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ABSTRACT

Long-Range Pseudorapidity Correlations at High pT in
√
SNN = 200 GeV Au+Au

Collisions with STAR. (August 2012)

Martin John Michael Codrington, B.S., Morgan State University

Co–Chairs of Advisory Committee: Dr. Saskia Mioduszewski
Dr. Joseph Natowitz

The Quark Gluon Plasma (QGP) is a form of matter in which quarks and gluons

are deconfined, and was suggested to be formed in high-energy heavy-ion collisions.

Since the discovery of high-pT hadron suppression in central Au+Au collisions at the

Relativistic Heavy Ion Collider (RHIC), and the related discovery of the quenching of

the away-side jet in these collisions, the role of jets as key probes of the QGP was re-

affirmed. The Solenoidal Tracker At RHIC (STAR) detector system, which is suited

for jet studies because of its large solid-angle coverage, has produced a number of

interesting jet measurements in recent years, including γ-jet measurements, attempts

at full heavy-ion jet reconstruction, and two-dimensional correlations. A long-range

correlation in pseudorapidity (the “Ridge”) was studied (with statistical significance)

out to ptrig.T <∼ 7 GeV/c and was assumed to have an integrated yield independent of

ptrig.T . Further studies out to higher pT were limited by the minimum biased statistics

taken in Run 4 (2004) with STAR. This work presents results of a ridge analysis with

(non-reconstructed) π0s and direct-γ-rich triggers out to ∼13.5 GeV/c in ptrig.T using

triggered data from Run 7 (2007) and Run 10 (2010) Au+Au collisions detected with

STAR. Preliminary results seem to indicate that the ridge yield decreases with ptrig.T ,

and that the ridge yield for direct-γ-rich triggers is consistent with zero.
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CHAPTER I

INTRODUCTION I: RELATIVISTIC HEAVY-ION COLLISIONS

I.1. Overview

This dissertation presents results of a correlation analysis, investigating a long-range

structure observed in pseudorapidity, with high pT π
0, and a sample of direct-γ-rich,

triggers; using data taken in Runs 7 and 10 of the Relativistic Heavy Ion Collider

(RHIC) using the Solenoidal Tracker At RHIC (STAR) detector system. The work is

divided into seven chapters with one supplemental appendix. The first chapter is an

overview of relativistic heavy ion collisions, with particular emphasis placed on those

experimental and theoretical concepts that directly relate to this analysis, such as the

Quark Gluon Plasma (QGP), collision geometry and centrality, elliptic flow, and jets

and jet quenching. The second chapter discussed some theoretical calculations that

seek to explain the existence of the ridge. The third chapter introduces RHIC and

STAR in detail, emphasizing the trigger and detector systems used in this analysis.

Chapter IV discusses the calibration of the STAR Barrel Shower-Maximum Detector

(BSMD) in detail, and outlines its role in distinguishing between direct photons and

π0s. Chapter V is the analysis chapter, in which details of analysis methods and cuts

are discussed. Chapter VI is the results chapter and presents the most interesting

results from this analysis. The final chapter, Chapter VII summarizes these results,

draws conclusions, and suggests possible future analysis objective for π0 and γ -

triggered long-range pseudorapidity correlations. Following the last chapter is one

appendix that list analysis details not appropriate for the main text.

The journal model is IEEE Transactions on Automatic Control.
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I.2. The Quark-Gluon Plasma

Quantum Chromodynamics (QCD)[28][29][30] is the underlying theory of the strong

interaction, and the most successful theory in describing the behavior of nuclear

matter at high densities and temperatures. One of the first QCD-based predictions

of a new phase of nuclear matter was a 1975 prediction[31] that stated that in the

center of neutron stars, because of the reduction of the coupling constant at small

distances, there should exist a new type of matter composed entirely of deconfined

quarks and gluons. Although this prediction was focused on the high-density, low-

temperature regime, the authors suggested that a similar phase of matter may have

existed in the high-temperature environment of the early universe. It was not until

1980 however, that a detailed exploration of this idea was provided in a review paper

by Shuryak[32], who coined the phrase Quark-Gluon Plasma (QGP) to describe this

state of deconfined quarks and gluons. The transition from hadronic nuclear matter,

to this new partonic nuclear matter, was predicted to occur at a critical energy density,

εC , of ∼1 GeV/fm3, at a critical temperature, TC , of ∼170 MeV; this is a region

where the coupling constant is still large, making it difficult to do perturbative QCD

calculations. The development of lattice QCD[33][34] allowed calculations (albeit for

an idealized matter) to be made. Figure I.1 shows such a calculation of ε/T 4 versus

T/TC ; the rapid rise in the number of degrees of freedom at TC indicates a phase

transition[3]. The system then equilibrates to a ε/T 4 value less than the Stefan-

Boltzmann limit for a non-interacting ideal gas, indicating that the new state present

after the transition is interacting.

Although lattice QCD predicts (and experimental observations seem to show)

a new state of matter being formed in relativistic heavy ion collisions, there is no

definitive answer as to what the order of this transition from hadronic matter is[35].
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Fig. I.1.: Lattice QCD calculations[3] of energy density divided by T 4 as a function

of T/TC . The degrees of freedom rise sharply at TC . Arrows indicate the Stefan-

Boltzmann limit (ideal gas values for ε/T 4).
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In lattice calculations where pure gauge theory (gluons only) is used, the transition is

predicted to be first order; adding an up and down quark to this framework, changes

the transition to second order; and adding a strange quark to the up and down, creates

a smooth crossover. These calculations indicate that, in the real GQP, the order is

unlikely to be first or second order; this makes the task of experimentally observing

the QGP more difficult, because there will not be any obvious changes in behavior of

the matter that will serve to indicate a transition. Experimental signatures of QGP

formation will likely come from observed final-state effects in produced hadrons, or

from prompt probes (such as the direct photon) that are created early in the collision

dynamics.

I.3. Relativistic Heavy-Ion Collisions

Relativistic heavy-ion collisions, as the name suggests, are collisions between heavy

ions in the relativistic regime (typically at speeds of ∼99.995% the speed of light).

It is with such collisions energies that the QGP is expected to form. This section

begins with a brief overview of the stages in these collisions and puts in perspective

the theoretical and experimental considerations for each stage. Next, the geometry

of the collision, specifically the impact parameter and its experimental signatures, is

described. Lastly, the bulk behavior of the medium is described by discussing flow,

specifically elliptic flow.

I.3.1. The Stages of a Collision

Figure I.2[4] is a model illustration of the five stages of relativistic heavy-ion collisions.

The theoretical stages can be described as follows.
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Fig. I.2.: Illustration of the five main stages in relativistic heavy ion collisions[4]. See

text for a full description of these stages.

Stage I – Incoming Nuclei: The first stage shows the incoming nuclei which

are Lorentz contracted (in the direction parallel to the beam axis) because of their

relativistic speeds. Experimentally, this phase corresponds to the acceleration of

bunches of heavy ions to 99.995% the speed of light, in the presence of a magnetic

field. The acceleration of heavy ions is discussed in detail in the next chapter, in the

context of the Relativistic Heavy Ion Collider (RHIC).

Stage II – Collision Occurs: In the second stage, collisions occur among the

constituent quarks and gluons; hard-scatterings (see next section) occur during this

stage. This is the stage with the highest temperature and energy density. However, it

is not directly observable experimentally; except by detecting prompt non-interacting

probes (such as the direct photon) that may be produced in the hard scatterings that

occur in this stage.

Stage III – QGP Formation: In the figure the QGP is labeled sQGP; for strongly-

interacting quark gluon plasma. This is the stage of theoretical interest in these types

of collisions, but it also is not observable experimentally. Only Stage V is directly

observable.
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Stage IV – Mixed Phase: This stage is the mixed phase of hadron and partons,

neither chemical nor kinetic freeze-out have occurred. New hadrons are being pro-

duced, existing hadrons may undergo transmutation, and collisions occur between

hadrons and partons.

Stage V – Hadron Gas Formation: The final stage is the hadron gas stage; all

partons are now bound in hadrons and chemical and kinetic freeze-out have occurred.

These hadronic products now enter the detector volume and those with trajectories

that overlap the detector acceptance will be detected (with some known efficiency)

and their momentum, position, and identification can be used (in combination with

similar information from all detected particles) to make inferences about the nature

of the matter created in Stage III.

The chemical and kinetic freeze-out discussed in the description of Fig. I.2, are

more clearly illustrated in Fig. I.3, an illustration of the space-time evolution of a

collision. In the figure, the color gradient from red to blue indicates a cooling of the

system as it expands.

I.3.2. Centrality and Impact Parameter

In Stage II of fig. I.2, the collision between the contracted nuclei is illustrated.

Experimentally, it is useful to have a general idea of the collision geometry; i.e. to

know if the incoming nuclei were exactly aligned and experienced a full head-on

collision (central collision) where all of the nucleons in both ions participated in the

collision, or (at the other extreme) if only a small fraction of the ionic surface areas

align and therefore only few nucleons participate in the collision (peripheral collision).

As hinted at in the description of the problem, one possible way to estimate this
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Fig. I.3.: The space-time evolution of relativistic heavy ion collisions[5]. Tc is the

critical transition, Tch is the chemical freeze-out point, and Tfo indicates kinetic freeze-

out.
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Fig. I.4.: Figure illustrating the impact parameter of two colliding nuclei. Nucleons

that participate in the collision are called participants, those that do not are called

spectators.

collision geometry (what is commonly referred to as the centrality of the collision)

is to quantify the number of non-interacting nucleons after every collision. Indeed

this is done in many experiments (including STAR as described in the next chapter)

to obtain a rough online estimate of centrality for triggering purposes. However, a

more accurate offline estimate is needed for analysis purposes. Before discussing the

experimental estimate of centrality, a more formal definition of the problem is needed.

Figure I.4 is an illustration of two Lorentz-contracted nuclei, nucleus A and

nucleus B, just before collision. The distance from the center of nucleus A to that of

nucleus B is called the impact parameter, b. The greater the overlap (i.e. the more

central the collision is) the smaller the distance from center-to-center and hence the

smaller the impact parameter. The nucleons participating in the collision are called

the participants, those that do not are called the spectators.
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Although b exists and corresponds to centrality, it is not directly observable

experimentally, this is because (as mentioned) Stage II is not accessible experimen-

tally. Each experiment determines centrality differently, in STAR, charged particle

reference multiplicity at mid-rapidity (|∆η| < 0.5) is used along with Monte-Carlo

simulation based on the Glauber Model[36] to divide the set of events into multiple

subsets of different centrality classes. For example the data presented in this work

are all in the subset of the 0 - 10% most central events.

I.3.2.1. Elliptic Flow

In non-central collisions (collisions where there is only a partial overlap of the two

nuclei) the overlap region is asymmetric in the plane perpendicular to beam direction

(the transverse plane); this is illustrated in fig. I.5. This spatial anisotropy creates

directional pressure gradients that creates a experimentally observable momentum-

space anisotropy. A cartoon of this anisotropy relative to the reaction plane is shown

in fig. I.6; this anisotropy can be well described mathematically using a Fourier

expansion:

d3N

pTdpTdydφ
=

d2N

pTdpTdy

[
1 + 2

∑
α

vαcos(α[φ −ΨRP ]

]
(1.1)

where pT , y, and φ are the transverse momentum, the rapidity, and the azimuthal

angle and vα are the harmonic coefficients. One harmonic co-efficient in particular,

v2, dominates the sum; it is referred to as elliptic flow.

Elliptic flow measured with the relativistic heavy ion collider (RHIC) is on av-

erage ∼70% higher than flow measured at SPS energies. Indeed, the hydrodynamic

models fit the data if and only if the initial equation of state condition reflects a

transition to a QGP (rather than pure hadronic degrees of freedom)[8].
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Fig. I.5.: Diagram of a non-central collision (beam-axis perspective) with the hydro-

dynamic density contours in the elliptical overlap region.[6].

Fig. I.6.: Illustration of the non-central overlap region; spatial anisotropy is being

transferred to a momentum-space anisotropy (indicated by the arrows showing par-

ticle emission under the influence of a pressure gradient)[7].
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Fig. I.7.: v2 (elliptic flow) as a function of pT for identified pions, kaons, protons

and lambdas in minimum-biased Au+Au collisions measured with the STAR and

PHENIX detectors at RHIC[8]. The hydrodynamic model fits (which assume QGP

formation) are overlayed.
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I.4. Jets and Jet Quenching

Hard scatterings (’hard’ refers to processes with large momentum transfer) are rare

processes that are of great interest experimentally, because they occur early in the

collision (Stage II, as discussed in Sec. I.3.1) and experience the full collision dy-

namics, serving as probes of the medium formed. Hard-scattered partons lead to the

formation of di-jets and γ-jets, which can be used as probes experimentally.. This

section starts with a discussion of jet formation (including γ-Jets and the Ridge) and

two-particle correlations, then discusses the phenomenon of Jet quenching.

When two partons undergo a hard scattering, conservation of momentum causes

the partons to be separated by ∼180◦ in azimuth. This angular separation is essen-

tially maintained in hadrons produced during fragmentation of these partons (which

are emitted in narrow cones centered around the trajectory of the parent parton).

This creates two back-to-back streams of hadrons called Jets. This process of Jet

formation is illustrated, for a p+ p collision, in fig. I.8. The process of hadronization

is well described by fragmentation functions, which represent the probability that a

parton fragments into a specified hadron.

In proton-proton collisions, this di-Jet structure is easy to identify, because the

partons fragment without traversing a medium. An example of an actual STAR p+p

event is shown in Fig. I.9, visually (and analytically) each charged-particle track in

the TPC can be resolved and their origin traced back to the interaction point. The

relative ease of Jet reconstruction in p + p (and d+Au) means that Jets have been

well-studied in these collision systems. Their modification in heavy ion collisions can

therefore be quantified, relative to the ’pure’ p+ p Jet.

In heavy ion collisions, Jets are not produced in a vacuum, but rather are part

of a larger set of produced particles that constitute the dense medium associated
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Fig. I.8.: An illustration of a p+ p hard-scattering event that produces a di-Jet

Fig. I.9.: An actual STAR p+ p event, clearly showing the di-Jet structure.
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with these collisions. Jet reconstruction is therefore difficult in these collisions, and is

replaced by a particle correlation analysis. In a correlation analysis, a high pT particle

(the trigger) is associated with all other (charged) particles (in some pT range) in

that event by constructing an angular correlation function 1/(Ntrig.dN/d∆φ). Here,

Ntrig. denotes the number of trigger particles selected, so that the correlation function

represents a statistical measure of jet-particle yields.. The particles correlated at small

angular separation (close to zero) from the selected trigger are said to comprise the

near-side Jet; particles correlated ∼180◦ from the near-side Jet, are said to comprise

the away-side Jet. Examples of p+ p and d+Au two-particle correlations are shown

in fig. I.10 (a).

The first Jet correlation studies published by STAR were charged-particle corre-

lation analyses, where charged triggers were combined with charged associated parti-

cles. These correlations attempt to probe di-Jets. However, also of interest are those

hard-scatterings that produce a direct photon angularly correlated with a single Jet;

since these photons do not interact via the strong force, they are expected to be

unmodified by the QGP medium created at RHIC. Measurements of these special

γ-jet events, were therefore expected to provide an internal standard by which to

compare the modification of the hadronic away-size jet. STAR has published results

from γ-Jets[37] produced in heavy ion collisions.

Correlations described thus far, have all looked at one-dimensional angular sep-

aration; STAR has also explored[10] correlations of particles in η as well as φ. For

correlations in d+Au (fig. I.11) this added dimension produces no interesting addi-

tional information about jet production, it shows the near-side as a relatively narrow

cone, and the away-side more broad. In Au+Au collisions however (fig. I.12), a new

structure is observed; in addition to the near-side Jet peak, there is a broad near-side

∆η structure. This structure was called the Ridge because of its resemblance to a
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Fig. I.10.: p+p, d+Au, and Au+Au di-hadron correlations at 200 GeV/c. With 4.0 <

ptrig.T < 6.0 GeV/cand 2.0 < passoc.T < 4.0 GeV/c[9] (a) Correlations for p+p, minimum-

biased d+Au and central d+Au collisions with no background subtraction and (b)

Correlations for p+p, d+Au and central Au+Au after background subtraction. Notice

the quenching of the away-side Jet in the Au+Au data.
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Fig. I.11.: d+Au long-range rapidity correlation. With 4.0 < ptrig.T < 6.0 GeV/cand

2.0 < passoc.T < 4.0 GeV/c[10].

mountain ridge. Early results from these long-range rapidity correlations have indi-

cated that while the Jet yield increases as a function of ptrig.T the ridge yield remains

constant[10].

As alluded to before, jets are expected to be modified in Au+Au collisions relative

to p+p or d+Au collisions, because of another interesting RHIC result: high pT hadron

suppression. If Au+Au were just a scaled-up version of p + p collisions, i.e. if there

were no phenomena unique to heavy ion collisions, the ratio of the hadron yields in

heavy-ion compared to p + p should reach unity (after scaling by Nbin, the number

of binary collisions) at high pT ; this ratio has been defined[][] as RAA the Nuclear

Modification Factor :

RAA =
d2NAA/dPTdη

TAAd2σpp/dPTdη
(1.2)

In Fig. I.13 RAA as a function of pT is shown for d+Au, peripheral Au+Au and

central Au+Au collisions. At high pT the RAA for d+Au and peripheral Au+Au is

unity (within the errors), suggesting (as previously discussed) that in cases where
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Fig. I.12.: Au+Au long-range rapidity correlation. With 4.0 < ptrig.T < 6.0 GeV/cand

2.0 < passoc.T < 4.0 GeV/c[10]. Notice the pronounced structure in ∆η; this is referred

to as the Ridge.

Fig. I.13.: RAA as a function of pT for d+Au, peripheral Au+Au and central Au+Au

collisions[11].



18

one does not expect the QGP to form, there is little modification in hadronic yield

compared to p + p collisions[11]. However, in the central Au+Au data, there is

a clear suppression of the hadronic yield[11]. This suppression is the explanation

for another interesting RHIC result: the disappearance of the away-side Jet. In

fig. I.10 (b) p + p, d+Au, and Au+Au two-particle correlations are plot; the p + p

and d+Au correlations are very similar on the near and the away-side, however,

the Au+Au away-side is consistent with zero and we say that that Jet has been

quenched. A detailed, quantitative understanding on jet quenching will allow for a

better understanding of the nature of this new phase of matter created at RHIC. A

powerful tool for doing so is the one-dimensional and two-dimensional two-particle

correlation.
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CHAPTER II

INTRODUCTION II: THEORETICAL MODELS OF RIDGE FORMATION

II.1. Overview of the Theoretical Models

The ridge phenomenon is a relatively recent experimental observation[10], our early

understanding of its features was shaped by a measurement of the ridge yield in

Au+Au collisions in a limited trigger pT range. Based on this measurement, the

ridge was assumed to be a ∆η feature of heavy-ion collisions with a yield essentially

independent of trigger pT . Most early theoretical calculations attempting to explain

the existence of the ridge were largely based on these assumptions. However, recent

CMS measurements[26][27] (and the results presented in this work), suggest these

assumptions are not correct; as the ridge has been observed in p + p collisions, and

appears to decrease with increasing trigger pT at very high pT . Given the incomplete

state of our experimental knowledge of the ridge, it is understandable that many

early theoretical models will fall short in convincingly explaining the origin of these

preliminary experimental observations. In this chapter, some of the most popular,

early theoretical calculations are discussed (as well as a more recent one[20]); they can

be categorized into three main categories, 1) those based on medium-induced gluon

radiation[12][13][14]; 2) interaction of the jet with the medium[15][16]; or 3) trans-

verse radial flow[17][18][38]. There is also a discussion of the concept of triangularity

and triangular flow[19], which is an emerging theoretical concept that awaits further

development by its proponents. There are numerous problems with the core assump-

tions or the methodology of all the theories presented in this chapter. For example,

the calculations based on gluon radiation are unable to fully account for the extent of

the pseudorapidity broadening; the calculations based on the jet-medium interaction
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match the data, but do so as a result of numerous fits to the data; and the transverse

radial flow calculation are unable to reproduce the experimentally observed features

of the ridge, and are based on problematic assumptions that restrict their ability to

explain general features of the data.

II.2. Medium-Induced Gluon Radiation

II.2.1. Gluon Radiation due to Collective Flow

The collective flow theory assumes that the ridge formation is due to radiated gluons

that are broadened in pseudorapidity, and that this broadening does not only depend

on the energy density of the medium, but also on the collective flow. The warrant

for this assertion is the fact that high-pT partons are not produced in an isotropic

rest frame, i.e., a rest frame in which there is isotropic momentum transfer from the

medium in the transverse (with respect to the direction of propagation) plane, but

in an environment where they interact with a medium that shows strong transverse

collective flow[12]. This difference is illustrated in Fig. II.1.

