compared to the user-defined speed limit

and altered to respect that limitation.

The Zero Position function sets the position of the Zero Root Node using the Path

Interpolation function in tandem with the current Path Step value. The Zero Rotation

function sets the rotation of the Zero Root Node using 3DS Max's Path Tangent function

with the current Path Step value.

To determine the Zero Rig's steering values, the Zero Nose Path function

generates a curve based on the Zero Nose Bone's position per frame. Then, the Zero Steer

function generates steering data based on that curve using 3DS Max's Path Tangent

function.

38

IV.4. Automated Ground Detection

IV.4.1. Zero Plane Projection

The rigging elements that determine the “driving” animation of the automobile model

include the Bezier Rig and the Zero Rig, and are calculated on a perfectly flat plane

known as the “Zero Plane”. The portion of the vehicle model pertaining to the ground

detection of the automobile rig is called the GD Rig. It is projected along the Z-Axis from

the Zero Rig to the user-defined Ground Surface Geometry using the Ground Detection

function. This function determines the automobile model's vertical position, local x and y

orientation relative to the ground surface, and vertical wheel position relative to the

automobile's chassis.

To maintain the accuracy of the steering orientation relative to the “Zero Plane”,

3DS Max's Look-At Constraint is implemented. As the orientation of the GD Rig changes

due to the motion over the ground surface geometry, the steering remains constant and

accurately projected.

IV.4.2. Raycasting

To produce the effect of ground detection, raycasting and polygonal face functions are

implemented in the Ground Detection function. As the Driver Control object and the

automobile model are animated, a ray is cast from the X and Y position value of each

wheel node and the Z position value of the Driver Control object. The rays are cast in the

negative direction along the World Z-Axis. 3DS Max's Intersect Ray function is used to

39

determine the point in space where the rays intersect with the user-defined Ground

Surface Geometry.

Fig. 16. Ground Detection

The four vertex point positions of a polygonal plane called the Ground Detection

Net are set to those intersection points derived from the ray functions (See Figure 16).

Essentially, a plane with dimensions corresponding to those of the automobile rig is

projected onto the ground surface geometry using ray intersect functions for each wheel.

3DS Max's Face Normal function is used to determine the normal vector value of

the Ground Detection Net's one polygonal face. This normal vector is then used to

determine what the orientation of the automobile Chassis should be relative to the ground

surface geometry. 3DS Max's Face Center function is used to determine the position at

the center of the Ground Detection Net. This position value is then used to determine

40

what the vertical position of the Chassis should be relative to the ground surface

geometry. Once the Chassis is positioned and oriented, the wheels of the automobile rig

are translated in their local Z-Axis to positions corresponding to the vertex points on the

Ground Detection Net.

IV.5. Automated Automobile Dynamics

IV.5.1. Secondary Animation

A series of equations based on the automobile model's change in rotation and velocity are

used to determine the vehicle model's rolling, pitching and yawing motion.

To calculate the automobile model's secondary rotation values at a given time, the

Secondary Animation function first reads the pitch, roll and yaw values over the entire

animation timeline and finds the maximum values of each to be used later to produce

normalized pitch, roll and yaw values.

pitchmax = |velocity|

rollmax = |velocity2 / turning radius|

yawmax = |velocity2 / turning radius|

Equations are then implemented to ascertain the Normalized Pitch, Roll and Yaw value of

the automobile rig per frame.

41

 normalized pitch = velocity / pitchmax

 normalized roll = velocity2 / turning radius / rollmax

 normalized yaw = velocity2 / turning radius / rollmax

Then, the Pitch, Roll and Yaw values of the automobile rig are derrived by combining the

Normalized Pitch, Roll and Yaw values with the user-defined Pitch, Roll and Yaw Limit.

pitch = npitch × pitch limit

roll = nroll × roll limit

yaw = nyaw × yaw limit

These values are then implemented into the rotation values of the Secondary Root node

of the automobile rig to produce the effect of secondary animation.

IV.5.2. Ackermann Geometry

To calculate the effect of Darwinian / Ackermann Geometry, a series of equations based

on Darwin's Criterion (See Figure 1) are implemented in the Ackermann function. First,

the immediate turning radius of the car is calculated.

radius = chassis length / tan(steering angle)

Then, the turning radius of each of the front wheels is calculated.

left radius = radius – (chassis width / 2)
right radius = radius + (chassis width / 2)

42

Next, the Darwinian / Ackermann rotation values for both of the front wheels are

calculated. The user-defined Ackermann value in the Driver Control attributes is used to

determine the amount of Ackermann effect in the equation.

rotation = (atan(chassis length / radius) – steering angle) × acker

This rotation value is then used to offset the initial rotation value of the front wheels and

give it the desired effect of optimized steering.

 43

CHAPTER V

RESULTS

This vehicle articulation and animation tool is capable of creating believable animation of

automobiles. To test the program a short animation called Chase! and a series of

demonstration videos were created with the utilization of this tool. Within the short

animation, several features were used to challenge the system including a variety of

automobile designs to test the range of the automated rigging function, dynamic

animation paths to test the navigability of the animation tools and complex terrain to test

the automated ground detection function.

In the demonstration videos, key aspects of the automated vehicle rigging and

animation system are highlighted, including automated rig creation, automated geometry

fitting, editable rig parameters, automated Ackermann geometry, instant geometry

swapping, Bezier path animation, speed and steering limit-based animation, automated

secondary animation and automated ground detection.

V.1. Specifications

The computer used to implement this program in the animation sequence and the

demonstration videos contained an AMD Athlon II Quad Core processor at a rated

processing speed of 2.90 GHz and 6.00 GB of RAM.