The contour plot in Fig. II.1 (lower part) show two significant medium-induced

deviations. The first deviation is the observed broadening of the jet structure; this

broadening is due to the Brownian motion (induced by the medium) of the partonic

jet fragments. The second deviation is a significant rotational asymmetry (in the

η − φ plane) in the jet shape; this asymmetry is a characteristic effect of collective

flow. This second deviation is hard to verify experimentally, because the asymmetry

is broken (in random directions in the η−φ plane) because of multiplicity fluctuations.

The difference in rapidity between the jet and the part of the medium that the

jet passes through, determines the magnitude of the (collective flow induced) jet

asymmetries. Plotting the asymmetries as a function of rapidity, R, should therefore
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Fig. II.1.: Distortion of jet energy distributions. The upper part show a sketch of this

distortion, and the lower part shows the calculated distortion in the η − φ plane for

a 100 GeV/c jet[12].
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Fig. II.2.: Jet asymmetries as a function of rapidity for jets symmetric in

pseudorapidity[12]. Vacuum and medium contributions (and their sum) are denoted

by the different curves (as indicated in the figure).

provide a better understanding of the experimentally observed pseudorapidity broad-

ening. Figure II.2 shows such a plot, of jet asymmetry vs. rapidity for jets centered

at mid-rapidity, and that are symmetric across negative and positive pseudorapidity.

The double-humped structure observed in the plotted distributions is of qualitative

interest, because it supportss that the author’s[12] claims that the asymmetry of

the jet energy distribution can be quantitatively inferred from measuring its rapidity

width. However, large uncertainties in the calculations prohibit a more quantitative

assessment of this jet width.
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Fig. II.3.: Near-side ∆η and ∆φ widths of unidentified charged hadrons with 4.0 <

ptrig.T < 6.0 GeV/c and 2.0 < passoc.T < 4.0 GeV/c from [10] plotted with theoretical

bands from [12].

The jet asymmetries that are described in Fig. II.2 are still present in the particle

correlation distributions, as illustrated in Fig. II.3. This figure shows the STAR near-

side ∆η and ∆φ widths from [10], plot on top of the calculations from [12]; the STAR

data show a significant broadening of the ∆η widths, the calculations also describe a

broadening, but with a smaller magnitude than the data. This suggest that while this

theory hints at the existence of a broadening in pseudorapidity, it is unable to fully

describe the extent to which this is experimentally the case; i.e. it cannot account

for the existence of the ridge.
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II.2.2. Gluon Radiation due to Turbulent Color Fields

The longitudinal broadening by turbulent color fields theory, claims that the near-side

jet broadening is due to a final state effect; the deflection of radiated glouns by a soft,

transverse, turbulent color field; which is formed under the influence of the instabilities

in the QCD plasma. A description of this theory can be found in [13], the authors

(Majumder et al.) assume that the ridge is composed of hadrons that are produced

in the fragmentation of radiated gluons (before or after these gluons are absorbed

by the medium); therefore, they believe that the ridge shape will be determined by

the final (after medium traversal) kinematic distribution of the radiated gluons. The

authors also highlight the fact that no quantitative explanation of the ridge shape

had thus far been provided by other theorists (namely Armesto[12] (see Sec. II.2.1)

, and Hwa[16] (see Sec. II.3.2)) who have proposed longitudinal expansion as the

cause of the ridge. Furthermore, Majumder et al. argues that Romatschke’s[14] (Sec.

II.2.3) proposal that the ridge can be explained by the fact that the momentum of

a transversely propagating heavy-quark is broadened by the elastic collisions in the

expanding medium preferentially in the longitudinal direction; is likely not correct,

as the ridge is composed mostly of light quarks.

The authors approach is based on work[39][40][41] that show that in an expanding

medium, color fields are formed under the influence of the instabilities in the plasma,

and can be described conceptually as follows: A transversely (with respect to the beam

direction) scattered hard parton will radiate soft gluons which are them deflected by

the turbulent color field. Since the instabilities in the plasma are not random, the

deflection pattern is not isotropic with respect to the jet axis, but rather are deflected

(preferentially) in the transverse direction. This expansion then results in a final

particle distribution that features an elongated structure along the beam axis; the
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Fig. II.4.: Illustration of the Gluon Radiation due to Turbulent Color Fields theory;

multiple soft rescatterings preceded by a hard scatterings[13].

ridge.

Figure II.4 is an illustration of the process of gluon radiation proposed by Ma-

jumder et al. The dark ellipse represents the distance over which the produced parton

undergoes multiple scatterings in-medium, then emits a hard gluon, this includes the

hard-hard and hard-soft double scattering processes. The in-medium soft scatter-

ing of the gluon and parent parton that follows are described as being independent

of the processes described by the dark ellipse (the production and radiation). The

rectangular boxes in the figure represent the factorization.

The authors calculates the gluon distribution (before broadening) by taking the

ratio of the cross-section σqg for radiating a gluon with momentum (pT2 , l⊥) (left-hand

rectangle in Fig. II.4) and the quark (with momentum pT1 and rapidity y) production

inclusive cross-section σq. The distribution is given by Eq. 2.1:

d2σqg(pT2 , l⊥)

dσq
= C(pT1 , pT2)

αs
2π

1

l4⊥
×
∫ ζmax(r)

0

dζp(r + n̂ζ)
ζ0

ζ
× [2− 2cos(ηLζ)]. (2.1)

• n̂ – Jet axis.
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• ζ – Distance traveled by the produced partons from the primary vertex along

n̂.

• ζmax – Maximum allowed value for ζ; the distance from r to the surface.

• ηL – l2⊥/(2pT2z1) the inverse formation time of a gluon with momentum l⊥

transverse to n̂.

• C(pT1 , pT2) – A constant that accounts for the fact that the final parton mo-

mentum in the numerator and denominator of the equation are different.

The results of the calculation are shown in Fig. II.4, where the dotted and dashed

lines show the output from Eq. 2.1; and the solid lines show the distribution at the

moment that the gluon leaves the medium. The figure shows a broadening of the

gluon distribution in the η but not in φ. However, two important points must be

noted; first, these calculations assume an ideal, ultra-relativistic liquid to calculate

the soft gluon density; and second, although the results show some broadening it (like

the other theoretical description of the ridge based on gluon radiation) is not sufficient

to account for the shape and extent of the the ridge as observed experimentally.

II.2.3. Longitudinal Momentum Broadening in an Anisotropic QGP

A large number of relativistic heavy ion theoretical calculations (including all the

theoretical calculations discussed in this chapter) assume a thermalized and homoge-

neous QGP. Romatschke’s theoretical calculation[14] is different, in that it seeks to

explain the existence of the ridge by assuming a homogeneous but locally anisotropic

system. The calculation, like the work by Moore and Teaney[42] on which it is based,

focuses on a heavy-quark with momentum p, moving in a thermal medium with a
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Fig. II.5.: Gluon distribution in η and φ for a total jet momentum of 10 GeV/c[13].

Final item on legend is presumably an error and should read η = 0.
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temperature T , and with a broadened momentum distribution described by Eqs. 2.3

from [42].

d

dt
〈p〉 = −pηD(p)

d

dt
〈(∆p‖)2〉 = κ‖(p)

d

dt
〈(∆p⊥)2)〉 = κ⊥(p)

d

dt
〈(∆pz)2)〉 = κz(p)

(2.2)

The kinetic theory based functions ηD, κ‖, κ⊥, and κz describe the momentum

loss as well as fluctuations (transverse and longitudinal). They are given as Eqs. 2.3.

d

dt
〈p〉 =

1

2v

∫
k,q

|M|2q0{f(k)[1± f(k − q0)]− f(k − q0)[1± f(k)]}

d

dt
〈(∆p‖)2〉 =

∫
k,q

|M|2q2
‖f(k)[1± f(k − q0)]

d

dt
〈(∆p⊥)2)〉 =

∫
k,q

|M|2q2
⊥f(k)[1± f(k − q0)]

d

dt
〈(∆pz)2)〉 =

∫
k,q

|M|2q2
zf(k)[1± f(k − q0)]

(2.3)

• v = p/p0

• f(k) – Gluon (quark) distribution function.

• M – Scattering matrix.

•
∫
k

=
∫
d3k/(2π)3

The coordinate system is shown in Fig. II.6, the heavy-quark moves in a direction

that coincides with the anisotropic direction.
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Fig. II.6.: An illustration of the coordinate system used in theoretical calculations of

longitudinal broadening in an anisotropic QGP[14].

Particles move in all directions with equal probability in an isotropic system.

In an anisotropic system however, this is not the case; there must be at least one

preferred direction in the system, which in this theoretical calculation is conveniently

chosen to be the z direction (along the beam axis). This is, of course, a problem-

atic assumption as it first assumes that if the system is anisotropic, it has only one

preferred direction, then assumes that that direction is the longitudinal one. The

warrant for this assumption, is the spatial anisotropy that exists in collisions with a

non-zero impact parameter. However, it must be noted that this anisotropy exists

independently on the thermodynamic properties of the medium, and therefore it is

doubtful whether this is a strong enough warrant for the assumption of a preferred

direction in an anisotropic system.

The author concludes that for an anisotropic system kz/k⊥ is always larger than

1 (to leading log accuracy). This mean that a heavy-quark jet in an anisotropic QGP

(that undergoes only collisional broadening) will preferentially experience longitudinal

broadening. That ratio, kz/k⊥ is interpreted by the author as approximating the ratio

of the η and φ jet correlation width; 〈∆η〉/〈∆φ〉.
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Fig. II.7.: d+Au 40 - 100% centrality (left) and Au+Au 0 - 5% centrality (right) ∆η

and ∆φ correlations, with theoretical calculations from [14] plot as the black ellipse

on top of the Au+Au data.

The author’s calculation with a kz/k⊥ ratio of ∼ 3 is plot (as the black ellipse)

on top of STAR[43]. The ellipse quantitatively accounts for the ∆η broadening. It

is not clear, however, the author’s reasoning for choosing this particular value of the

ratio (other than the fact that it well fits the data).

In general the theoretical calculation discussed in this section is interesting for

the fact that it does not assume a thermalized system. However, the arguments in

favor of longitudinal broadening, and the ability of the theory to reproduce the ∆η

broadening (let alone the 3D shape of the ridge) are both very much in doubt. In

addition the leading-order accuracy and the heavy-quark focus add further caveats

to the conclusions of the calculations.
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II.3. Interaction of the Jet with the Medium

II.3.1. The Momentum Kick Model and Ridge Structure

In the theoretical calculation by Wong [15], the momentum kick model is used to

explain the ridge structure; the ridge particles are identified as medium particles

that undergo collisions with the jet and experience a momentum kick along the jet

direction. The theory is based on the following three assumptions about the ridge

yield:

1. The yield is nearly independent of the flavor content of the associated particles.

2. The meson/hyperon nature of the associated particles.

3. The trigger particle pT .

This last assumption has been questioned by recent CMS results[27] and by

conclusion from this dissertation analysis (see Chapter VI).

The momentum kick model employed by Wong can be summarized conceptually

as follows;

1. A near-side jet is produced near the surface of the medium and its constituent

particles collide with medium partons as it makes its way to the detectors.

2. The momentum distribution of the collided medium partons is sampled at the

moment of the jet-parton collision. Each collided parton undergoes at most one

collision with the jet (because of the production near the surface requirement

on the jet).

3. The collided parton experiences a momentum kick q, from the jet-parton col-

lision. The parton’s initial momentum distribution Pi(pi) is modified by the
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momentum kick into its final momentum distribution Pf (pf ). These collided

partons then hadronize (retaining the collided parton’s final momentum distri-

bution) and materialize as ridge particles.

The final momentum distribution of the collided partons is given by Eq. 2.4:

Pf (pf ) =

∫
dpi
Ei

∫
dqPi(piEfσ(pf − pi − q). (2.4)

The momentum kick distribution Pq(q) can be normalized as described in Eq.

2.5;

∫
dqPq(q) = 1, (2.5)

The numbers of collided partons before and after the jet-parton collision are

conserved by the kinetic quantities Ei and Ef and are given by Eq. 2.6;

Nf =

∫
dpf
Ef

Pf (pf ) =

∫
dpi
Ei

Pi(pi) = Ni. (2.6)

The momentum kick Pq(q), is not a quantity that can be obtained from first

principles of QCD, and in the calculations described in Wong[15], the momentum kick

is only generally explored; a single parameter q is used to describe the momentum

kick distribution, as shown in Eq. 2.7;

Pq(q) = σ(q − qejet), (2.7)
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where q = |q| ≥ 0, and ejet is the unit vector along the jet direction. Thus, the

distribution of partons undergoing a jet-parton collision is given (using Eq. 2.4) as

Eq. 2.8:

Pf (pf ) =

[
Pi(pi)

Ef
Ei

]
pi=pf−qejet

=

Pi(pi)
√
m2 + p2

f√
m2 + p2

i


pi=pf−qejet

; (2.8)

The final pseudorapidity distribution of the particles is given as;

dNf

dηfdφfptfdptf
=

dNf

dyfdφfptfdptf

√
1− m2

m2
tfcosh

2yf
, (2.9)

where m is the rest mass of the parton and mtf =
√
m2 + p2

tf .

This calculation assumes parton-hadron duality, it identifies the momentum of

the associated particles as the final momentum of the energetic partons after the

jet-parton collisions.

Central to Wong’s theoretical calculations, and one of its major criticisms, are

the fits to the STAR data (from a private communication of G. Wang and H. Huang)

that are used to reproduce its main features; specifically the following parameters were

chosen from fits, q = 0.8GeV , σy (the standard deviation of the Gaussian rapidity

distribution) = 5.5, and T = 0.47GeV . Fits to data are common in theoretical

calculations, and do not necessarily make their conclusions less credible, however, the

fits to data are problematic in this case; the ability of this calculation to describe

the data varies greatly depending on the values chosen for the three parameters. For

example, consider Fig. II.8, which show ∆η- ∆φcalculated particle distributions with

varying values for q (with the other two parameters constant) and varying values for

σy (with the other parameters constant); changing the q value by a factor of 1/2
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Fig. II.8.: Theoretical results of the momentum kick model, for the yield in ∆η−∆φ

of ridge particles. On top is the distribution varying the value of q while keeping

the other two parameters constant, and on the bottom is the distribution varying the

value of σy while keeping the other two parameters constant[15].
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Fig. II.9.: ∆η and ∆φ particle distributions fit with theoretical calculations using

the momentum-kick model. The solid circles are STAR data, the solid curves are

theoretical ridge particle yields for pT = 2GeV , q = 0.8GeV , σy = 5.5, and T =

0.47GeV (all fixed from fits to the data), which are normalized by matching to the

data at (∆φ,∆η) = (0,−1.7). The dashed and dotted curves are the momentum

theoretical calculation results obtained by varying q (left plot) and σy (right plot)[15].

compared to the fixed value essentially flattens (not just the ridge structure, but)

the entire particle distribution, while changing σy by a factor of 1/2 skews the ridge

shape into a steep slope that departs from the shape observed in experimental data.

The ∆φ and ∆η projections of the particle are shown in Fig. II.9. In addition to the

fits to extract the parameters, the theoretical calculations are further matched to the

data by normalizing them at (∆φ,∆η) = (0,−1.7) (as shown in the figure).

Another aspect of the model that cast doubts on the validity of its claims to

describe the data, is its assumption that the initial rapidity distribution is Gaus-

sian with a standard deviation of σy (which, as previously mentioned, is set by fits
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to the STAR data). The real distribution, however, may be multi-centered or non-

Gaussian; further theoretical justification of a Gaussian with a standard deviation of

5.5 is needed. The author further points out another issue with the momentum kick

model as applied to low pT partons: The calculation is based on the idealization of

parton-hadron duality in which the momentum and energy losses caused by absorbing

a sea quark (or anti-quark) and that of emitting a soft gluon are neglected[15]. How-

ever, these processes have a greater effect on low pT parton and cannot be ignored;

they must be accounted for before the momentum kick model can be accepted as a

reasonable theoretical description of ∆η - ∆φ particle distributions.

II.3.2. Medium Heating, Recombination, and Ridge Structure

The phenomenological calculations by Chiu and Hwa[16] introduces the parton recom-

bination/Coalescence model[44][45] to the study of the 2D ∆η and ∆φ jet structure

(pedestal and peak structure), extending the work done by Fries et al.[46] from one

dimension (∆φ) to two. The paper claims that the ridge structure originates from

the longitudinal expansion of thermal partons which are enhanced by the energy loss

processes of hard partons as they traverse the medium. The calculated correlation

depends only on the correlation among shower partons, and is affected (primarily in

the intermediate-pT range) by recombination between thermal and shower partons.

The main assumption of this calculation is that the shower partons in a jet,

while they are dynamically independent, are kinematically constrained (please see

[47] for a detailed exploration of the consequences of this assumption on the particle

correlations). Another assumption made in [16] is that the shower partons have a

Gaussian angular distribution (relative to the jet axis), which is the same in both ∆η

and ∆φ. The two main parameters in this treatment are the width of the angular

distribution in the jet cone, and the magnitude of the thermal enhancement: These



37

are both fixed by fits to the data.

The formalization of single and two-particle distributions in the recombination

model framework is given by the following equations[44][45][48][47]:

dNπ1

p1dp1

=
1

p2
1

∫
dq1

q1

dq2

q2

F2(q1, q2)Rπ1(q1, q2, p1), (2.10)

dNπ1π2

p1p2dp1dp2

=
1

p2
1p

2
2

∫ ( 4∏
j=1

dqj
qj

)
F4(q1, q2, q3, q4)×Rπ1(q1, q3, p1)Rπ2(q2, q4, p2),

(2.11)

the recombination function for a pion is[49]

Rπ(q1, q2, p) =
q1q2

p2
δ

(
q1

p
+
q2

p
− 1

)
. (2.12)

F2 and F4 (the two- and four-parton distributions) can be written as

F2(1, 2) = (T T + T S + SS)12, (2.13)

F4(1, 2, 3, 4) = (T T + T S + SS)13(T T + T S + SS)24. (2.14)

The thermal parton distribution is given as

T (q) = Cqe−q/T , (2.15)
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and the shower partons in a jet have the form

S(q) = ξ
∑
i

∫
dkkfi(k)Sji (q/k), (2.16)

where fi(k) is the distribution of hard parton i in a heavy-ion collision and ξ is the

average fraction of hard partons that emerge from the thermal medium to hadronize.

For two shower partons (SS), their joint distribution is

(SS)(q1, q2) = ξ
∑
i

∫
dkkfi(k)

{
Sji (

q1

k
),Sj

′

i (
q2

k − q1

)

}
, (2.17)

where the quantity of the curly braces has the form;

{
Sji (x1),Sj

′

i (
x2

1− x1

)

}
=

1

2

[
Sji (x1)Sj

′

i (
x2

1− x1

) + Sj
′

i (
x1

1− x2

)Sji (x2)

]
. (2.18)

These equations can then be used (as described in [16]) to extend this formulation to

∆η, which results in the following distribution equation;

dNTSTS
π+π−

p1dp1dη1dφ1p2dp2dη2dφ2

=
1

(p1p2)3
ξ
∑
i

∫
dkkfi(k)

∫
dq1

∫
dq2θ(k − q1 − q2)

×
∑
j,j′

T (p1 − q1, η1)

{
Sji (

q1

k
),Sj

′

i (
q2

k − q1

)

}

×T (p2 − q2, η)G(ψ,
q2

k
)

∣∣∣∣
ψ=2tan−1g(η,η1)

,

(2.19)

The authors conclude that the ridge is related to ∆T in the local distribution,

and that it is a consequence of the recombination of the thermal and shower partons;
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Fig. II.10.: STAR ∆η (left) and ∆φ (right) data with normalized theoretical cal-

culations from the recombination-based model of jet production[16]. With 4.0 <

ptrig.T < 6.0 GeV/c and 2.0 < passoc.T < 4.0 GeV/c. The solid lines are the calculations,

and the dashed line in the right plot is the ridge-effect in ∆φ that is forced to vanish

by the ZYAM procedure (see Chapter V for details of this).
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i.e. the ridge is not part of the jet, but is associated with jet production. Calculating

only π+π− production, the authors were able to reproduce the ∆η and ∆φ particle

distribution peaks (see Fig. II.10), however, like Wong’s calculations in the previous

section, the numerous fits to the data reduces the strength of the authors’ claim to a

theoretical understanding of the ridge. With regards to this data fitting, the authors

make the following statement;

What we do here is to fix all the extra free parameters of the problem

by the experimental features of the data. Since our aim is to reproduce

the observed characteristics of the data which are presented with specific

cuts, it is impossible to do so without incorporating those cuts. However,

it does not imply that we are merely fitting the data... it is by no means

trivial that the data can be fitted so well.[16].

A more recent quark coalescence study is the paper by L. Ravagli and R. Rapp[50],

in which the authors present a reformation of quark coalescence models in heavy-ion

collisions by calculating meson production via resonance formation in quark-antiquark

scattering based on a transport equation. Their work explicitly includes energy con-

servation in the calculations and employs a well-defined thermal equilibrium limit.

II.4. Ridge Formation due to Transverse Radial Flow

In this section, transverse radial flow (and its proposed effects on particle correlations)

is discussed, referencing three main works, papers by Voloshin[17], Shuryak[18] and

Pruneau, Gavin and Voloshin[38].

In [17], Voloshin proposes that the interaction between partons produced in

heavy-ion collisions, causes a buildup in the pressure of the system, leading to lon-

gitudinal and transverse expansion, with the transverse radial expansion resulting in
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an increase in the particle final transverse momenta and characteristic rapidity and

azimuthal two-particle correlation. These characteristic features in the correlation

are explained by the reasoning that all particles produced in the same NN collision

have the same initial transverse spatial position and get on average the same push

which results in a correlation.

These calculations use a thermal model, in which particles are produced by freeze-

out of the thermalized matter at a temperature T, which is approximated by a boosted

Boltzman distribution. In the model, the following assumptions are made[17]:

1. Boost-invariant longitudinal expansion

2. Freeze-out at constant proper time

3. Uniform matter density

4. A power law transverse rapidity flow profile

5. During the expansion time (before freeze-out) the particles produced originally

at the same spatial position, do not diffuse far from each other (compared to

the system size)

The two-particle spectrum is given by the following expression[17];

dnpair
dpt,1dpt,2

∼
∫
dptdφbp

2/n−1
t J(pt,1;T, ptφb)J(pt,2;T, ptφb), (2.20)

and the results of the calculation are shown in Fig. II.11 (as a function of

〈p2
t 〉 = 〈pt〉2(4n+ 4)/(2 + n)2);

The calculations are compared to STAR data in Fig. II.12. The two-particle

correlations were not explored in detail in this paper, and no estimates of ridge shape

or yield were given.
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Fig. II.11.: Blast wave calculation of mean transverse momentum (left) and two-

particle correlation (right) from [17].

Fig. II.12.: Comparison of blast wave calculation with STAR data[17].
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The calculation by Shuryak[18], also suggest that the ridge is formed as a result

of jet quenching and transverse radial flow; specifically by QCD bremsstrahlung along

the beam (longitudinally) boosted by transverse flow. Unlike the Voloshin calculation,

Shuryak provides a comparison of the 2-particle correlation (∆φ) from data with that

from his calculation. However, the theory ultimately fails at matching the data.

The correlation function generated in Shuryak’s calculation is given as

C(pt, φ) =

∫
Pprod(r)Pquench(r, φ1)× F (pt, v(r), φ1 − φ)rdrdφ1. (2.21)

The results of this function, ∆φ distribution (for absorption lengths of 1, 0.5, 0.25

fm), are shown in Fig. II.13 and compared with the STAR data. This correlation

function does not do a good job of matching the width of the data; the author con-

cluded that more complicated models for quenching would produce better agreement

with the data, but that this mechanism of ridge production “basically works”[18]. It

is, however, difficult to justify this statement based on the strength of the calculations

presented in [18].

A more detailed exploration of the transverse radial flow effect on two-particle

correlations, is presented in [38]; these calculations use a transverse radial boost

incorporated in PYTHIA events to show how this flow can affect two- and three-

particle correlations.

The model (unlike previous models discussed in this chapter) uses vacuum p+ p

events and thus neglect effects such as jet quenching, diffusion processes and string

melting. The produced particles are boosted radially in the transverse plane at fixed

velocity in a random φ direction. The jets are assumed to be maximally coupled to the

transverse radial flow. The authors describe two scenarios to explain the conceptual
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Fig. II.13.: Correlation function, calculated using Eq. 2.21 (solid curves)[18] plot

with Au+Au 0 - 10% most central STAR data
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basis for this theoretical interpretation[38]:

1. Two incoming partons are subject to transverse kicks before they collide to pro-

duce jets. The jet production in the rest frame of the parton pair is essentially

the same as if the partons were not radially boosted, but the produced hadrons

are boosted in the lab frame.

2. Two incoming partons interact as if in vacuum, but their collision products are

subject to a transverse boost due to momentum kicks by the dense medium: Jet

hadronization proceeds quickly within the medium and sufficient medium-flow

builds up to radially push hadrons produced by parton fragmentation.

The authors conclude that the near side jet peak amplitude increases with in-

creasing radial velocity due to the kinematical focusing produced by the radial boost

on the trigger and associated particles. They further conclude that the away-side

ridge is deflected and defocused away.

There are two major issues that must be highlighted: First, since the simulations

use one boosted p+p collision per simulated event, momentum conservation is globally

violated; second, they assume that parton-parton collisions in a dense medium proceed

exactly as those in vacuum. It should also be noted, that the authors base their

conceptual understanding of ridge formation on the experimental results that initially

predicted that the ridge yield is flat with trigger pT , which (as mentioned earlier in

this chapter) is likely not the case. In spite of these deficiencies in the model, the

authors invite us to consider the “spirit of the model”[38] seriously as it explains

many different phenomena simultaneously.
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II.5. Triangular Flow in Heavy-Ion Collisions

The calculations by Alver and Roland[19] introduce the concept of triangularity and

triangular flow. They suggest that the near- and away-side structures are due to event-

by-event fluctuations which create triangular anisotropy in the azimuthal particle

production. The authors cite, in partial support of this hypothesis, results of the

NEXSPHERIO hydrodynamic model[51] that suggest that in two-particle correlations

broad near- and away-side structures arise, if fluctuations in the initial conditions are

introduced.

In this calculation the authors focus on the first three coefficients of a Fourier

expansion of the azimuthal correlation; directed flow (v1); elliptic flow (v2); triangular

flow (v3). The authors start by redefining eccentricity and elliptic flow. Eccentricity

is given as[19];

ε2 =

√
〈r2cos(2φpart)〉2 + 〈r2sin(2φpart)〉2

〈r2〉
, (2.22)

when the coordinate system is taken as the center of mass of the participating nu-

cleons; r and φpart are the polar coordinate positions of participating nucleons. This

region defines an ellipse, whose minor axis is given as

ψ2 =
atan2(〈r2sin(2φpart)〉2, 〈r2cos(2φpart)〉2) + π

2
; (2.23)

v2 is then defined with respect to ψ2 (as opposed to the reaction plane)

v2 = 〈cos(2(φ− ψ2))〉. (2.24)
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Fig. II.14.: Eccentricity, epsilon2 (left) and triangularity, epsilon3 (right) distribu-

tions; as a function of Npart in 200 GeV Au+Au collisions[19].

Similar equations can be defined for the third coefficient giving triangularity ε3

and triangular flow v3[19]

ε3 ≡
√
〈r2cos(3φpart)〉2 + 〈r2sin(3φpart)〉2

〈r2〉
, (2.25)

v3 ≡ 〈cos(3(φ− ψ3))〉. (2.26)

The minor axis of the participant triangularity, ψ3 is given by[19]

ψ3 =
atan2(〈r2sin(3φpart)〉2, 〈r2cos(3φpart)〉2) + π

3
. (2.27)

This axis is uncorrelated with both the reaction plane angle and ψ2, and therefore

is calculated as zero with respect to these angles.

Calculated values of ε2 and ε3 are shown in Fig. II.14, these values are calculated

with a PHOBOS Glauber Monte Carlo implementation.
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Fig. II.15.: The ratio of triangular flow (v3) to elliptic flow (v2) as a function of Npart

in 200 GeV Au+Au collisions[19]. Filled points are data from PHOBOS (right) and

STAR (left), open points show the theoretical calculations.

The authors then make use of an AMPT model to study v2 and v3. The model

consists of four components; initial conditions; parton cascade; string fragmentation;

relativistic transport model[52]. The initial conditions for the model are obtained from

Heavy Ion Jet Interaction Generator (HIJING). This AMPT model underestimates

the v2 magnitude, so for comparisons with the data, the ratio of the third to the

second coefficient is calculated, for data this is given as[19]

V3∆

V2∆

=

∫
C(∆φ)cos(3∆φ)d∆φ∫
C(∆φ)cos(2∆φ)d∆φ

. (2.28)

The ratio for STAR and PHOBOS data and for the calculation is shown in Fig.

II.15. There is a qualitative agreement between the data and the calculation, the

authors claim that since the v3 component is related to triangular anisotropy, that it

suggest that “triangular flow may play an important role in understanding the ridge

and broad away-side structures in data”[19].

In this paper the authors introduce a new idea, and suggested that it may be

useful in understanding the ridge. There is little that can be criticized in the discus-
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sion, because no qualitative or quantitative assertions were made about the ridge as

interpreted through this theory: There were no attempts to reproduce the ridge mag-

nitude or shape, it’s yield, its variation with trigger pT or its variation with centrality

(to name a few quantitative features of the ridge). A more detailed treatment of this

theoretical idea is needed so that it can be evaluated on the strength of it ability not

just to match the data, but to explain the ridge and all its quantitative features.

II.6. A More Recent Calculation & Conclusion

There have been many recent theoretical studies that attempt to explain various

features of the ridge, some by introducing new theoretical ideas, others by assuming

the validity of an existing theory and extending that to the explanation of these

features. I will close this chapter with an exploration of one such calculation; the

work of Sorensen et. al[20] which focuses on the centrality dependence of the ridge

amplitude and attempts to explain it by relating it to density inhomogeneities in the

initial overlap region. The work used measured v2 and single particle rapidity density

dN/dy with a Monte-Carlo Glauber model for the initial density to calculate the ridge

amplitude (A1) as a function of centrality.

The model is based on the following three assumptions[20]:

1. The expansion of the fireball in heavy-ion collisions converts anisotropies from

coordinate-space into momentum-space.

2. The conversion efficiency increases with density.

3. The relevant expansion plane is the participant plane.

To model the eccentricity fluctuations, the authors calculate the quantity ε2n,part;
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Fig. II.16.: ε2n,part vs. nth harmonic[20], for different values of rpart (the radius of the

disk that define the geometry of each participant).

ε2n,part =
〈r2cos(nφ)〉2 + 〈r2sin(nφ)〉2

〈r2〉
; (2.29)

This is show in II.16 for different values of n (the nth harmonic) for central

Au+Au collisions. The different curves in the figure correspond to different values

of rpart, which represents the radius of a disk that is used to represent the spatial

distribution of the participants.

To calculate the Gaussian amplitude A1 from the predicted correlation for the 2nd

harmonic, the authors use the following equation (similar calculations can be made

for higher harmonics);

1

2π

∫ +π

−π

∆ρ
√
ρref

cos(2∆φ)d∆φ = 0.11A1. (2.30)

The estimate of the ridge amplitude A1 based on ε2n,part vs. centrality parameter
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Fig. II.17.: Contribution of eccentricity fluctuations to the near-side Gaussian peak

amplitude A1[20].

ν = 2Nbin/Npart (Nbin and Npart are the number of binary collisions and the number

of participants) is shown for these collision systems for the 2nd and 3rd harmonics.

The authors’ estimate of A1 agrees with what has been observed at 200 and 62.4

GeV (see Fig. II.17). A1 increases from a small initial value, at a rate greater than

the rate expected from scaled p + p collisions. The maximum is reached at ν ∼ 5

after which it decreases.

The authors’ claim that the rise and fall of the ridge amplitude with centrality is

as a result of initial geometry fluctuations and that they “know of no other plausible

scenarios to explain the rise and fall of the ridge other than this explanation”[20].

However, this argument is a weak argument because it is based on two major logical

fallacies. The first, and more obvious, fallacy is that it is a form of argumentum ad

ignorantiam; the assertion of a premise justified by the fact that no other explanation
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is known. The second fallacy is the post hoc ergo propter hoc fallacy, or as it is more

commonly phrased in a scientific context; correlation does not equal causation, the

authors could be identifying another effect of some other (currently unknown) cause.

This criticism of their argument is not to assert that it is wrong, but that it is not

justified, and that their claims are not properly supported by sound reasoning. What

is absent from this paper, is a discussion on exactly how these initial state fluctuations

result in the ridge formation. In fairness, the authors never claimed to be supplying

an explanation for the existence of the ridge, but for the variation of its amplitude

with centrality.

Throughout this chapter we have explored many theoretical calculations that all

sought to explain the existence of the ridge by various mechanisms. These mech-

anisms were broadly group into three parent categories; broadening due to gluon

radiation, interactions of the jet with the medium and transverse radial flow. None

of the calculations stand out as being the likely explanation for the ridge formation.

Although we have focused on the more popular calculations, it is clear that more

theoretical work is needed in this area; and more experimental measurements are

needed to further describe the properties of the ridge. We have also explored a recent

theoretical study that attempts to explain features of the ridge rather than explore

its formation, which is an emerging trend as previous theories are not yet discounted

by experimental observations.
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CHAPTER III

EXPERIMENTAL FACILITIES AND DETECTORS

This chapter describes the Relativistic Heavy-Ion Collider (RHIC) and the Solenoidal

Tracker at RHIC (STAR) detector system, with particular emphasis placed on the

detectors and trigger algorithms used in this study. The chapter starts with an

overview of RHIC, followed by an outline of the STAR detector system (including the

star magnet design and function). The next sections explore, in more detail, the Time

Projection Chamber (TPC) and the Barrel Electro-Magnetic Calorimeter (BEMC).

This exploration is followed by a brief discussion of the Zero-Degree Calorimeters

(ZDCs) and the Beam-Beam Counters (BBCs); two detectors used in the STAR

triggering system (which is discussed in the last three sections of this chapter).

III.1. The Relativistic Heavy-Ion Collider

In 1991, the Alternating Gradient Synchrotron (AGS) Survey and Alignment Group

was given the task of aligning the components for the Relativistic Heavy-Ion Collider

(RHIC). The site of the canceled ISAbelle Accelerator was chosen for the new collider.

The RHIC rings are large (2.4 miles in diameter), and the entire RHIC facility is a

complex of accelerators and beam transfer equipment linking them[53]. It is capable

of colliding heavy ions (described in detail in this work) and protons.

Heavy ions originate from the Tandem Van de Graaff (TVG) ion source. They

are accelerated (using static electricity) through a foil on the positive terminal of the

TVG, which strips them of some of their electrons. The now positively charged ions

are accelerated to the negative terminal of the TVG and then to the exit where they

lose further electrons (to give an Au32+ ion) as they pass into the 0.8 km Tandem to

Booster Line (TTB), also called the Heavy Ion Transfer Line (HITL) with an energy
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per nucleon of 1 MeV/u. The TTB is a vacuum line with steering magnets that

injects the ions into the Booster Synchrotron. At this stage, the ions are travelling

at 5% the speed of light. Protons, conversely, originate from the linear accelerator

(Linac), where they are injected into the Booster Synchrotron (stacked in betatron

phase space with an energy per nucleon of 200 MeV/u.

The Booster Synchrotron further accelerates the gold ions to 37% the speed of

light, with an energy per nucleon of 95 MeV/u and removes additional electrons

yielding Au77+ ions. The ions are then transferred to the AGS, which accelerates

them to 99.7% of the speed of light, with an energy of 10.8 GeV/u (28.1 GeV for

protons). As the ions leave the AGS and are transferred to the AGS-to-RHIC Line,

the K-shell electrons are stripped off producing an Au79+ ion. The ions are then

injected into the AGS-to-RHIC (ATR) transfer line and are directed (by a switch

magnet) either left to the clockwise RHIC ring or right to travel counter-clockwise in

the second RHIC ring.

The RHIC rings are hexagonally shaped, with a circumference of 3833.8 meters.

The bunches of ions are steered by the 1,740 superconducting magnets. There are

six places where the beams cross (these are called the RHIC intersection points),

two of which correspond to the active experimental collaborations; the Pioneering

High Energy Nuclear Interaction Experiment (PHENIX) and the Solenoidal Tracker

At RHIC (STAR). The STAR detector system is described in detail in the following

section.



55

Fig. III.1.: Schematic of the RHIC complex (not drawn to scale).

III.2. The Solenoidal Tracker at RHIC (STAR) Detector

III.2.1. Structure and Sub-Systems

The STAR detector[21] was designed to be able to operate in both the low-multiplicity

p+p collision environment, and in the heavy-ion collision environment where particle

multiplicities are of the order of thousands per event. It is in these heavy-ion collisions

that the QGP (see Sec. I.2)[31] is predicted to be formed. The study of the QGP,

and its interactions with and effect on particles produced in these collisions, is one

of the main goals of STAR. However, STAR is also suited for studying physics in

p+p, polarized p+p, and d+Au collisions; including the spin structure function of

the proton, the contributions from the preferential orientation of gluon spins to the

overall spin of the proton, and the initial parton distribution function of the incident

nucleus (in d+Au). This dissertation will focus on the components of the STAR

detector system that make it suitable for studying the QGP in heavy-ion collisions.
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Fig. III.2.: Illustration of the STAR detector system, showing the main component

detector[21].

An illustration of the STAR detector system is shown in figure III.2.

One of the main tasks for this detector system is to provide particle tracking for all

produced charged particles. STAR uses a 0.5 T room-temperature solenoidal magnet,

with a uniform magnetic field (the magnet design considerations and structure are

outlined in the following section). In the run 7 data presented in this work, tracking

near the interaction region was provided by the Silicon Vertex Tracker (SVT); a

detector consisting of 216 silicon drift detectors arranged in three cylindrical layers

at distances of approximately 7, 11 and 15 cm from the beam axis[54]. This detector

was removed after run 7 because it was unable to effectively assist in a more accurate

collision vertex determination near the interaction region, in addition, less material

near the interaction point would result in lower background.

More important for particle tracking and identification is the STAR TPC[1]. This

4 m long detector is located at a radial distance of 50 - 200 cm from the beam axis.

The TPC covers a pseudorapidity range of |η| ≤ 1.8, and the complete azimuthal
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range of |φ| = 2π. The TPC helps to identify particles by their ionization energy loss;

its energy loss resolution (dE/dx) is approximately 7% and its momentum resolution

(δp/p) is 0.02 for a majority of the tracks. This momentum resolution increases as the

particle momentum decreases. In the forward region, there is also a radial drift TPC,

the Forward TPC (FTPC), with an η coverage of 2.5 < |η| < 4 and full azimuthal

coverage. The FTPC is not used in this analysis and will therefore not be discussed

further. However, additional information about the STAR FTPC can be found in

[55].

For the measurement of electromagnetic particles, STAR uses the BEMC. This

calorimeter is a sampling calorimeter with alternating stacks of lead and plastic scin-

tillator, and has an η coverage of |η| < 1.0 and full azimuthal coverage. Apart from

measuring the transverse energy of particles such as photons and electrons, the BEMC

is also used to trigger on high-energy electromagnetic particles in the STAR trigger

system. A forward calorimeter, the Endcap Electro-Magnetic Calorimeter (EEMC),

is also part of the STAR detector setup; that detector is not discussed in this work,

but is well-documented in [56].

In a heavy-ion RHIC run, beam-crossings at the interaction point occur approx-

imately every 107 ns. However, only a small sample of these collisions are of interest

for a physics analysis. In addition, the slowest detectors (i.e. the TPC) have readout

times on the order of a few hundred Hz. The STAR data acquisition system (DAQ),

must therefore only be completed on those events that are likely to be of interest in a

physics analysis. This targeted readout of the detector system is achieved using the

STAR trigger system[23]. The STAR trigger system is a 10 MHz system that uses

the fast detectors to select events of interest before the slower detectors are read-out.

The Level 0 trigger is the fastest trigger while Level 1 and Level 2 are slower but allow

for additional selection criteria. The Level 3 trigger[57] makes use of tracking and
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includes an online display by which a sample of the events can be visually inspected.

The fast detectors that are used in the trigger system are the BEMC, the BBC, the

ZDC, the Central Trigger Barrel (CTB) (Run 7) and the Time of Flight (TOF) (Run

10).

III.2.2. The STAR Detector Magnet

There were several factors that influenced the STAR magnet[58] design. Two of these

factors were the TPC structure (and the requirements for the tracking of charged

particles) and the BEMC position outside the TPC.