44

V.2. Animation Sequence

V.2.1. Articulation

For the articulation portion in the production of the animation sequence, rigging was

created for automobile models in the sequence using the automated articulation system in

this tool. The program was capable of automatically creating articulation for 5 unique

automobile models including a 2010 Dodge Challenger, a 2009 Dodge Charger, a 1957

Fiat 500, a 2009 Toyota FJ Cruiser and a city bus (see Figure 17).

Fig. 17. Animation Sequence Automobiles

Approximately 15 seconds were required for the system to automatically generate

an animation-ready vehicle model of each unique automobile type. To begin the process,

1.16 seconds were required for the system to automatically generate a new Template Rig

45

following the user clicking the New Rig button in the Car Rig List interface. It then

required 0.12 seconds for the GenGeo function to automatically fit the articulation of the

Template Rig to the geometry of that unique vehicle model following the user clicking

the Generate button in the GenGeo section of the Geometry interface. Approximately

13.72 seconds were required for human interaction between the rigging functions,

including the selection of the geometry objects for the GenGeo function. For the

duplication of the automobile models, each unique automobile rig was saved to a user-

defined location and then copies of those rigs were loaded into the scene as needed. In

total, 21 automobile models were constructed and managed using the various articulation

and model management tools of the automated rigging system.

V.2.2. Animation

Fig. 18. Chase!

46

For the animation portion of this production, the automated animation system was

capable of creating the vehicle motions for the various automobile models necessary for

the animation sequence (See Figure 18). The total length of time for the Chase!

animation sequence was 12.5 seconds at 24 frames per second (300 frames). The system

was able to allow for the simultaneous animation of 21 automobile models within the

sequence. Of those vehicle models, 6 were animated over complex terrain accurately

using the Ground Detection system. The animation system required 0.41 seconds to

calculate 300 frames of animation for one vehicle model not using the Ground Detection

system and 4.12 seconds to calculate 300 frames of animation for one vehicle model

using the Ground Detection system.

With the inclusion of time required for human interaction with the articulation and

animation tools, and the continuous editing and adjustment of the vehicle actions and

placements; the articulation and animation of the Chase! sequence required

approximately 10.5 hours of work.

47

CHAPTER VI

FUTURE WORK AND CONCLUSION

VI.1. Future Work

Future work on this project could address additional attributes of the automobile

simulation such as mass and force calculations. The addition of mass and force

calculations could help provide a more realistic approach to automobile animation. The

user could input real-world mass and friction values for the automobile chassis and

wheels, and the system could animate the automobile more accurately with respect to

actual real-world forces such as inertia, torque, and traction.

VI.2. Conclusion

The tool developed in this thesis solves many problems found in the articulation and

animation of computer generated automobiles. It does so by enabling the user to rig and

animate a variety of vehicles quickly and realistically. This is aided by simple and user-

friendly interfaces that provide vast amounts of control and customization in the

automobile models being produced. The emphasis on production efficiency through the

ease of interface and the rapid generation of materials exemplified in this project give it

immediate value.

This tool is not a physically-accurate model of vehicle behavior. It was developed

with the expressed motivation to be a production tool with a primary focus on the

importance of producing convincing imagery of automobiles in motion for film and

animation.

48

This tool may be used as a model for the development of similar techniques used

for the optimized and automated rigging and animation of other types of vehicles or

characters. It also may be used if applicable in fields outside of entertainment, including

those in automobile design, traffic study and roadway optimization.

49

REFERENCES

[1] J. Alexander and J. Maddocks, “On the Maneuvering of Vehicles,” SIAM Journal on

 Applied Mathematics, vol. 48, no. 1, pp. 38-51, 1988.

[2] Autodesk 3DS Max 2009, http://usa.autodesk.com, 2009.

[3] I. Baran and J. Popovic, “Automatic Rigging and Animation of 3D Characters,” ACM

 Transactions on Graphics, vol. 26, no. 3, July 2007.

[4] H. Chan, Vehicular Racing Simulation: A Mel Scripting Approach, M.S.

 Thesis, Texas A&M University, 2004.

[5] D. King-Hele, Erasmus Darwin's Improved Design for Steering

 Carriages, London: The Royal Society, 2002.

[6] A Kozlov, “MadCar,” Max Underground, 2010.

 http://www.maxunderground.com/archives/3769_madcar_v1_0.html

[7] J. Lasseter, “Principles of Traditional Animation Applied to 3D Computer

 Animation,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 35-44, 1987.

[8] J. Massey, Control and Waypoint Navigation of an Autonomous

 Ground Vehicle, M.S.Thesis, Texas A&M University, 2006.

[9] T. Milliron and F. Behmaram-Mosavat, “Smart Cars: Driving the Characters in Cars,”

 SIGGRAPH '06, Sketches, no. 116, SIGGRAPH '06, 2006.

[10] R. Mueller, Full Vehicle Dynamics Model of a Formula SAE Racecar

 Using ADAMS/Car, M.S. Thesis, Texas A&M University, 2005.

[11] L. Renaud, “EzCarRig,” Loran, 2009.

 http://laurent.renaud.free.fr/ezcarrig.html

50

[12] T. Sederberg, class lecture for “Bezier Curves,” Brigham Young

 University, January 6, 2003.

[13] J. Smith and J. White, “BlockParty: Modular Rigging Encoded in a Geometric

 Volume,” SIGGRAPH '06, Sketches, no. 115, SIGGRAPH '06, 2006.

51

VITA

Christopher Corey Griffin

griffin@paradoxclock.com

Education

M.S. in Visualization, Texas A&M University, December 2010

B.E.D in Environmental Design, Texas A&M University, May 2007

Employment

Resident Character TD, Pixar Animation Studios

January 2010 – January 2011

Address

Department of Visualization
Texas A&M University
C108 Langford Center
3137 TAMU
College Station, TX 77843-3137
c/o Tim McLaughlin