The STAR TPC, described in the next section, is a large cylindrical tracking

detector, that spans the pseudo-rapidity range of |η| < 1.8 and the full azimuthal

range of 0 < φ < 2π. The TPC is divided into two halves (each 210 cm in length

along the z axis) by a central membrane at z = 0. The nearly-uniform electric field in

each half (East and West) is aligned in an opposite direction to the other half. Charged

particles are tracked by the TPC, as they create clusters of ionization, which drift

(under the influence of the electric field) to cathode plates at the end of the cylinder.

One of the main measurements taken with the STAR detector is the momen-

tum measurement of charged tracks. The electron, in particular, is problematic;

requirements on the magnetic field to ensure a well understood electron drifts are

the limiting consideration, in the determination of the magnetic field homogeneity.

The field homogeneity requirement was determined by combining the tracking ac-

curacy requirement for these electrons (∼200 µm), with estimates of the position

reconstruction accuracy due to uncertainties in the magnetic field.

The STAR BEMC, described in Sec.III.4(68), sits outside the TPC area, this

fact poses an additional constraint on the magnet design: There must be sufficient

space inside the magnet coils for the BEMC detector components, and space between
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the coils for the BEMC electronics. A final design constraint is the need for the

measurement of particles at large pseudo-rapidity ( |η| > 2.0).

The STAR magnet is approximately cylindrical in geometry and consists of 30

flux return bars (backlegs), four end rings, and two poletips. The three types of

magnetic coils used are: Main, Space Trim, and Poletip Trim. The Main and Space

Trim coils are built from two layer pancakes wound in a bifilar fashion (13 turns per

coil), while the Poletip Trim coils contain six layers wound in a trifilar fashion (118

turns per coil). There are five separate power supplies that power the STAR magnet;

a main power supply (828 V, 5300 A), two booster power supplies (50 V, 600 A), and

two poletip trim power supplies (140 V, 1600 A). These supplies (with the exception

of the booster supplies) are in two parts; transformer and rectifier control sections,

and they all supply a negative voltage, with the exception of the main supply, which

supplies both positive and negative.

In the case of overheating of any of the power supplies, the currents are run

down over an interval of 2 minutes, if this fails to lower the temperature, the power

supplies are immediately shutdown. This overheating procedure ensures that the

magnet system is protected, and that the stress on the system is minimized. The

temperature of the magnet coils is maintained at a mean of 29 ◦C, by a closed-loop

water cooling system (supply temp. = 24 ◦C, return temp. = 29 ◦C, pressure = 200

PSI, flow rate 1200 GPM), which dissipates approximately 3.5 MW of power. This

closed-loop system is in turn cooled by an open-loop system with a cooling tower.
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Fig. III.3.: Sketch of the STAR TPC[1].

III.3. The STAR Time Projection Chamber (TPC)

III.3.1. The TPC Structure

The STAR TPC[1] operates in a high multiplicity environment, with typical heavy-

ion multiplicities of 1000 particles per unit pseudorapidity, with an average pT of

approximately 500 MeV/c. Additionally, a significant number of secondary particles

are produced from the decay of short-lived hadrons, and primary particle interactions

with detector material. In this environment the TPC must serve as the primary

tracking detector and effectively record tracks of all produced particles, measure their

momenta (from 100 MeV/c to 30 GeV/c) and identify the particles (from 100 MeV/c

to ∼1 GeV/c) by measuring their ionization energy loss (dE/dx). The TPC has a

relatively large acceptance ± 1.8 units of pseudorapidity, and full azimuthal coverage.

The TPC is 4.2 m in length, with a diameter of 4.0 m. The TPC is essentially

a large cylindrical gas-filled detector with a uniform electric field of ∼135 V/cm. As

primary ionization particles pass through the gas in the detector, their paths are
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reconstructed via the secondary electrons they release that drift in the electric field

(defined by the thin conductive Control Membrane (CM) at the center of the TPC)

to the readout endcaps at the end of the chamber.

The TPC readout system is based on Multiwire Proportional Chambers (MWPC)

with readout pads. The drifting electrons are amplified on avalanche by a factor of

100 - 3000, at the 20 µm anode wires. Several adjacent pads share the induced charge

from the avalanche, so the original track position can be reconstructed to a fraction

of a pad width. In total, there are 136, 608 pads in the TPC readout system.

The TPC CM is operated at 28 KV with the end caps at ground. The CM

cathode is made of 70 µm thick carbon-loaded Kapton film with 230 Ω per square

surface resistance.

The TPC is designed with an inner field cage (IFC) and an outer field cage

(OFC). The material in the inner radius was limited because this is where multiple

coulomb scattering is most important for accurate tracking and accurate momentum

reconstruction. Aluminum was therefore used in the IFC limiting it to 0.5% radia-

tion length (X◦). Copper was used for the OFC (because of the need for electrical

connectivity) giving it a thickness of 1.3% X◦.

The TPC readout planes are MWPC chambers with pad readout that are mounted

on aluminum support wheels. The readout modules are arranged as on a clock with

12 sectors around the circle. There are only 3 mm spaces between the sectors which

translates to a small dead area between the chambers. The chamber consist of a

pad plane on one side, the ground wire plane on the other, and a gating grid. A

comparison of the inner and outer subsector geometries is given in table III.1.

Real TPC tracks may not cross all 45 pad rows. The number of rows crossed

depends on the radius of curvature of the track, the track pseudorapidity, fiducial cuts

near sector boundaries, and other details about the particle’s trajectory. The overall
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Table III.1.: Comparison of the inner and outer TPC subsector geometries[1].

Inner subsector Outer subsector

Pad size 2.85 mm x 11.5 mm 6.20 mm x 19.5 mm

Isolation gap between pads 0.5 mm 0.5 mm

Pad rows 13 (#1 - #13) 32 (#14 - #45)

Number of pads 1750 3942

Anode wire to pad plane spacing 2 mm 4 mm

Anode voltage 1170 V 1390 V

Anode gas gain 3770 1230

tracking efficiency is about 80 - 90%. The track of a primary particle passing through

the TPC is reconstructed by finding ionization clusters along the track. These clusters

are found separately in x, y and z space.

III.3.2. The TPC Gas System

The STAR TPC gas system[2] has two main functions; the first is to provide one

of two gas mixtures (P10- Ar 90% + CH4 10%, or He 50% C2H6, the former is the

favored mixture in STAR) to the TPC, and the second is to cool the outer field cage

resistor strings which are located at the top of the drift volume. The system (which is

normally a closed circuit gas system) can be operated as an open system for purging.

The gas circulated at a rate of 36,000 L/h which allows for one volume change of the

50,000 L TPC every 1.4 h. Additional gas system parameters are given in the table

III.2.

The purity and composition of the gas mixture is monitored with O2, H2O and
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Table III.2.: TPC gas system parameters[2].

TPC Volume 50,000 L

Gas Mixture 1 (10 ±0.1%) CH4 in Ar

Gas Mixture 2 (50 ±0.1%) C2H6 in He

Compressor Pressure 90 - 120 mbar

Supply Pressure 2.2 - 2.4 mbar

Return Pressure 0.5 - 1.6 mbar

Internal TPC Pressure 2.0 ±0.03 mbar

Recirculation Flow 36,000 L/h

Purge Flow 12,000 L/h

Make-up Gas Flow 3.0 - 33 L/h

Oxygen Content < 25 ppm

Water Content < 20 ppm
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CH4 (or C2H6) monitors which are distributed in such a way that each section of

the gas system can be selected separately for monitoring. If the percentage of O2

in the mixture exceeds 0.1% the flow of flammable gas is immediately shut off and

replaced by an inert gas. For CH4, if the percentage in the mixture exceeds 11%,

its flow is immediately shut off. The mixture is decontaminated with a dryer and

purifier that withdraw about 40 - 45 L/min of the upstream flow. The purifier is

filled with a catalyzer that catalyzes the incomplete oxidation, at 210 - 220 ◦C, of the

hydrocarbon (CH4 or C2H6) by O2 forming their respective alcohols. This alcohol

can then be removed by the dryer. The catalyzer is in continuous use in order to

maintain the acceptable 19 - 22 ppm O2 level. Without the catalyzer the equilibrium

O2 level is 60 ppm.

In addition to monitoring and regulating gas composition, it is very important

to monitor and regulate the TPC pressure. The TPC pressure must track the atmo-

spheric pressure as accurately as possible. Because of the location of the detector in

the Long Island, NY, area, it is common to have frequent storms, which are often

preceded by rapid changes in atmospheric pressure. In the gas system, there are two

sources of pressure; the first is a compressor located at the TPC exit, and the second

is the flow of fresh gas through the mixing manifold. Maintaining a constant pressure

downstream and regulating the amount of gas shunted from the compressor output

to intake help to achieve normal pressure regulation.

In the event of rapid fluctuations of the atmospheric pressure additional measures

are needed. For example, when the internal TPC pressure is greater than 2.0 mbar

above the atmospheric pressure, the gas control system will close the solenoid valves

in the gas supply lines and open a vent valve, allowing the TPC to vent directly to

the atmosphere. If the pressure difference exceeds 3.0 mbar, the TPC is vented to

the atmosphere through a bubbler. Equally undesirable is TPC under pressure; if the
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pressure falls too low, the flow of flammable gas is shut off by the compressor and

inert gas is allowed to flow into the system. This system can account for a maximum

rate of increase of atmospheric pressure of up to 6 mbar/min.

The TPC gas system is controlled by a DAQ subsystem which is composed of

three separate devices:

1. A barometer to measure atmospheric pressure

2. A commutator for temperature measurement

3. A custom I/O board

All data are kept in a Microsoft Access database, which allows for easy access

and analysis.

III.3.3. The TPC Laser System

Any large gas detector needs to have a system for testing, calibrating, and monitoring

its function during a physics run. Typically these gas detectors use an ultraviolet

(UV) laser system to generate beams that mimic straight particle tracks. UV-laser

beams are used, because they produce ionization in gaseous detectors via a two-

photon ionization process of the ppb level organic compounds usually present in

the detector volume. A Nd-YAG (Neodymium-doped Yttrium Aluminum Garnet)

frequency-quadrupled laser (λ = 266 nm) produces equivalent ionization to a mip in

common detector volume gas mixtures, without the need for additives. This allows it

to be easily integrated into the detector system, as it does not need a modified setup

to be run.

In general, laser systems help to reduce the uncertainties on track measurement

in a gas detector. For the STAR TPC specifically, there are 5 main sources[59] of



66

track coordinate measurement uncertainty that require an independent method of

calibrating and monitoring this detector:

1. Variation in drift velocity caused by gas mixture, temperature, pressure and

electric field variation.

2. TPC misalignment in the magnet and existence of the global E × B effect.

3. Radial inhomogenities of magnetic and electric field.

4. Space charge buildup due to high multiplicity in Au + Au collisions.

5. TPC endcap wheel displacement and inclination.

TPC track distortion varies along the length of the detector. In order to accu-

rately monitor all of these distortions, the desired number of laser beams per TPC

half is 100 - 400. This issue (as well as the sources of track coordinate measurement

uncertainties listed above) lead to the following 6 specifications[59]:

1. Number of laser tracks ∼100 – 400 in each half of the TPC.

2. Laser beams should fill the TPC volume uniformly.

3. Electron density along the laser beam in any point must be higher than ioniza-

tion from relativistic particles.

4. The accuracy of the position and stability during operation of each laser beam

at any point must be smaller than ∼ 200µ in azimuthal and radial directions

and smaller than ∼ 700µ in axial direction.

5. Synchronization of the time of the laser beams appearance in the TPC volume

to the RHIC clock within ∼5 ns error to provide ∼0.01% accuracy in drift

velocity measurements.
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6. Laser system must provide alignment, steering and stable position of laser beams

with the accuracy specified above.

Because of these requirements (in particular the requirement on the number of

desired laser tracks), the STAR laser system had to employ a novel design, as older-

generation system designs would have been inadequate. The STAR design produces a

large number of narrow laser beams by splitting a wide laser beam (of diameter ∼20 -

30mm) with many small-diameter mirrors. These small mirrors are made from glass

rods cut at 45◦, polished and covered by dielectric coating with 100% reflectivity. The

mirrors are grouped in bundles with seven mirrors per bundle, with each mirror in

the bundle rotated in a different direction.

The diameter of each mirror was chosen to be 1 mm, because mirrors smaller than

1mm in diameter are more difficult to produce and align and also create significant

divergence. And mirrors with longer diameters require wider beams and increased

laser power.

The total number of laser beams is determined by the wide laser beam area and

the number of bundles occupying it. In the STAR TPC, bundles are installed along

the z-axis 30 cm apart.

The STAR TPC laser can be operated remotely using the global TPC operations

slow control infrastructure. A graphical user interface (GUI) is accessible on a PC in

the STAR control room. The laser beam image can also be visually monitored. This

is done using a miniature CMOS CCD Camera (lens and fluorescence screen are ∼20

mm in diameter). This camera is designed to be operated in a high magnetic field

environment (up to 1.0 T). STAR detectors are synchronized with the RHIC clock

(10 MHz) and the laser trigger system can accept the external RHIC clock signal;

which allows for easy integration in the system during a physics run.
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During a RHIC run, the laser trigger is implemented to interleave laser events in

a physics run. The drift velocity from the physics run, and from the laser system are

then calculated and compared. Laser drift velocity is determined using the Z position

difference of the mirror position for the set of laser tracks closest to and furthest from

the pad plane. This drift velocity is affected by several factors; barometric pressure,

cathode voltage, temperature, clock frequency, methane concentration, and unknown

additives in TPC gas. However the methane concentration is the most influential

parameter.

III.4. The STAR Barrel Electro-Magnetic Calorimeter (BEMC)

III.4.1. The BEMC Structure

The STAR TPC is less effective for identifying charged particles with momenta above

∼2 GeV/c. The STAR physics program requires that the detector system is able to

distinguish between electrons and hadrons at high transverse momenta. In addition,

momentum measurements using a magnetic field only work for charged particles. For

photon and neutral meson (such as π0s and ηs, both of which primarily decay into two

photons) measurements, both of which are an important part of the STAR physics

program, a new type of detector is needed.

In STAR, this role is filled by an electromagnetic calorimeter. Calorimeters

measure the energy of electromagnetic particles via a destructive process (this is why

they are usually located behind tracking detectors). They can be used for Particle

Identification (PID) to trigger on interesting events (because of their relatively fast

readout times). Calorimeters are usually made up of two types of material, an active

material responsible for generation of a signal (e.g. ionization, light), and a passive

material, which is responsible for creating the shower. In STAR’s BEMC, the active
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Fig. III.4.: Cross sectional views of the STAR detector system, showing the relative

position of the BEMC[22].

material is a plastic scintillator, and the passive material is lead.

In an electromagnetic shower, the original particle interacts with the passive

layers creating many lower energy particles. These lower energy particles deposit

energy (via ionization in the active layers); the amount of ionization is proportional

to the amount of energy deposited in the calorimeter.

The STAR BEMC[22] is a sampling calorimeter; it does not directly measure the

full energy of the incident particle, but rather it can be used to calculate this energy

based on the shower energy that it supplies. It is located inside the aluminum coil of

the STAR solenoid and has coverage in η of |η| ≤ 1.0, and full coverage in φ. The

BEMC largely matches the TPC tracking coverage. This layout is shown in figure

III.4.

The BEMC is comprised of 120 calorimeter modules, of dimension 6◦ in φ (∼0.1

rad) and 1.0 unit in η. They are mounted 60 in φ, by 2 in η. Each module is segmented
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into 40 towers, 2 in φ and 20 in η; to give a total of 4800 towers. Each tower has

dimensions of 0.05 in φ and 0.05 in η, and is projective, i.e. pointing back to the center

of the interaction diamond. Each calorimeter module consists of a lead-scintillator

stack and a shower maximum detector (see next section) situated approximately 5.0

X◦ from the front of the stack. There are 20 layers of 5 mm thick lead, 19 layers of 5

mm thick scintillator and 2 layers of 6 mm thick scintillator. The thicker scintillator

layers are used in the preshower portion of the detector. The BEMC is under a fixed

internal pressure of 15 psi.

III.4.2. The Barrel Shower-Maximum Detector (BSMD)

The width of the towers in the BEMC is larger than the width of an electromagnetic

shower. Therefore, in order to provide a precise spacial description of the shower

width, and to discriminate between one (direct-γ candidates) and two closely spaced

electromagnetic showers (π0 decay-photon candidates), a detector with a much finer

segmentation is needed. This functionality is provided by the STAR Barrel Shower-

Maximum Detector (BSMD)[22].

The BSMD is a wire proportional counter, strip readout detector that makes use

of gas amplification; it has two independent planes of proportional wires, and two

independent cathode planes with strips in both η and φ. These two planes allow for

a two-dimensional spacial description of an electromagnetic shower. The BSMD is

located at variable depths within the BEMC modules varying from 4.6 - 7.1 X◦ as

η varies from 0 to 1. The position of the BSMD within a tower can be found in

Fig. III.5, a schematic illustration of the detector can be found in Fig. III.6 and a

cross-section view can be found in Fig. III.7.

The BSMD-η strips are perpendicular to the anode wires, and provide an image

of the shower spatial distribution in the η direction. These strips span 30 wires and
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Fig. III.5.: Schematic of a BEMC module (side view) showing the electronic and

mechanical structure[22].
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Fig. III.6.: Schematic illustration of the STAR BSMD detector showing the two (η

and φ detector planes[22].

Fig. III.7.: Cross-section of the STAR BSMD detector showing the 50 µm gold-

plated tungsten anode wires and cathode strips that sense the induced charge from

the amplification near the wires[22].
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have size of 0.1 rad in φ (one module width) and 0.0064 in η. The φ strips are parallel

to the anode wires and have size of 1.33 cm in width and 0.1 η units in length. In

total there are 36,000 strips in the full BSMD detector, and 120 wire channels in the

BEMC. Each of the 1200 distinct areas, approximately 0.1 by 0.1 in η − φ, has 15 φ

strips and 15 η strips.

More information about the BSMD can be found in [22]; additionally, BSMD

calibration and π0/γ discrimination is discussed in detail in Chapter VI (page 77).

III.5. The STAR Trigger System

RHIC beam crossings occur approximately every 107 ns. Not all of these crossings,

however, result in collisions; so it is firstly important for STAR to quickly detect when

collisions occur, and secondly for STAR to make a decision on whether or not the

collisions are useful for achieving the STAR analysis goals for that running period.

Additionally, being able to ”label” certain collisions as more useful for one analysis

goal versus another (or for multiple goals) will allow more selectivity in the production

process. All of these objectives are achieved by the STAR trigger system[23]; a

pipelined system in which digitized signals are analyzed at every RHIC beam crossing

to determine whether to begin the amplification-digitization-acquisition (ADA) cycle

for the slower detectors. This section describes the STAR trigger detectors that are

most important in heavy ion collisions and the general logic of the Level 0, Level 1, and

Level 2 triggers. An outline of the data flow through the STAR trigger is illustrated in

figure III.8 (page 74). A full discussion of all the STAR trigger detectors and trigger

logic can be found in [23] and [57].
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Fig. III.8.: Data flow through the STAR trigger.[23]. Definitions: Central Trig-

ger Barrel (CTB), Zero Degree Calorimeter (ZDC), ElectroMagnetic Calorimeter

(EMC), Multi-Wire Counter (MWC), Beam-Beam Counter (BBC), Forward π0 De-

tector (FPD), Data Storage and Manipulation (DSM), Trigger Control Unit (TCU),

Trigger Clock Distribution (TCD), DAQ (Data AcQuisition).
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III.5.1. The RHIC Zero Degree Calorimeters (ZDCs)

In a 200 GeV/c Au+Au collision at RHIC, evaporation neutrons diverge by less than

2 milli-radians from the beam axis; in this ’zero degree’ region, collision products

and secondary products deposit negligible energy compared with that of the beam

fragmentation neutrons. The accurate detection of these neutrons can be used to

calculate event multiplicity, which can be related to event geometry and used as a

basis of a fast trigger decision (see following section) for the STAR DAQ system.

The RHIC ZDCs[24] (identical design for all original RHIC experiments) were

designed to detect these neutrons and measure their energy; they are longitudinally

segmented hadron calorimeters (see Fig. III.9). Since the spatial distribution of

neutrons emitted in the fragmentation region carries very limited information about

the collision, the ZDCs are not built with transverse segmentation. The ZDCs are

composed of modules which consist of a tungsten absorber with undoped fiber optical

ribbons in the sampling layer.

III.5.2. The Level 0 (L0), Level 1 (L1) and the Level 2 (L2) Triggers

All detectors channels in the STAR Level 0 trigger system, are digitized for each RHIC

crossing and these data are transferred first to the Data Storage and Manipulation

(DSM) board and from there into the Trigger Control Unit (TCU) where the status

of each detector is used to construct a 18 bit address to a lookup table (LUT), which

each address corresponds to a trigger word that is itself an address to an Action Word

LUT that tells the detector system what action is to be taken and what detectors are

to be involved. Level 0 is designed to issue a decision within 1.5 µs

If the L0 algorithm decides to accept the event, the slower detectors begin to start

amplifying and digitizing the signal, the trigger detectors information is aggregated
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Fig. III.9.: Schematic of the collision region (drawn to scale), highlighting the ZDC

position and showing the deflection of protons and charged fragments[24].

(by VME processors) and examined in a coarse pixel array (CPA) at Level 1. The cells

of this CPA are of dimensions δη ∼ 0.5 and δφ ∼ π/2, which help to identify gross

spatial symmetries in particle distributions that are indicative of beam-gas events.

If not aborted, the data acquisition cycle continues and the trigger information

is passed to the L2 farm where both the coarse and fine pixel arrays are analyzed

to determine whether the event fits certain higher-level analysis-oriented standards.

If an event is accepted at L2, the trigger systems hands control of the event to the

central Data Acquisition (DAQ) system. The L2 decision time is 5 ms.
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CHAPTER IV

DETECTOR CALIBRATION AND DIRECT/DECAY PHOTON

DISCRIMINATION

As discussed in the previous chapter, the Barrel ElectroMagnetic Calorimeter (BEMC)

(see Sec. III.4) is a sampling calorimeter, with alternating layers of a plastic scintil-

lating material and lead. This calorimeter spans the entire azimuthal angle (φ) range

and extends from -1 to +1 in pseudorapidity (η). The BEMC is divided into 4800

sections, called towers, which project towards the point of interaction. At a depth

of ∼5.6 radiation lengths in each tower, sits the Barrel Shower Maximum Detector

(BSMD)(III.4.2, page 70); two perpendicular planes (η and φ) of 36,000 (18,000 in

each plane) proportional strips that vary in thickness across η.

The STAR BSMD measures the energy of an electromagnetic shower, typically

extending over a few strips (in both planes) in the detector, initiated when an elec-

tromagnetic particle hits a section of the detector. If these 36,000 strips do not give

a uniformed digital response to an electromagnetic shower of constant energy, then

the detector cannot be relied upon to provide any accurate (or precise) quantitative

descriptions of that shower. It is therefore necessary to force as uniform a response

as possible, by scaling the raw digitized signals from each strip by a set of 36,000

constants mapped to each strip ID in the detector. This section discusses the first

complete calibration of the STAR BSMD, using 3.1 million minimum biased Au+Au

events from Run 7, and also discusses the role that this detector plays in discriminat-

ing between direct and two close photons from a symmetric decay.
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IV.1. BSMD Calibration

The first step in the calibration is to obtain the raw digitized signal in each strip, for

each event in which the BSMD is read-out. This digitized signal must be obtained

before the STAR ADC-to-energy conversion algorithm is run because this algorithm

anticipates a difference in detector response and attempts to correct for it by applying

a set of calibration constants determined solely by Monte-Carlo simulation. The only

mathematical manipulation done on these raw ADC values is a pedestal subtraction

in which the pedestal mean, recorded for that strip during that period of the run, as

well as 5 times the pedestal RMS value, are subtracted from the raw ADC to give a

pedestal-subtracted ADC value.

Running over 3.1 million events, and aggregating the pedestal-subtracted ADC

values for each of the 18,000 BSMD-η and 18,000 BSMD-φ detector channels,

should ideally give a response biased only by the natural pseudorapidity dependence

of electromagnetic particle distributions. These ADC values are stored in two two-

dimensional histogram of pedestal-subtracted ADC versus strip ID, which can be

projected to give the one-dimensional ADC distribution of each strip as illustrated in

Fig. IV.1.

IV.1.1. BSMD Strip Gains Before Calibration

The 2D histograms for all 120 modules in η and φ are shown in Fig. IV.2 and IV.3.

The empty plots correspond to modules that were turned off for the entire running

period. These histograms are projected for each strip to yield 150 1D histograms of

strip ADC values. These histograms must be fit with a function where one parameter

(related to the slope of the distribution) can be extracted and interpreted as the gain

for that strip. A simple exponential of the form e(C0+C1x) does not give a very good
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Fig. IV.1.: ADC distributions BSMD-η Module 12, 2D (left) and 1D projection of

strip #8 in Module 12, strip ID η-1658 (right).

fit (based on initial trials) and consequently does not describe the detector strip gain.

A higher order exponential was therefore needed, but by including additional term

in the fit function, the goal of having one value to interpret as the gain became more

difficult to achieve. The solution is therefore to first fit the ADC distributions with a

function of the form of Eq. 4.1.

e(C0+C1x+C2x2) (4.1)

A sample of these fits are shown in Fig. IV.4 and Fig. IV.5.

The next step is to assume that the ratio of the 3rd to the 2nd parameter of

these fits (α = C2/C1) should be constant, and to fill this value in a profile histogram

with 300 pseudorapidity bins in the case of BSMD-η and 20 in the case of BSMD-φ

(from -1 to +1, corresponding to the detector construction as outlined in the previous

chapter) a ROOT histogram class (TProfile) that averages the y-value for all entries

in a particular x-bin, (optionally) weighted by the error on each individual x-value in

a particular bin. In this case the profile averages α, weighted by the error on the fit,

and with an RMS defined as the spread in values for that pseudorapidity bin. This
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Fig. IV.2.: ADC distributions for all 120 BSMD-η Modules (150 strips per module).
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Fig. IV.3.: ADC distributions for all 120 BSMD-φ Modules (150 strips per module).
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Fig. IV.4.: ADC distributions and fits with equation 4.1 (black line) for the 8th strip

in each of the first 20 BSMD-η modules. Empty spaces correspond to dead strips.
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Fig. IV.5.: ADC distributions and fits with equation 4.1 (black line) for the 8th strip

in each of the first 20 BSMD-φ modules. Empty spaces correspond to dead strips.
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Fig. IV.6.: α profile histogram for BSMD-η (top) and BSMD-φ (bottom) - linear

fit to extract α shown as black line.

profile histogram is then fit with a line to find the average value of this ratio to yield

the values αη and αφ. These profiles are shown in Fig. IV.6.

After α is extracted from the linear fit, the strips are fit again, with a function

that uses this constant, where the 2nd parameter, P1 is taken as the strip gain (Fig.

IV.7).

e(P0+P1(x+αx2)) (4.2)

The shape of the BSMD-η gains (Fig. IV.7) corresponds to the shape expected

(from simulation) due to the natural acceptance distribution of electromagnetic par-

ticles across the calorimeter (and the higher than average voltage in the the modules

in which the 4 bins separated from the bulk of the other bins in the plot correspond
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Fig. IV.7.: P1 (strip gain) profile histogram before calibration for BSMD-η (top) and

BSMD-φ (bottom).
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Fig. IV.8.: Calibration constants for BSMD-η (top) and BSMD-φ (bottom)

to). This shape is used as the ideal gain distribution in BSMD-η; in the BSMD-φ

however, a pseudorapidty dependence is not expected, and therefore the ideal gain

value is taken as a constant (0.03) across all 20 pseudorapidity bins. The relative

calibration constants for all 36,000 strips are calculated by dividing the extracted

gain by the ideal gain; these calibration constants are shown as a function of strip

number in Fig. IV.8. The constants are then applied to the strips and their effect on

the strip gain tested.

IV.1.2. BSMD Strip Gains After Calibration

After applying the calibration constants to the ADC values of each strip, the new

calibration can be tested by fitting the new ADC values with the same functional
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form as equation 4.2. The new extracted gains can then be compared to determine

if they are closer to the ideal gain than they were pre-calibration (the strips that

did not get closer, or that got worst are assigned a calibration constant of 0 in the

generation of the final constants). In total, 86% of the BSMD-η, and 78% of the

BSMD-φ strips were successfully calibrated. Profile histograms for the gains (after

calibration) are shown in Fig. IV.9. Figure IV.10 illustrates the improvement in

the detector after calibration, by isolating the RMS values of the gains before and

after calibration, showing a clear reduction in the magnitude in the latter case. The

reduced spread on the gain RMS is important for direct/decay photon discrimination,

which is described in the following section.

IV.2. Direct/Decay Photon Discrimination

Above 5.5 GeV/c the opening angle between the two photons resulting from the

symmetric decay of a π0 is less than 0.05 radians, and therefore these photons likely

hit the detector within the same BEMC tower (dimensions 0.05 x 0.05 rad); and will

be impossible to distinguish (using this detector alone), from a single photon. This

ability to distinguish between direct and two close decay photons is essential to this

analysis, so the BSMD is used to provide additional spatial information about the

electromagnetic shower.

Electromagnetic showers are identified in the detector with the help of a cluster-

ing algorithm. The clustering algorithm used in this analysis was designed by A.M.

Hamed and is documented in his dissertation [60]. The algorithm starts at a BSMD-

η strip and compares the energy of that strip with the energy of the 7 preceding

strips, and the energy of the 7 strips that follow; if the energy of each of these 14

strips is less than the energy of the first strip (the cluster seed), then the algorithm
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Fig. IV.9.: P1 (strip gain) profile histogram after calibration for BSMD-η (top) and

BSMD-φ (bottom). Notice the reduction in the RMS as compared to figure IV.7.

See figure IV.10 for a plot of these RMS values.
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Fig. IV.10.: Gain RMS before (triangles) and after (stars) calibration for BSMD-η

(top) and BSMD-φ (bottom).
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identifies that collection of 15 strips as a BSMD-η cluster. The algorithm then looks

in the same region in BSMD-φ and tries to identify a similarly defined φ cluster, if

a cluster is found, the algorithm then identifies the BEMC tower in which the cluster

lies and uses the energy of this tower as the cluster energy. The distribution of the

percentage of the cluster energy in each of the 15 strips, when plot versus the posi-

tion of that strip relative to the cluster seed (which has a position of 0) is called the

Transverse Shower Profile (TSP) of that electromagnetic shower. In principle, the

TSP should be qualitatively different for a single photons, than for two photons that

hit the detector in the same tower. Figure IV.11 shows this difference by looking at

the TSP for Monte-Carlo generated electrons (the BSMD produces a similar response

for electrons as photons) and π0s simulated (one electron or π0 per event) in the

STAR detector using the geometry of the detector for Run 7.

The difference between the two TSPs can be exploited with a quantitative cut

that separates a sample of data into two sets, a γ-rich and a π0-rich set. This is done

by inputting the strip energies into equation 4.3[37], where ei and ri are the energy

of the strip and the distance of the strip from the cluster seed (respectively); the

value 1.5 was chosen (from a MC simulation analysis) because it provided the best

separation between electrons and π0s.

Ecluster∑
i eir

1.5
i

. (4.3)

A diagram of this quantity is shown in Fig. IV.12, plotted are the embedded π0s

and γs distributions; acceptable cuts generate a 65 - 70% pure γ-rich sample and a

95% pure π0-rich sample.

The TSP for electrons in data (from all three collision systems Au+Au, d+Au

and p+ p), is not as narrow as expected from simulation, this was thought to be due

to the uncalibrated BSMD; a final test of a calibration of that detector therefore, is
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Fig. IV.11.: BSMD-η Monte-Carlo simulated Transverse Shower Profile (TSP) for

electrons (triangles) and π0s (squares) with 6.0 ≤ pT ≤ 8.0 GeV/c.
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Fig. IV.12.: Transverse shower profile quantity for embedded π0s and γs. In central

Au+Au, cuts on this quantity yield a 65 - 70% pure γ-rich sample and a 95% pure

π0-rich sample.

to compare the electron TSP before and after calibration. This comparison is shown

in Fig. IV.13; the detector calibration reduces the width of the TSP, but not to the

level of the MC simulation. This suggests that there are other effects on the width of

the TSP than are included in simulation.



93

Fig. IV.13.: BSMD-η electron Transverse Shower Profile (TSP) from the Au+Au

2007 L2Upsilon trigger set before calibration (triangles) and after calibration (circles)

with 6.0 ≤ pT ≤ 8.0 GeV/c.
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CHAPTER V

DATA ANALYSIS: AZIMUTHAL 2-PARTICLE CORRELATIONS

In this chapter, the details of the two-particle correlation analysis are discussed. The

chapter starts with an overview of the two-particle correlation algorithm, next, Sec.

V.2 deals with specific analysis cuts applied to both the photon triggers and the

associated tracks, as well as an outline of the method of pair acceptance correction

(a procedure that corrects for the finite detector acceptance), and ends with a brief

discussion of single-particle efficiency correction. In Sec. V.3, the v2 background sub-

traction and the ridge-yield determination methods are explained in detail. Finally,

the method of statistical and systematic error determination are outlined.

V.1. Two-Particle Correlation Technique

V.1.1. Overview of Two-Particle Correlations

Two-particle correlations reveal the angular relationship between particles in a sample

of events; they display the frequency of pairs as a function of angular pair separation

distance. These correlations are used as an indirect method to study di-jets, as they

measure jet-particle production on a statistical basis (averaged over many events),

and do not require event-by-event jet identification.

The algorithm is the same for all data sets. The event is first classified into one

of 22 vertex bins of equal width (from -55 cm to 55 cm), because of the need for pair

acceptance correction (see Sec. V.2.2). Only events meeting the selection criteria

in Sec. V.2.1 are selected. Next, the highest pT trigger (that passed these criteria)

for that event is selected as the trigger particle, then the ∆η and ∆φ values for this

trigger and each associated particle which pass the cut for associated particles are
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calculated as follows:

∆η = ηassoc. − ηtrig. (5.1)

∆φ = φassoc. − φtrig. (5.2)

The ∆η and ∆φ values distributions are filled in a histogram (as described in

Sec. V.2.1), and the final distribution is corrected by the single associated particle

efficiency, and by the number of triggers (so no correction by the trigger efficiency is

needed).

V.2. Analysis Details and Corrections

V.2.1. Data Selection, Analysis Cuts and Histogram Binning

Data discussed in this work are from Au+Au collisions at
√
SNN = 200 GeV , detected

with the STAR detector, from RHIC’s Run 7 (2006 - 2007) and Run 10 (2009 - 2010).

These data satisfy either a High Tower (HT) trigger or both the High Tower and the

L2Gamma trigger. In Run 7, the BHT2 trigger is the HT trigger used; this requires

a ZDC coincidence, and a high energy tower in the BEMC (ET > 5.5 GeV/c, 5.75 in

some cases). The L2Gamma set in this run satisfies the BHT2 but imposes a higher

ET cut on the cluster (of 1 or 2 towers) of 8.0 GeV/c.

All events accepted for this analysis have a well-defined vertex, within 55 cm of

the center of the TPC (along the z-axis) and are in the events with the 10% most

central impact parameter values. Centrality, in this case, is measured by Reference

Multiplicity, and in Run 7, the 10% most central events are defined as those with a

reference multiplicity greater than or equal to 399, and in Run 10, the cut is 375.

The lower reference multiplicity cut in Run 10, can be explained by the dead sector

in the TPC during this run (see figure V.2, bottom left and right plots, on page 99).
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In addition to the event-level cuts, there are also cuts on the photon candidates

accepted as triggers, and on the charged tracks accepted as associated particles. For

the triggers, the following cuts are made;

1. BSMD Threshold Cut: The photon candidate must deposit at least 0.25 GeV/c

in the BSMD-η and the BSMD-φ cluster seed (see Chapter III).

2. Charge-Rejection Cut: No track with pT higher than 1.375 GeV/c for (BHT2)

and 2.0 GeV/c for (L2Gamma) is allowed to point to the tower that triggered

the event.This cut is put into place to eliminate electrons, positrons, and high-

pT hadrons from the trigger sample, as they deposit energy in the calorimeter

and leave charged tracks in the TPC.

3. Trigger pT Cut: The trigger pT is restricted to 5.5 - 8.0 GeV/c for BHT2 data,

and 8.0 - 16.0 GeV/c for L2Gamma data.

4. Tower η Cut: The |η| of the tower of the trigger particle must be less than 0.9.

5. Triggers Per Event Cut: Only one trigger is selected per event. This is the

trigger with the highest pT (among the triggers that passed all trigger cuts).

6. Hot Towers Cut: All towers with hit frequency greater than 5σ (2σ in run 10)

above the mean are masked. (See Appendix A for list of masked towers)

For the associated tracks, the following cuts are made;

1. Track Flag Cut: Only good tracks from the TPC (STAR Track Flag = 301)

and, in run 7, the SVT (STAR Track Flag = 601) are accepted.

2. Fit Points Cut: The number of track fit points exceeds 20.
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3. DCA Cut: The track Distance of Closest Approach (DCA) to the primary

vertex is less than 3.0.

4. Fit Point Ratio Cut: The ratio of the track fit points to the possible points is

greater than 0.52.

5. Track pT Cut: The track pT is greater than or equal to 2.0 GeV/c and is less

than the trigger pT .

6. Track η Cut: The |η| is less than or equal to 1.0.

The triggers and tracks that pass these cuts are used to calculate the ∆η and ∆φ

values which are filled in a 2D histogram (ROOT Class TH2D), with ∆η filled in the

y-axis bins and ∆φ filled in the x-axis bins (see Fig. V.1 and Fig. V.2). There are 96

∆η bins spanning from -2.00 on the left-edge of bin 1 (bin numbering begins at 1 in

ROOT) to +2.00 on the right-edge of bin 96; giving a ∆η bin width of 0.04167. For

∆φ, there are 48 bins spanning from -3.14159 on the left-edge of bin 1 to +3.14159

on the right-edge; giving a bin width of 0.1309. The z-axis in all 2D histograms is

1/Ntrig(d
2N/d∆φd∆η) and 1/Ntrig(dN/dx) for 1D histograms (where x is either η or

φ).

V.2.2. Pair Acceptance Correction

As discussed in Chapter II, the STAR BEMC (Sec. III.4) and TPC (Sec. III.3) have

pseudo-rapidity coverage from |η| ≤ 1.0. However, their pair acceptance in ∆φ and

∆η (the ratio of detected to produced particles) varies over this range. The largest

acceptance (∼1.0) is found at the center of the detector at η = 0, and the acceptance

decreases as you move outward from the center to its lowest value at the edges of the
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Fig. V.1.: Run 7 η − φ distributions for mixing. For γ-rich trigger(top left), π0-rich

trigger(top right), associated tracks for γ-rich triggers (bottom left), associated tracks

for π0-rich triggers (bottom right) for the 5.5 - 7.0 GeV/c bin.
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Fig. V.2.: Run 10 η − φ distributions for mixing. For γ-rich trigger(top left), π0-rich

trigger(top right), associated tracks for γ-rich triggers (bottom left), associated tracks

for π0-rich triggers (bottom right) for the 5.5 - 7.0 GeV/c bin.
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Table V.1.: The five pT bins, their corresponding pT ranges and triggers.

pT Bin pT Range (GeV/c) Trigger (2007) Trigger (2010)

1 5.5 - 7.0 BHT2 BHT

2 7.0 - 8.0 BHT2 BHT

3 8.0 - 10.0 L2Gamma L2Gamma

4 10.0 - 12.0 L2Gamma L2Gamma

5 12.0 - 16.0 L2Gamma L2Gamma

detector at |η| = 1.0. These detectors have a near uniform acceptance in φ with the

exception of the 0 acceptance in the boundaries between the φ sectors in the TPCs.

Because of the unique acceptance of the STAR TPC and BEMC, any data anal-

ysis dependent on an accurate measure of relative particle multiplicities, in different

sectors of the η − φ space (such as a correlation analysis), will be biased towards

particles produced near the center of the detector volume (where the acceptance ap-

proaches unity). Such an analysis will therefore need to be corrected to account for

this varying acceptance. This correction is called pair acceptance correction, because

it uses a distribution of uncorrelated pairs of particles to correct for the acceptance

shape.

Mixed pairs are generated by randomly sampling separate histograms of trigger

and associated particle η − φ distributions, filled in 22 vertex bins of 5 cm width

(from -55 to 55 cm) and in the 5 pT bins described in table V.1. Both the trigger

and associated distribution histograms are filled simultaneously with the real pairs,

so they are subject to the same trigger and associated cuts outlined in Sec. V.2.1.

A trigger is then randomly selected, from the η − φ distributions, in the pT bin
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Fig. V.3.: The number of associated charged-particles per event for trigger sets

”L2gamma 2007”(top left), ”HighTower 2007”(top right), ”L2gamma 2010”(bottom

left), and ”HighTower 2010”(bottom right).

in which the mixed pair would be generated. Then the ∆η and ∆φ are calculated, by

mixing this trigger with randomly chosen associated particles from the corresponding

associated pT bin. The number of associated particles mixed with the trigger is

sampled from a histogram (Fig. V.3) filled with the number of associated particles

for each real trigger. The average number of associated particles is ∼10.

A total of 100 million triggers are mixed with the randomly selected number of

associated particles in each of the 5 pT bins for each trigger sample. The mixed pair

distribution (see Fig. V.4 and V.5) is then normalized to give a maximum acceptance

of 1.0, and used to correct the raw correlation; by dividing the raw correlation by the

acceptance histogram. Uncorrected and corrected correlations for the first pT bin (5.5
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Fig. V.4.: Run 7 mixed-pair(acceptance) distributions for γ-rich triggered 2D(top

left), its ∆η projection(top right),π0 triggered 2D(bottom left), and its ∆η projec-

tion(bottom right) for the 5.5 - 7.0 GeV/c bin.

- 7.0 GeV/c), for both γ and π0 triggers are shown in figures V.6 and V.7 (Run 7),

and in Fig. V.8 and V.9 (Run 10). Figures for all the pT bins are found in Chapter

V.

V.2.3. Single Particle Efficiency Correction

The yield of correlated trigger and associated hadron pairs in a given region of the ∆φ-

∆η phase-space, is dependent on the distribution of charged hadrons in that region.

This distribution reflects the real particle distribution, modified by the reconstruction

efficiency of the detector (specifically the TPC (section III.3). Since all final correla-

tion distributions in this analysis are scaled (divided) by the number of reconstructed

triggers, only the efficiency of the associated hadrons affects the correlation yield in

a given region of the phase-space.

The efficiency correction used in this analysis, is a parameterization, taken from
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Fig. V.5.: Run 10 mixed-pair(acceptance) distributions for γ-rich triggered 2D(top

left), its ∆η projection(top right),π0 triggered 2D(bottom left), and its ∆η projec-

tion(bottom right) for the 5.5 - 7.0 GeV/c bin.

Fig. V.6.: γ-rich triggered Run 7 uncorrected correlations. 2D(top left), its ∆η pro-

jection(top middle), its ∆φ projection(top right) and the acceptance-corrected cor-

relations for γ-rich triggered 2D(bottom left), its ∆η projection(bottom middle), its

∆φ projection(bottom right) for the 5.5 - 7.0 GeV/c bin.
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Fig. V.7.: π0-triggered Run 7 uncorrected correlations. 2D(top left), its ∆η projec-

tion(top middle), its ∆φ projection(top right) and the acceptance-corrected corre-

lations for π0 triggered 2D(bottom left), its ∆η projection(bottom middle), its ∆φ

projection(bottom right) for the 5.5 - 7.0 GeV/c bin.
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Fig. V.8.: γ-rich triggered Run 10 uncorrected correlations. 2D(top left), its ∆η

projection(top middle), its ∆φ projection(top right) and the acceptance-corrected

correlations for γ-rich triggered 2D(bottom left), its ∆η projection(bottom middle),

its ∆φ projection(bottom right) for the 5.5 - 7.0 GeV/c bin.
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Fig. V.9.: π0-triggered Run 10 uncorrected correlations. 2D(top left), its ∆η pro-

jection(top middle), its ∆φ projection(top right) and the acceptance-corrected cor-

relations for π0 triggered 2D(bottom left), its ∆η projection(bottom middle), its ∆φ

projection(bottom right) for the 5.5 - 7.0 GeV/c bin.
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a study which made use of data and simulation to determine the charged-hadron

efficiency. This efficiency was calculated under the assumption that the detector

response to unidentified charged-hadrons is the same as the detector response to

charged pions. This is a reasonable assumption because charged pions are the most

abundantly produced charged-hadrons in relativistic ion collisions. Furthermore, the

response of the protons (also abundantly produced in these collisions) is similar to

that of the pions.

The first step in this efficiency analysis, is to simulate the interaction of pure

single-tracks, with the specific geometry and detector material of the STAR TPC.

This simulation is done using GEANT [61] [62], a software package that contains

libraries of the cross sections for the interactions of different types of particles in

various materials, in a specific 3D detector shape (which is encoded by the user). Input

particle distributions are Monte-Carlo sampled, and each type of particle (charged

pions in this instance) is simulated as it passes through the STAR detector system.

All interactions of the particle (and its daughters) with the detector volume, and any

change in its energy or trajectory is recorded. The particle’s energy loss in the TPC,

can then be determined.

In the next step, the single particle Monte-Carlo sampled signals are added to

the distribution of particles in a real event in a process called embedding. For this

analysis, particles are embedded into Run 7 data files. The STAR track reconstruction

algorithm is then run over this embedded event, and the reconstructed hits and tracks

are associated with the simulated hits and tracks. One of the parameters used to

measure the hit reconstruction efficiency is the distance between the reconstructed

and simulated hit. For tracks, one of the parameters used to study the efficiency is

the number of reconstructed hits for that track.

The results of this study show that the reconstruction efficiency of single particles
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depends on the collision system, center-of-mass energy, pT , and centrality. For this

analysis, a single centrality bin, in a single collision system, for a single center-of-mass

energy is used, and since the efficiency is essentially flat for pT > 2 GeV/c (the lowest

pT accepted in this analysis); a single efficiency factor is used for each run year: 0.85

in Run 7 with Run 10 assumed to have the same efficiency. The correlation yield is

then uniformly scaled (divided) by this efficiency.

V.3. Ridge Yield Extraction

V.3.1. v2 Subtraction

In addition to the correction for the finite detector acceptance, the raw correlations

must also be background corrected to remove non jet-like correlations. If this back-

ground only consisted of uncorrelated pairs, a simple background constant could be

subtracted from the correlation histograms. However, all particles are correlated to

the reaction plane, which creates a cos(2∆φ) modulation of the background. This

background, B(∆φ,pT ), is described[8] by Eq. 5.3; where 〈vtrigger2 vassociated2 〉 is v2 per

pair, φ is the azimuthal angle, and C is a constant determined from normalization to

the ∆φ projection of the correlation, see Sec. V.3.2 for details.

B(∆φ, pT ) = C(1 + 2〈vtrigger2 vassociated2 〉cos2∆φ) (5.3)

This modulation is a function of the azimuthal distribution, of the pT of the

trigger and the associated particles, and of the centrality. In STAR, there is a com-

mon parameterization of this modulation [63] that is used in this analysis. In this

parameterization, 〈vtrigger2 vassociated2 〉 is approximated as 〈vtrigger2 〉〈vassociated2 〉, and the

modulation is calculated per centrality bin (see Table V.2, and Fig. V.10).

Ideally, it is most accurate to perform this subtraction on a pair-wise basis.
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Fig. V.10.: v2 values for the associated charged-hadrons (first 3 bins) and for trigger

particle (assuming a π0). Errors are systematic.

However, because of the large systematic errors on 〈vtrigger2 〉 and 〈vassociated2 〉, this is

not practical. The constant C is fixed using an assumption of zero yield at minimum

(ZYAM) [64]. Two methods of fixing the constant are outlined in the following section

on ridge yield extraction.

V.3.2. Yield Extraction

V.3.2.1. Yield Extraction Method 1

Method 1 depends on the assumption that the near-side jet yield is contained in |∆η|

≤ 0.7 (because of histogram binning, the value used in this analysis is 0.7083). Any

non-zero yield (after acceptance and background subtraction) in the ∆φ near-side

region (|∆φ| ≤ 0.7854) is then assumed to be the ridge yield.

The first step in this method therefore, is to project the range 0.7083 ≤ |∆η| ≤

1.4167 onto the full ∆φ to create a 1D ∆φ correlation histogram (Fig. V.11). The

’minimum’ range used for ZYAM assumption is 0.9163 ≤ |∆φ| ≤ 1.309 (bins 15 - 17
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Table V.2.: 〈vtrigger2 〉 and 〈vassociated2 〉 values for all 5 pT bins.

pT Bin Mean pT (GeV/c) 〈vtrigger2 〉 〈vassociated2 〉

1 6.2 0.0546 0.0802

2 7.4 0.0397 0.0803

3 8.8 0.0270 0.0804

4 10.8 0.0144 0.0806

5 13.4 0.0060 0.0809

and 32 - 34) and their v2 modulation is scaled by the constant necessary to reduce

the yield in this region to zero when the v2 modulation is subtracted.

Bm1
∆φ[−0.7854, 0.7854] ≡ bm1

∆φ

∫ 0.7854

−0.7854

d∆φ(1 + 2〈vtrigger2 〉

〈vassociated2 〉cos2∆φ)

∣∣∣∣
0.7083≤|∆η|≤1.4167

(5.4)

After the v2 modulation subtraction, the resulting background-corrected his-

togram is integrated in the range |∆φ| ≤ 0.7854, and this value is then scaled over

the entire ∆η range (|∆η| ≤ 1.7) to give the scaled integrated ridge yield.

Y m1
ridge =

3.5000

1.4167

[∫ 0.7854

−0.7854

d∆φ
dN

d∆φ

∣∣∣∣
0.7083≤|∆η|≤1.4167

−Bm1
∆φ[−0.7854, 0.7854]

]
(5.5)

V.3.2.2. Yield Extraction Method 2

Method 2 is the method used in the first published STAR ridge paper[10]. The first

step in this method is to project |∆φ| ≤ 0.7854 onto ∆η to give a 1D histogram (Fig.

V.12). This histogram is then integrated over 0.9583 ≤ |∆η| ≤ 1.4167, to extract the
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Fig. V.11.: Yield Extraction Method 1: ∆φ projection (0.7083 ≤ |∆η| ≤ 1.4167)

of corrected correlations (pT bin 1) showing the v2 modulation (Eq. 5.3) that is

subtracted, for triggers: γ-rich 2007(top left), π0 2007(top right), γ-rich 2010(bottom

left), and π0 2010(bottom right).
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Fig. V.12.: Yield Extraction Method 2: ∆η projection (|∆φ| ≤ 0.7854) of corrected

correlations (pT bin 1) used to calculate bm2
∆η, for triggers; γ-rich 2007(top left), π0

2007(top right), γ-rich 2010(bottom left), and π0 2010(bottom right)

flat background. This integral value is then scaled to represent the interval over |∆η|

≤ 1.4167 by the value of bm2
∆η, which is defined as

bm2
∆η =

2.8334

0.9168

[∫ −0.9583

−1.4167

d∆η
dN

d∆η

∣∣∣∣
|∆φ|≤0.7854

+

∫ 1.4167

0.9583

d∆η
dN

d∆η

∣∣∣∣
|∆φ|≤0.7854

]
. (5.6)

The next step is to scale the v2 modulation function described in method 1 to

a ∆φ 1D histogram that was created by projecting the ∆η range |∆η|≤ 1.4167 (Fig.

V.13). ZYAM is assumed in the same range as previously described, the v2 function

is scaled, and then integrated over the range |∆φ| ≤ 0.7854. This integrated value is

Bm2
∆φ.
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Fig. V.13.: Yield Extraction Method 2: ∆φ projection (|∆η| ≤ 1.4167) of corrected

correlations (pT bin 1) showing the v2 modulation (Eq. 5.3), for triggers; γ-rich

2007(top left), π0 2007(top right), γ-rich 2010(bottom left), and π0 2010(bottom

right).

Bm2
∆φ[−0.7854, 0.7854] ≡ bm2

∆φ

∫ 0.7854

−0.7854

d∆φ(1 + 2〈vtrigger2 〉〈vassociated2 〉cos2∆φ)

∣∣∣∣
|∆η|≤1.4167

(5.7)

The ridge yield is then taken as bm2
∆η − Bm2

∆φ, and is scaled to the full ∆η range

(|∆η| ≤ 1.7500).

Y m2
ridge = bm2

∆η −Bm2
∆φ[−0.7854, 0.7854] (5.8)
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V.4. Error Determination

V.4.1. Statistical Error

All correlation histograms are filled after the ROOT TH1::Sumw2 function is called.

This function creates a structure to store the sum of the squares of the weights. The

error per histogram bin is then computed as the square root of the sum of the squares

of the weight for each bin. This bin error can then be accessed from the histogram

object by calling the ”GetBinError” function (if Sumw2 were not set, this function

would return the square root of the contents of that bin).

Sections V.4.1.1 and V.4.1.2 describe the calculation of the statistical error using

the bin numbers of the ∆η and ∆φ projection histograms; it may be useful, therefore,

to rewrite Eqs. 5.5, 5.6 and 5.8 as 5.9, 5.10 and 5.11(respectively), to show the

calculation of the yield as a summation of bins. ∆φb (∆ηb) followed by a number

refers to that bin number in the ∆φ(∆η) histogram:

Y m1
ridge =

3.5000

1.4167
×[

30∑
i=19

∆φProjectionContentbin i

∣∣∣∣
15≤∆ηb≤32 & 65≤∆ηb≤82

−Bm1
∆φ[∆φb19,∆φb30]

] (5.9)

bm2
∆η =

2.8334

0.9168
×[

25∑
i=15

∆φProjectionContentbin i

∣∣∣∣
19≤∆φb≤30

+
82∑
j=72

∆φProjectionContentbinj

∣∣∣∣
19≤∆φb≤30

]
(5.10)

Y m2
ridge = bm2

∆η −Bm2
∆φ[∆φb19,∆φb30] (5.11)
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V.4.1.1. Method 1

The two sources of statistical error in the ridge yield determination for method 1 are

the errors on the 6 bins used to set the ZYAM point for subtracting the v2 function,

and from the errors on the 12 bins over which the ridge yield is integrated. The

functional form used to calculate the total error is;

σm1
Total =

√
(σm1

Y ield)
2 + (σm1

B∆φ
)2 (5.12)

The values σm1
Y ield and σm1

B∆φ
were determined from the bin errors on the ∆φ

correlation (see figure V.11, page 111). σm1
Y ield was calculated as follows:

σm1
Y ield =

3.5000

1.4167

d∆φ

√√√√ 30∑
i=19

σ2
bin i

 (5.13)

The first step in calculating σm1
B∆φ

is to add the errors on the 6 bins in quadrature,

then divide by the number of bins, to obtain σm1
b∆φ

:

σm1
b∆φ

=
1

6

√√√√ 17∑
i=15

σ2
bin i +

34∑
j=32

σ2
bin j (5.14)

The mean value, m, of the absolute value of ∆φ of the 6 bins is then calculated,

and the v2 function is evaluated at m to give the value vm1
2 (m):

vm1
2 (m) = (1 + 2〈vtrigger2 〉〈vassociated2 〉cos2m)

∣∣∣∣
0.7083≤|∆η|≤1.4167

(5.15)

Finally, σm1
B∆φ

is calculated, by multiplying the integral of the v2 function (over

the near-side ∆φ range) by the ratio of σm1
b∆φ

to vm1
2 (m):
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σm1
B∆φ

=
σm1
b∆φ

vm1
2 (m)

[∫ 0.7854

−0.7854

d∆φ(1 + 2〈vtrigger2 〉〈vassociated2 〉cos2∆φ)

∣∣∣∣
0.7083≤|∆η|≤1.4167

]
(5.16)

V.4.1.2. Method 2

In method 2, the two contributing errors to the total statistical error are the errors

on bm2
∆η and on Bm2

∆φ. There is no other source of statistical error, because the yield is

given as the difference between these two background values. The functional form is;

σm1
Total =

√
(σm1

b∆η
)2 + (σm1

B∆φ
)2 (5.17)

The values σm2
b∆η

and σm2
B∆φ

are determined from the errors in the specified bins in

the ∆η and ∆φ correlations respectively. Bm2
∆φ is calculated as follows;

σm1
B∆φ

=
σm1
b∆φ

vm2
2 (m)

[∫ 0.7854

−0.7854

d∆φ(1 + 2〈vtrigger2 〉〈vassociated2 〉cos2∆φ)

∣∣∣∣
|∆η|≤1.4167

]
(5.18)

σbm2
∆φ

is calculated in the same way as it is in method 1 (equation 5.14), and

vm2
2 (m) is calculated as follows;

vm2
2 (m) = (1 + 2〈vtrigger2 〉〈vassociated2 〉cos2m)

∣∣∣∣
|∆η|≤1.4167

(5.19)

σm2
b∆η

is calculated according to the following equation;

σm2
b∆η

=
d∆φ(2.8334)

0.9168

[
25∑
i=15

σ2
bin i

∣∣∣∣
19≤∆φb≤30

+
82∑
j=72

σ2
bin j

∣∣∣∣
19≤∆φb≤30

]
(5.20)
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V.4.2. Systematic Error

The dominant contribution to the systematic error on the calculated yield(in most

pT bins), comes from the error on the v2 calculation. The parameterization used[63]

outputs a high, a low and an average v2 estimate for each combination of trigger and

associated particle pT and for each centrality bin (in 5% increments, in this case the

0-5% and the 5-10% values are averaged to give a v2 value for the 0-10% bin; which

all the data in this dissertation occupy) of which the average is used as the v2 value,

and the difference between either of the two extreme estimates and the average is

taken as the systematic error on the yield.

However, an additional error analysis was conducted to verify that there were no

additional sources of error that contributed beyond statistical uncertainties. If the

percent systematic error associated with varying the number of bins (from 1 to 3)

used to set the ZYAM point was greater than or equal to 3 standard deviations of

the independent portion of the statistical error associated with switching from one

number of bins to the next, then this systematic error was added in quadrature to

the systematic error from the v2 estimation to give a total systematic error for that

bin. A significant systematic error from this analysis was observed in very few of the

trigger and pT bins. Please see the following chapter for a discussion of the full results

of this analysis.
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CHAPTER VI

RESULTS AND DISCUSSION

In this chapter the full results from the analysis methods described in the previous

chapter will be presented and discussed. The first section is concerned with a charged-

particle triggered analysis that was done on data from Runs 7 and 10; this analysis

serves as a consistency check against the data from Run 4 that were presented in the

original ridge analysis[10]. The following section is concerned with the γ-triggered

results from Runs 7 and 10 that are the central focus of this dissertation; and the

final section details the results of a χ2 analysis of the γ-triggered ridge yields, that

tests the previous conclusion[10] that the ridge yield is independent of trigger pT .

VI.1. Consistency Check: Ridge Yields in Charged-particle Triggered Correlations

One reason why a consistency check is needed, is that the STAR detector system

has continually evolved since the first Run ended in 2000. Upgrades to detector

components, triggering algorithms, data acquisition hardware, and the periodic de-

commissioning and removal of detectors means that, in each running year, the STAR

geometry and components have significantly changed. It the case of the two data

sets used in this dissertation (Au+Au collisions Runs 7 and 10) and the one to which

they are compared (Au+Au collisions Run 4), there have been several changes in

particular. Between Runs 4 and Runs 7, the remaining 1/2 of the Barrel Electro-

Magnetic Calorimeter (BEMC) and the Barrel Shower-Maximum Detector (BSMD)

were added to the detector system, and after Run 7 the Silicon Vertex Tracker (SVT)

was removed and an upgrade was made to the STAR DAQ system that increased

the number of collisions the DAQ was able to process in a given period of time, the

Central Trigger Barrel (CTB) was replaced by the Time of Flight (TOF) detector
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after Run 4; in addition, there was an entire module in the Time Projection Chamber

(TPC) that was not operational in Run 10. Similar analyses using data sets from

multiple years should yield consistent results (after correction for single-particle effi-

ciencies, acceptance, and multiplicity); differences usually point to unsolved problems

unique to that running year. For example, in 2004 most charged-charged analyses

used a vertex cut of ±30 cm, however in 2007, charged particles from events with

vertices greater than ±15 cm were found to have skewed pseudorapidity distributions

and were therefore excluded from this analysis. The reason for this difference has not

been completely identified, but for consistency purposes, the same cut is made in the

Run 10 data presented here.

The second reason why a consistency check is needed is that the main analy-

sis presented in this dissertation (γ-triggered 2D correlation analysis) is new, and it

would be hard to interpret any difference in the ridge yield compared to a charged-

particle triggered analysis, without first verifying that the method used in this anal-

ysis can convincingly reproduce the results obtained by the primary investigators in

their previous work[10]. Furthermore, although low-level code (code that accesses

the raw event and converts the raw digital detector signals to physical quantities) is

commonly used and maintained collaboration-wide, higher level analysis code is typi-

cally written, used, and maintained within specific institutions or individual research

groups within those institutions. New results using a new analysis code are therefore

compared to older results, to add confidence to conclusions made from new results.

VI.1.1. Charged-Particle Triggered Correlation Histograms

The uncorrected correlations are shown in Fig. VI.1 and VI.2; the analysis cuts on

the fit points, DCA, and pseudorapidity are similar to those described in Sec. V.2.1.

The trigger charged-particle was required to be within the pT ranges of 3.0 - 4.0,
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Fig. VI.1.: Uncorrected charged-particle correlations (Run 7). Columns from top to

bottom show plots for the 3 pT bins, 3.0 – 4.0, 4.0 – 5.0, and 5.0 – 6.0 GeV/c, and

rows from left to right show the 2D correlations, the ∆η and the ∆φ projections.

4.0 - 5.0, and 5.0 - 6.0 GeV/c for the three trigger pT bins, associated particles with

2.0 < passoc.T < ptrig.T were factored into the correlation. This associated particle

pT range differs from the published Run 4 results; those results show data with

accepted associated particles similar to the method of this analysis, but also with

associated particle pT between 2.0 and 4.0 GeV/c independent of the trigger pT .

Another difference between those results and these, is that this analysis accepts only

one trigger particle per event.

The acceptance distributions are found in Figs. VI.3 and VI.4, and the corrected

correlations are shown in Figs. VI.6 and VI.5; Fig. VI.7 shows one pT bin for Run

4, Run 7 and Run 10. These figures visually confirm that the ridge is observed in all
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Fig. VI.2.: Uncorrected charged-particle correlations (Run 10). Columns from top to

bottom show plots for the 3 pT bins, 3.0 – 4.0, 4.0 – 5.0, and 5.0 – 6.0 GeV/c, and

rows from left to right show the 2D correlations, the ∆η and the ∆φ projections.
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Fig. VI.3.: Charged-particle acceptance (Run 7). Columns from top to bottom show

plots for the 3 pT bins, 3.0 - 4.0, 4.0 - 5.0, and 5.0 - 6.0 GeV/c, and rows from left to

right show the 2D correlations, and the ∆η projection.

three runs. The next section compares the yields and discusses the systematic error

determination.

VI.1.2. Charged-Particle Triggered Yields and Systematic Error Analysis

Figures VI.8 (Run 7) and VI.9 (Run 10) show the ∆φ projection of the ridge region

(before v2 subtraction) and the v2 modulation after it has been normalized to the 3

bins (as described in the previous chapter). Figures VI.10 (Run 7) and VI.11 (Run 10)

show two sets of histograms; the first is a ∆η projection of the entire ∆φ range and

the second is the ∆φ projection of the full ∆η range (as well as the ZYAM-normalized

v2 functions).
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Fig. VI.4.: Charged-particle acceptance (Run 10). Figures are arranged in the same

manner as described above.
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Fig. VI.5.: Corrected charged-particle correlations (Run 7). Figures are arranged in

the same manner as described above.
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Fig. VI.6.: Corrected charged-particle correlations (Run 10). Figures are arranged in

the same manner as described above.

Fig. VI.7.: Corrected correlations with 3.0 < ptrig.T 4.0 and 2.0 < ptrig.T ptrig.T , for Au+Au

collisions in Run 4 (left)[10], Run 7 (middle), and Run 10 (top). Apart from the finer

binning in the two plots from this analysis (and the fact that the published results

calculate the absolute value of ∆η and ∆φ then reflected that quadrant onto the other

three), all three results show the characteristic ridge shape and are similar.
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Fig. VI.8.: Charged-particle yield extraction method 1, Run 7. ∆φ projection (of

|∆η| ≤ 1.4167) showing the v2 modulation (equation 5.3)– for all 3 pT bins.

Fig. VI.9.: Charged-particle yield extraction method 1, Run 10. ∆φ projection (of

|∆η| ≤ 1.4167) showing the v2 modulation (equation 5.3)– for all 3 pT bins.

Fig. VI.10.: Charged-particle yield extraction method 2, Run 7. ∆η projection (of

|∆φ| ≤ 0.7854) used to calculate bm2
∆η (top row), and ∆φ projection (of |∆η| ≤ 1.4167)

showing the v2 modulation (equation 5.3)(bottom row)– for all 3 pT bins.
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Fig. VI.11.: Charged-particle yield extraction method 2, Run 10. ∆η projection (of

|∆φ| ≤ 0.7854) used to calculate bm2
∆η (top row), and ∆φ projection (of |∆η| ≤ 1.4167)

showing the v2 modulation (equation 5.3)(bottom row)– for all 3 pT bins.

Figure VI.12 shows the ridge yields for the three pT bins from both methods in

both runs. The four yields in each pT bin all agree within the statistical errors, with

the exception of one yield in the first bin; and they all agree within the scope of the

systematic errors. Figure VI.13 shows the published Run 4 yields; again the yields

agree statistically with the exception of the first bin (a difference in the same bin was

also observed by another collaborator who attempted to reproduce these results).

The data used for the calculation of the systematic error for Run 7 and Run 10

are found in Tables. VI.1 and VI.2. Rows 1 – 3 show the ridge yields calculated using

3, 2 and 1 histogram bins to set ZYAM for v2 subtraction (described in Sec. V.4.2)

these are referred to in the table as Y 3bins, Y 2bins, and Y 1bin; the next 3 rows (rows 4

– 6) show the total statistical error associated with the yield values (σ3
Y , σ2

Y , and σ1
Y );

rows 7 – 9 show the percent systematic error between yields calculated with ZYAM

determined by 3 bins and 1 bin (S3,1
Z ), 3 bins and 2 bins (S3,2

Z ), and the systematic error

due to v2 uncertainties(Sv2
Z ); finally, the last 2 rows (10 and 11) show the independent
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Fig. VI.12.: Charged-particle triggered ridge yields for Run 7 method 1 magenta

open (up) triangle, Run 7 method 2 navy-blue open (down) triangle,Run 10 method

1 magenta full (up) triangle, Run 10 method 2 navy-blue full (down) triangle. Error

bars are statistical, braces are systematics.
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Fig. VI.13.: Ridge yields, charged-particle correlations. Run 4 published data[10]

(black triangles) plot with the data from this dissertation (see Fig. VI.12) and with

data from Run 4 (red circles) from another STAR collaborator (Christine Nattrass,

Private Communication). The yellow bars are systematic errors for the Nattrass data,

the black lines for the published data (the systematics for the data in this dissertation

are omitted for clarity).
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Table VI.1.: Run 7 charged-particle ridge yield systematic error calculations.

M1
3−4GeV

M1
4−5GeV

M1
5−6GeV

M2
3−4GeV

M2
4−5GeV

M2
5−6GeV

Y 3bins 0.13 0.13 0.13 0.12 0.12 0.11

Y 2bins 0.14 0.14 0.11792 0.13 0.12 0.12

Y 1bin 0.15 0.15 0.098 0.14 0.13 0.12

σ3
Y 0.0050 0.011 0.025 0.0049 0.011 0.024

σ2
Y 0.0056 0.013 0.028 0.0051 0.012 0.026

σ1
Y 0.0072 0.017 0.036 0.0058 0.013 0.029

%S3,1
Z 14.5 11.6 23.3 16.0 11.4 12.3

%S3,2
Z 8.4 5.3 7.4 9.4 3.0 14.7

%Sv2
Z 27.3 26.8 24.4 28.2 28.4 27.1

%σ3,1
Z 4.06 9.2 20.6 2.7 6.3 14.7

%σ3,2
Z 2.0 4.6 10.3 1.3 3.1 7.3

part of the statistical error between Y 3bins and Y 1bin (σ3,1
Z ), and between Y 3bins and

Y 2bins (σ3,2
Z ). The systematic error algorithm returns the systematic error from varying

the ZYAM bins added in quadrature to the v2 systematics if the ZYAM bin error is

greater than 3σ, otherwise, the algorithm returns only the v2 systematic error. The

only pT bin in which the ZYAM bin error was included in the final systematic error is

the 3.0 – 4.0 GeV/c bin from method 1 in Run 7. As previously mentioned, this was

the only bin that differed significantly (statistically) from the previously published

results.



131

Table VI.2.: Run 10 charged-particle ridge yield systematic error calculations.

M1
3−4GeV

M1
4−5GeV

M1
5−6GeV

M2
3−4GeV

M2
4−5GeV

M2
5−6GeV

Y 3bins 0.11 0.13 0.090 0.094 0.13 0.0804

Y 2bins 0.11 0.13 0.084 0.097 0.13 0.071

Y 1bin 0.11 0.14 0.064 0.099 0.14 0.061

%σ3
Y 0.0047 0.011 0.025 0.0046 0.011 0.025

%σ2
Y 0.0053 0.012 0.028 0.0048 0.012 0.026

%σ1
Y 0.0068 0.016 0.036 0.0054 0.013 0.029

S3,1
Z 3.2 1.6 29.1 5.6 10.7 24.0

S3,2
Z 0.7 0.1 6.6 3.4 3.7 12.2

Sv2
Z 27.5 22.4 30.2 30.0 22.7 31.7

%σ3,1
Z 4.5 8.8 29.3 3.1 5.7 19.8

%σ3,2
Z 2.2 4.4 14.6 1.6 2.8 9.9

Table VI.3.: Ridge yields (Run 7, method 1) with their associated statistical and

systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

3.0 – 4.0 3.3 3,195,087 0.13 0.0050 30.9

4.0 – 5.0 4.4 613,366 0.13 0.011 26.8

5.0 – 6.0 5.4 128,948 0.13 0.025 24.4
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Table VI.4.: Ridge yields (Run 7, method 2) with their associated statistical and

systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

3.0 – 4.0 3.3 3,195,087 0.12 0.0049 28.2

4.0 – 5.0 4.4 613,366 0.12 0.011 28.4

5.0 – 6.0 5.4 128,948 0.11 0.024 27.1

Table VI.5.: Ridge yields (Run 10, method 1) with their associated statistical and

systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

3.0 – 4.0 3.3 3,255,214 0.11 0.0047 27.5

4.0 – 5.0 4.4 575,726 0.13 0.011 22.4

5.0 – 6.0 5.4 117,601 0.090 0.025 30.2

Table VI.6.: Ridge yields (Run 10, method 2) with their associated statistical and

systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

3.0 – 4.0 3.3 3,255,214 0.094 0.0046 30.0

4.0 – 5.0 4.4 575,726 0.13 0.011 22.7

5.0 – 6.0 5.4 117,601 0.080 0.025 31.7
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VI.2. Ridge Yields in γ/π0-Triggered Correlations

This section presents the yield correlation plots for the π0-rich triggers, and the

integrated yield for both the γ-rich and the π0-rich triggers. A detailed analysis of

these yields follows in Sec. VI.3. The systematic error calculations for both methods

and triggers in both runs can be found in Appendix B.

VI.2.1. γ/π0-Triggered Yields

The γ/π0-triggered correlation plots for the ridge yield methods 1 and 2 are shown,

for Run 7 in Fig. VI.14, and for Run 10 in Fig. VI.15.

The π0-triggered ridge yields from methods 1 and 2, from Runs 7 and 10 are

shown in Fig. VI.16.

Although the focus of this this is the π0-triggered correlations and ridge yields,

the γ-triggered correlations and yields are presented for completeness. However there

are three main issues with this sample that prohibit us from using them to draw

conclusions about the nature of the γ-triggered ridge:

1. The same v2 values for the π0- rich triggers are used for the γ-rich triggers. This

leads to an over subtraction of the background in this sample.

2. The statistics in this set are lower than in the π0-triggered set; resulting in large

statistical uncertainties.

3. A more meaningful measurement would be of background subtracted direct γ-

triggered correlations. This measurement will be calculated after the solution

for the statistic woes (see Chapter VII) is implemented.

The γ-triggered yields are show in Fig. VI.17. Although they appear consistent

with zero, this conclusion cannot be made, as a result of the three issues previously
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Fig. VI.14.: γ-triggered (π0-rich sample) yield extraction plots Run 7. Method 1: ∆φ

projection (of |∆η| ≤ 1.4167) showing the v2 modulation (left column). Method 2:

∆η projection (of |∆φ| ≤ 0.7854) used to calculate bm2
∆η (middle column), and ∆φ

projection (of |∆η| ≤ 1.4167) showing the v2 modulation (right column). Rows are

the 5 pT bins from lowest to highest.
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Fig. VI.15.: γ-triggered (π0-rich sample) yield extraction plots Run 10. Method 1:

∆φ projection (of |∆η| ≤ 1.4167) showing the v2 modulation (left column). Method

2: ∆η projection (of |∆φ| ≤ 0.7854) used to calculate bm2
∆η (middle column), and ∆φ

projection (of |∆η| ≤ 1.4167) showing the v2 modulation (right column). Rows are

the 5 pT bins from lowest to highest.
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Fig. VI.16.: γ-triggered (π0-rich sample) triggered ridge yields for Run 7 method 1

dark-orange open stars, Run 7 method 2 dark-red open diamonds,Run 10 method

1 dark-orange full stars, Run 10 method 2 dark-red full diamonds. Error bars are

statistical, braces are systematics.
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Fig. VI.17.: γ-triggered (direct-γ-rich sample) triggered ridge yields for Run 7 method

1 sea-green open circles, Run 7 method 2 dark-green open cross, Run 10 method 1

sea-green full circles, Run 10 method 2 dark-green full cross. Error bars are statistical,

braces are systematics.

discussed.

VI.3. χ2 Analysis of Ridge Yields

The conclusion from the initial ridge results[10] is that the ridge yield is constant

(and non-zero) for all trigger pT values. Certainly at low pT (in the charged-particle

triggered correlations) this appears to be a fair assumption, however in light of the

new results presented in this work, it is not clear that that conclusion remains valid

for the π0-triggered correlations at higher pT . But, because of the relatively large

statistical and systematic uncertainties in these new results; it is difficult to make
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Table VI.7.: Expected yield values (Ei) from fit to charged-particle triggered yield

values.

Run Method Expected Value %Error of Fit

7 1 0.13 3.5

7 2 0.12 3.8

10 1 0.11 3.8

10 2 0.10 4.2

a definitive statement about trends in the ridge yields at higher pT . A quantitative

measure of how the data trends is therefore needed. This quantitative measure can be

defined as a variation of a χ2 sum, in which a weighted (by the variance on this error)

sum-of-the-squares of the“error” (the difference between the observed yield value and

the expected yield value) is calculated.

The first step in this analysis is to fit, with a constant value, the ridge yields in the

charged-particle triggered correlation. This best estimate of a constant yield will be

used as the expected value in the χ2 calculation at higher pT . To allow for independent

assessment of the different yield determination methods, and of the impact on the

increased statistics of Run 10; a separate expected yield value is extracted for each

method in each running year. These values and the percent error of the fit are

tabulated in Table VI.7.

The expected values from Tab. VI.7 are used as the value Ei in the χ2 “goodness-

of-fit” equation,

χ2
f =

∑
i

(Oi − Ei)2

σ2
i

, (6.1)
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Table VI.8.: χ2
f values for charged-particle triggered ridge yields in Run 7 & Run 10.

Run Method (χ2
f)

4 (χ2
f)

5 (χ2
f)

6

7 1 6.8 x 10−3 2.7 x 10−2 1.9 x 10−2

7 2 7.2 x 10−3 4.0 x 10−3 4.6 x 10−2

10 1 4.3 x 10−1 2.2 1.7

10 2 7.9 x 10−1 3.5 2.485

χ2
0 =

∑
i

O2
i

σ2
i

, (6.2)

where Oi is the observed value (the yield for that pT bin), and σi is the error on Oi

(which is assumed to be normally distributed). The second χ2 equation (Eq. 6.2) is

used to test how consistent with zero the yield values are.

Before the γ/π0-charged yield values are analyzed, the two χ2 equations are

applied to the charged-particle triggered yield. These results are shown in Tables VI.8

and VI.9. As predicted by the small ∼3.8% fit error, these data should show a strong

agreement with the expected value, and a weak agreement with 0. To get a more

detailed mathematical description of how these data tend, 3 χ2 values are calculated,

one up to 4 GeV/c((χ2
f/0)4),using the first pT bin, the next up to 5 GeV/c((χ2

f/0)5),

using the first and second pT bins and the last up to 6 GeV/c((χ2
f/0)7), using all the

pT bins.

For the γ-triggered correlations, 5 χ2 values are calculated to show how the the

yields trend with increasing trigger pT (the super-script pT is the right edge of that

pT bin); (χ2)7, (χ2)8, (χ2)10, (χ2)12 and (χ2)16. These values can be found in Tables

VI.10 and VI.11, and Tables VI.12 & VI.13; they are also plot in Figs. VI.18 and

VI.19.

The results of this χ2 analysis can be summarized in the following two points
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Table VI.9.: χ2
0 values for charged-particle triggered ridge yields in Run 7 & Run 10.

Run Method (χ2
0)

4 (χ2
0)

5 (χ2
0)

6

7 1 663 397 273

7 2 579 343 235

10 1 548 345 235

10 2 425 277 188

Fig. VI.18.: χ2 values vs. ptrig.T for γ-triggered ridge yields in Run 7 & Run 10 - γ-rich

sample. Method 1 Run 7(top left), Method 2 Run 7 (top right, Method 1 Run 10

(bottom left) and Method 2 Run 10 (bottom right). Closed markers are χ2
f and open

markers χ2
0. Please see Tables VI.10 and VI.11, and Tables VI.12 & VI.13 for data

values.
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Fig. VI.19.: χ2 values vs. ptrig.T for γ-triggered ridge yields in Run 7 & Run 10 -

π0-rich sample. Method 1 Run 7(top left), Method 2 Run 7 (top right, Method 1

Run 10 (bottom left) and Method 2 Run 10 (bottom right). Closed markers are χ2
f

and open markers χ2
0. Please see Tables VI.10 and VI.11, and Tables VI.12 & VI.13

for data values.

Table VI.10.: χ2
f values for γ-triggered ridge yields in Run 7.

Trigger Set (χ2
f)

7 (χ2
f)

8 (χ2
f)

10 (χ2
f)

12 (χ2
f)

16

γ − rich M1 1.94 3.35 10.16 10.40 13.02

γ − rich M2 7.47 x 10−3 4.07 x 10−1 5.49 5.57 7.43

π0 − rich M1 8.21 9.50 9.51 9.59 9.97

π0 − rich M2 5.91 6.05 6.96 6.99 7.01



142

Table VI.11.: χ2
0 values for γ-triggered ridge yields in Run 7.

Trigger Set (χ2
0)

7 (χ2
0)

8 (χ2
0)

10 (χ2
0)

12 (χ2
0)

16

γ − rich M1 4.67 5.23 5.86 6.12 6.91

γ − rich M2 11.24 12.52 12.85 13.25 13.72

π0 − rich M1 7.32 x 10−2 1.38 x 10−1 1.83 1.91 2.95

π0 − rich M2 1.91 x 10−6 8.55 x 10−1 8.84 x 10−1 1.02 1.06

Table VI.12.: χ2
f values for γ-triggered ridge yields in Run 10.

Trigger Set (χ2
f)

7 (χ2
f)

8 (χ2
f)

10 (χ2
f)

12 (χ2
f)

16

γ − rich M1 16.90 24.69 30.81 36.68 39.42

γ − rich M2 9.39 x 10−1 1.02 1.03 2.04 2.64

π0 − rich M1 1.60 8.48 9.79 10.06 12.36

π0 − rich M2 8.50 12.84 13.28 13.48 13.49

(strongly indicates a χ2 value less than 2):

1. π0 -rich sample (Run 7): The yields strongly tend to zero for trigger pT less

than 8 GeV/c and weakly tend to zero for trigger pT greater than 8 GeV/c

using Method 1, and strongly tend to zero for all trigger pT s with Method 2.

2. π0 -rich sample (Run 10): The yields strongly tend to the fit for the first bin

(trigger pT less than 7 GeV/c), but only weakly tend to the fit for all other pT

bins with Method 1, and weakly tend to zero for all pT bins with Method 2.
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Table VI.13.: χ2
0 values for γ-triggered ridge yields in Run 10.

Trigger Set (χ2
0)

7 (χ2
0)

8 (χ2
0)

10 (χ2
0)

12 (χ2
0)

16

γ − rich M1 1.26 x 10−1 9.82 x 10−1 1.03 2.36 2.87

γ − rich M2 5.48 7.31 11.08 11.09 11.10

π0 − rich M1 16.45 16.46 19.29 20.22 20.53

π0 − rich M2 3.45 3.48 6.97 10.09 11.03
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CHAPTER VII

CONCLUSION AND OUTLOOK

VII.1. Summary and Conclusions

This work explored γ/π0 triggered long-range rapidity correlations in
√
SNN = 200

GeV Au + Au collisions with the STAR detector system. The neutral particle trig-

gered events were separated into two groups: direct-γ-rich photons and π0-rich pho-

tons. The separation of photons into these two groups was accomplished by making

a cut on the transverse shower profile (TSP) of the photon candidate in the STAR’s

Barrel Shower-Maximum Detector (BSMD) (which was calibrated in an attempt

to improve this photon discrimination) in the Barrel Electromagnetic Calorimeter

(BEMC).

The first question that this work attempted to address was the question of the

dependence of the ridge yield on trigger pT , i.e. how far the ridge extend in trigger pT .

The assumption in the first published study[10] was that the ridge was independent of

trigger pT . These data show a statistically significant ridge signal in two of the pT bins

for the π0-rich trigger sample. Figure VII.1 (the χ2 results presented in the previous

chapter) seems to indicate that the ridge yield actually decreases from the first pT

bin to some minimum value in the other bins (the first bin strongly tends towards the

expected yield values from the fit, while the other bins tend away from this value).

However, this analysis can only suggest that the assumption of constant ridge yield

may not be true, but because of the lack of statistics, a conclusive statement that

it is false cannot be made. The other question that this analysis aimed to confront

was the question of whether or not the ridge is observed in direct-γ-triggered jet-like

events, however, the lack of statistics prohibits an answer to this question.
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Fig. VII.1.: χ2 values for Run 10 - π0-rich sample. Closed markers are χ2
fit and open

markers χ2
zero.

VII.1.1. Solution for Overcoming the Effect of Statistics

In order to understand phenomena observed at low to mid pT , it is often desirable

to extend the analysis to higher pT . The relatively few charged particles at higher

pT make this impractical with a charged-particle triggered analysis. Because of a HT

trigger, a γ/π0-triggered analysis is theoretically possible to explore ridge yields (if

the ridge persists) out to higher pT . However, as the results in this work have shown,

the statistics for γ candidates obtained during any single Run period, is likely to be

inadequate for statistically significant data out to very high pT . Combining data from

multiple Au+Au runs is therefore a possible strategy for this type of analysis.

The feasibility of a combination of multiple data sets must be assessed on an

analysis-by-analysis basis. In this analysis, the comparison of the ridge yields in the

charged-particle consistency check suggest that even though there have been many

changes to the detector system, the triggers and the electronics, that the data from

Run 7 and Run 10 can be combined (Run 11 must be analyzed separately to determine

whether it too should be added). The factor of ∼2.6 increase in luminosity (Fig.

VII.2) for all 3 runs over using Run 10 alone, and the estimated factor of ∼6 increase
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Fig. VII.2.: Integrated nucleon-pair luminosity in RHIC heavy ion runs through Run

11[25]. Combining the Runs 7, 10, and 11 data will provide a factor of ∼2.6 increase

in luminosity over using Run 10 alone, and a factor of ∼6 increase in the statistics of

Run 10.

in the statistics for events that satisfy the L2Gamma trigger, should yield statistically

significant data out to ∼13.5 in trigger pT .

The acceptance correction employed in this analysis serves as a justification for

the claim that these datasets can be combined. The mixed-events sample corrects

for the effect of the finite detector acceptance in the correlations. This is seen in the

fact that the acceptance for the direct-γ-rich + charged particles and the π0-rich +

charged particles samples for each pT bin have different shapes that describe features

in the ∆η- ∆φ space unique to these different trigger sets. In addition, the acceptance

changes between runs for the charged particle triggered correlations.



147

The following method can be used for combining data from each of the 3 most

recent Au+Au runs;

1. For each run (and in each trigger pT bin), construct a raw correlation.

2. Create an acceptance distribution and correct for the acceptance (also in each

of these bins).

3. Add the corrected histograms together and calculate the ridge yield.

4. Determine statistical and ZYAM systematic errors from the combined his-

togram.

5. Determine additional systematic errors (as described below)

For the error analysis in the combined data correlations, the statistical error

method does not need to be modified; these errors can be calculated from the com-

bined histograms as long as the errors were correctly propagated. Three components

to the systematic error should be considered. The first component is the system-

atic from v2 subtraction, which is independent of the statistics of the correlation to

which it is applied (it is of course not independent of the data that was used in the

parameterization) so it can be added as systematic on the combined corrected his-

togram. The second component to the systematic error is the choice of minimum in

the ZYAM procedure. This error can also be easily calculated in a combined correla-

tion; run dependent systematic effects were not dominant. With combined statistics,

the systematic error can be studied in more detail.

VII.2. Future Outlook

STAR (by combining data from Runs 7, 10 and 11) should be able to make a statis-

tically significant measurement of a direct-γ-rich versus a π0-rich ridge yield in the
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Fig. VII.3.: CMS p + p (
√
SNN = 7 TeV ) long-range rapidity correlation with track

multiplicity > 110 and 1.0 < pT < 3.0GeV/c. The near-side jet peak is truncated to

better show the ridge structure[26].

very near future. If the ridge is not present in the direct-γ-rich case (which these

results seem to indicate) that fact would lead one to believe, that the ridge arises

from some interaction of the near-side associated particles with the medium. How-

ever, in the long term, the LHC is anticipated to be the source of the many new

ridge results. Already two interesting recent results from the CMS experiment at the

LHC have raised a few questions about the nature of the ridge phenomenon. The

first result[26] is an untriggered correlation analysis in high-multiplicity p + p colli-

sions with 1.0 < pT < 3.0GeV/c that shows a weak associated yield (Figs. VII.3 and

VII.4) in the highest multiplicity bins. The only background subtraction done was

a random background subtraction generated by mixing all particles from one event

with all particles from another event in the same multiplicity range (and vice-versa).

It is expected that future publications will address this observation in more detail.

The second interesting result is the long-range correlations reported in [27] in Pb

+ Pb collisions at
√
SNN = 2.76 TeV (Figs. VII.5 and VII.6). Their results show a
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Fig. VII.4.: CMS p+ p (
√
SNN = 7 TeV ) near-side associated yields integrated over

2.0 < ∆η < 4.8[26].

ridge signal over twice the pseudorapidity range (up to ± 4) that STAR can measure

and consequently shows that the ridge structure persists at higher
√
SNN . More

importantly, the results also show (as the data in this dissertation seem to indicate)

that the yield decreases with increasing trigger pT .

Because of the higher luminosity of LHC runs, there is the potential for the LHC

to produce some interesting results for γ-triggered correlations in the future. These

results presented in this dissertation represent the first step in the direction of using

photon triggered correlations in two-dimensions, to understand more about the effect

of the jet on the medium.
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Fig. VII.5.: CMS Pb + Pb (
√
SNN = 2.76 TeV ) long-range rapidity correlation (0 -

5% most central events). With 4.0 < ptrig.T < 6.0 and 2.0 < passoc.T < 4.0[27].

Fig. VII.6.: CMS Pb + Pb (
√
SNN = 2.76 TeV ) jet and ridge yields vs. ptrig.T . These

data show a clear reduction in ridge yield with increasing pT [27].
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APPENDIX A

MASKED TOWERS, γ-TRIGGERED RIDGE YIELDS, AND SYSTEMATIC

ERROR ANALYSIS TABLES

Run 7 Masked Tower IDs(L2Gamma & High Tower): 30, 55, 59, 95, 114, 169,

292, 308, 316, 334, 439, 509, 576, 580, 591, 600, 631, 636, 654, 714, 740, 775, 779,

784, 830, 882, 899, 915, 1020, 1025, 1130, 1132, 1153, 1172, 1197, 1257, 1278, 1294,

1300, 1320, 1340, 1350, 1480, 1537, 1665, 1666, 1709, 1786, 1791, 1800, 1871, 1909,

1935, 1938, 1945, 2043, 2058, 2171, 2313, 2383, 2398, 2559, 2642, 2774, 2878, 2880,

3093, 3240, 3271, 3273, 3277, 3280, 3359, 3518, 3559, 3577, 3597, 3673, 3674, 3711,

3720, 3750, 3751, 3840, 3916, 4005, 4006, 4007, 4133, 4260, 4262, 4400, 4422, 4453,

4498, 4539

Run 10 Masked Tower IDs(L2Gammam): 23, 29, 30, 96, 308, 555, 576,

591, 796, 882, 897, 903, 963, 986, 1176, 1197, 1278, 1284, 1294, 1337, 1350, 1378,

1382, 1537, 1705, 1709, 1781, 1787, 1909, 1921, 1935, 1966, 1986, 2043, 2047, 2050,

2068, 2129, 2141, 2171, 2181, 2190, 2192, 2248, 2290, 2445, 2497, 2749, 2981, 3013,

3028, 3061, 3083, 3163, 3186, 3215, 3271, 3273, 3327, 3375, 3481, 3686, 3691, 3692,

3821, 3838, 3861, 3948, 4006, 4013, 4226, 4288, 4423, 4482, 4498, 4563

Run 10 Masked Tower IDs(High Tower): 23, 30, 96, 308, 555, 561, 562,

576, 637, 681, 749, 796, 801, 882, 897, 953, 954, 986, 1044, 1046, 1078, 1130, 1132,

1176, 1197, 1278, 1284, 1294, 1306, 1337, 1350, 1375, 1378, 1382, 1397, 1537, 1705,

1709, 1781, 1787, 1909, 1935, 1984, 2043, 2050, 2068, 2097, 2106, 2129, 2141, 2162,

2171, 2190, 2192, 2290, 2445, 2589, 2749, 3013, 3028, 3061, 3271, 3273, 3375, 3690,

3692, 3718, 3821, 3838, 3861, 3948, 4013, 4288, 4498, 4563, 4765
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Table A.1.: γ-triggered (direct-γ-rich sample) ridge yields (Run 7, method 1) with

their associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 35,729 -0.013 0.050 215.3

7.0 – 8.0 7.4 10,051 0.024 0.093 92.8

8.0 – 10.0 8.8 7,521 0.14 0.11 10.6

10.0 – 12.0 10.8 2,090 0.064 0.23 15.2

12.0 – 16.0 13.4 865 0.33 0.32 1.1

Table A.2.: γ-triggered (direct-γ-rich sample) ridge yields (Run 7, M2) with their

associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 35,729 -6.64e-05 0.048 40773.5

7.0 – 8.0 7.4 10,051 0.083 0.090 24.8

8.0 – 10.0 8.8 7,521 0.018 0.10 79.8

10.0 – 12.0 10.8 2,090 0.080 0.22 11.08

12.0 – 16.0 13.4 865 0.069 0.31 5.28
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Table A.3.: γ-triggered (π0-rich sample) ridge yields (Run 7, method 1) with their

associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 71,480 0.078 0.036 18.2

7.0 – 8.0 7.4 20,460 0.049 0.067 21.6

8.0 – 10.0 8.8 17,092 -0.057 0.071 11.5

10.0 – 12.0 10.8 5,361 0.065 0.13 5.0

12.0 – 16.0 13.4 2,756 -0.16 0.18 0.8

Table A.4.: γ-triggered (π0-rich sample) ridge yields (Run 7, M2) with their associated

statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 71,480 0.12 0.036 11.1

7.0 – 8.0 7.4 20,460 0.075 0.066 13.4

8.0 – 10.0 8.8 17,092 -0.040 0.069 15.3

10.0 – 12.0 10.8 5,361 0.080 0.13 3.8

12.0 – 16.0 13.4 2,756 -0.12 0.17 0.9



162

Table A.5.: γ-triggered (direct-γ-rich sample) ridge yields (Run 7, method 1) with

their associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 204,724 0.086 0.021 28.2

7.0 – 8.0 7.4 46,960 -0.0048 0.045 4011.3

8.0 – 10.0 8.8 49,688 0.067 0.040 20.14

10.0 – 12.0 10.8 14,179 0.073 0.076 10.58

12.0 – 16.0 13.4 6,006 -0.064 0.12 5.5

Table A.6.: γ-triggered (direct-γ-rich sample) ridge yields (Run 7, M2) with their

associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 204,724 0.038 0.021 59.8

7.0 – 8.0 7.4 46,960 0.0077 0.043 226.6

8.0 – 10.0 8.8 49,688 0.073 0.039 17.5

10.0 – 12.0 10.8 14,179 0.13 0.074 5.6

12.0 – 16.0 13.4 6,006 0.11 0.11 3.0
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Table A.7.: γ-triggered (π0-rich sample) ridge yields (Run 7, method 1) with their

associated statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 152,844 -0.011 0.030 404.0

7.0 – 8.0 7.4 39,714 -0.056 0.060 54.7

8.0 – 10.0 8.8 36,649 -0.011 0.050 177.4

10.0 – 12.0 10.8 11,944 -0.10 0.089 9.4

12.0 – 16.0 13.4 6,622 -0.085 0.12 3.9

Table A.8.: γ-triggered (π0-rich sample) ridge yields (Run 7, M2) with their associated

statistical and systematic errors.

PTbin < PT > No. of Trig. Yield Stat. Err. % Sys. Err.

5.5 – 7.0 6.2 152,844 0.069 0.030 100.2

7.0 – 8.0 7.4 39,714 0.081 0.060 34.8

8.0 – 10.0 8.8 36,649 0.096 0.049 18.2

10.0 – 12.0 10.8 11,944 0.010 0.088 88.8

12.0 – 16.0 13.4 6,622 0.0066 0.12 46.3
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Table A.9.: γ-rich M1 Run 7

M1
5.5−7.0GeV

M1
7.0−8.0GeV

M1
8.0−10.0GeV

M1
10.0−12.0GeV

M1
12.0−16.0GeV

Y 3bins 0.078 0.049 -0.057 0.065 -0.16

Y 2bins 0.067 0.14 -0.030 0.082 -0.13

Y 1bin 0.053 0.19 -0.17 0.17 -0.65

σ3
Y 0.036 0.067 0.071 0.13 0.18

σ2
Y 0.041 0.075 0.080 0.15 0.20

σ1
Y 0.053 0.097 0.10 0.19 0.27

%S3,1
Z 32.8 292.0 203.6 161.5 313.5

%S3,2
Z 14.6 186.6 47.3 25.8 19.7

%Sv2
Z 18.2 21.6 11.5 5.0 0.750

%σ3,1
Z 48.9 141.1 135.7 205.4 124.8

%σ3,2
Z 24.3 70.4 65.9 103.1 59.1
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Table A.10.: γ-rich M2 Run 7

M2
5.5−7.0GeV

M2
7.0−8.0GeV

M2
8.0−10.0GeV

M2
10.0−12.0GeV

M2
12.0−16.0GeV

Y 3bins 0.12 0.074 -0.040 0.080 -0.12

Y 2bins 0.12 0.11 -0.053 0.13 -0.063

Y 1bin 0.092 0.15 -0.12 0.17 -0.24

σ3
Y 0.036 0.067 0.070 0.13 0.17

σ2
Y 0.037 0.070 0.073 0.13 0.18

σ1
Y 0.042 0.078 0.083 0.15 0.21

%S3,1
Z 23.2 99.364 201.7 109.3 98.8

%S3,2
Z 3.4 48.9 32.2 65.6 47.2

%Sv2
Z 11.1 13.4 15.3 3.8 0.95

%σ3,1
Z 19.0 55.6 114.4 99.3 97.3

%σ3,2
Z 9.4 27.8 56.2 49.5 47.0
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Table A.11.: π0-rich M1 Run 7

M1
5.5−7.0GeV

M1
7.0−8.0GeV

M1
8.0−10.0GeV

M1
10.0−12.0GeV

M1
12.0−16.0GeV

Y 3bins -0.013 0.024 0.14 0.064 0.33

Y 2bins -0.037 0.034 0.17 0.17 0.19

Y 1bin -1.61 x10−5 0.064 0.12 0.44 -0.56

σ3
Y 0.050 0.093 0.11 0.23 0.32

σ2
Y 0.056 0.10 0.12 0.26 0.36

σ1
Y 0.072 0.13 0.15 0.33 0.49

%S3,1
Z 99.9 171.0 13.0 591.5 270.8

%S3,2
Z 179.1 42.9 19.2 162.6 43.2

%Sv2
Z 215.3 92.8 10.6 15.2 1.2

%σ3,1
Z 391.1 411.5 81.1 363.1 112.7

%σ3,2
Z 197.0 205.0 40.091 191.3 52.3
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Table A.12.: π0-rich M2 Run 7

M2
5.5−7.0GeV

M2
7.0−8.0GeV

M2
8.0−10.0GeV

M2
10.0−12.0GeV

M2
12.0−16.0GeV

Y 3bins -6.64 x10−5 0.08 0.018 0.080 0.069

Y 2bins 0.015 0.075 0.023 0.13 -0.033

Y 1bin 0.059 0.037 -0.0056 0.36 -0.38

σ3
Y 0.048 0.090 0.10 0.22 0.31

σ2
Y 0.051 0.095 0.11 0.23 0.33

σ1
Y 0.057 0.11 0.12 0.26 0.38

%S3,1
Z 88837.0 55.1 131.8 347.2 652.4

%S3,2
Z 22737.3 9.9 28.0 63.5 148.4

%Sv2
Z 40773.5 24.8 79.8 11.1 5.3

%σ3,1
Z 47482.2 71.4 386.6 173.1 317.5

%σ3,2
Z 23854.3 35.5 191.9 90.7 152.4
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Table A.13.: γ-rich M1 Run 10

M1
5.5−7.0GeV

M1
7.0−8.0GeV

M1
8.0−10.0GeV

M1
10.0−12.0GeV

M1
12.0−16.0GeV

Y 3bins -0.011 -0.056 -0.011 -0.10 -0.085

Y 2bins 0.015 -0.055 -0.065 -0.13 -0.054

Y 1bin 0.081 -0.073 -0.049 -0.028 -0.28

σ3
Y 0.030 0.060 0.050 0.089 0.12

σ2
Y 0.034 0.068 0.056 0.10 0.16

σ1
Y 0.043 0.088 0.072 0.13 0.18

%S3,1
Z 867.3 31.2 365.4 72.7 234.4

%S3,2
Z 239.8 1.3 513.6 29.3 36.5

%Sv2
Z 404.0 54.7 177.4 9.4 3.9

%σ3,1
Z 294.2 115.2 499.9 90.3 155.4

%σ3,2
Z 148.5 57.4 254.6 46.3 74.6
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Table A.14.: γ-rich M2 Run 10

M2
5.5−7.0GeV

M2
7.0−8.0GeV

M2
8.0−10.0GeV

M2
10.0−12.0GeV

M2
12.0−16.0GeV

Y 3bins 0.070 0.081 0.096 0.010 0.0067

Y 2bins 0.085 0.095 0.076 -0.022 0.048

Y 1bin 0.13 0.092 0.073 0.049 -0.039

σ3
Y 0.030 0.060 0.049 0.088 0.12

σ2
Y 0.031 0.062 0.052 0.092 0.12

σ1
Y 0.035 0.070 0.0581 0.10 0.14

%S3,1
Z 81.8 13.6 23.7 384.0 690.0

%S3,2
Z 21.7 17.0 20.2 314.9 621.6

%Sv2
Z 57.7 34.8 18.2 88.8 46.3

%σ3,1
Z 26.5 46.3 32.2 537.9 1146.3

%σ3,2
Z 13.4 23.1 16.3 274.8 556.0
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Table A.15.: π0-rich M1 Run 10

M1
5.5−7.0GeV

M1
7.0−8.0GeV

M1
8.0−10.0GeV

M1
10.0−12.0GeV

M1
12.0−16.0GeV

Y 3bins 0.086 -0.0048 0.067 0.073 -0.064

Y 2bins 0.097 0.053 0.088 0.079 -0.041

Y 1bin 0.13 0.19 0.0513 0.13 -0.075

σ3
Y 0.021 0.045 0.040 0.076 0.12

σ2
Y 0.024 0.050 0.045 0.086 0.13

σ1
Y 0.030 0.064 0.058 0.11 0.17

%S3,1
Z 50.0 3992.4 23.1 70.7 17.1

%S3,2
Z 13.8 1199.7 31.6 8.2 36.2

%Sv2
Z 28.2 388.6 20.1 10.6 5.6

%σ3,1
Z 25.7 942.0 62.6 108.5 193.1

%σ3,2
Z 12.9 478.8 31.0 54.2 96.3
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Table A.16.: π0-rich M2 Run 10

M2
5.5−7.0GeV

M2
7.0−8.0GeV

M2
8.0−10.0GeV

M2
10.0−12.0GeV

M2
12.0−16.0GeV

Y 3bins 0.038 0.0077 0.073 0.13 0.11

Y 2bins 0.051 0.030 0.086 0.12 0.14

Y 1bin 0.076 0.067 0.051 0.13 0.12

σ3
Y 0.021 0.043 0.039 0.074 0.11

σ2
Y 0.022 0.046 0.041 0.078 0.12

σ1
Y 0.024 0.052 0.046 0.089 0.13

%S3,1
Z 99.5 769.3 29.6 2.4 11.1

%S3,2
Z 32.8 286.2 18.0 6.6 28.0

%Sv2
Z 59.8 226.6 17.5 5.6 3.0

%σ3,1
Z 35.0 359.2 34.8 36.5 66.8

%σ3,2
Z 17.5 181.2 17.2 18.3 33.3


