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ABSTRACT 

 

Optimization of a Petroleum Producing Assets Portfolio: 

Development of an Advanced Computer Model. (December 2007) 

Gizatulla Aibassov, B.Sc., Kazakh National University, Kazakhstan  

Chair of Advisory Committee: Dr. W. John Lee 

 

Portfolios of contemporary integrated petroleum companies consist of a few dozen 

Exploration and Production (E&P) projects that are usually spread all over the world. 

Therefore, it is important not only to manage individual projects by themselves, but to also 

take into account different interactions between projects in order to manage whole 

portfolios. This study is the step-by-step representation of the method of optimizing 

portfolios of risky petroleum E&P projects, an illustrated method based on Markowitz’s 

Portfolio Theory. This method uses the covariance matrix between projects’ expected return 

in order to optimize their portfolio.  

The developed computer model consists of four major modules. The first module 

generates petroleum price forecasts. In our implementation we used the price forecasting 

method based on Sequential Gaussian Simulation. The second module, Monte Carlo, 

simulates distribution of reserves and a set of expected production profiles. The third module 

calculates expected after tax net cash flows and estimates performance indicators for each 

realization, thus yielding distribution of return for each project. The fourth module estimates 

covariance between return distributions of individual projects and compiles them into 
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portfolios. Using results of the fourth module, analysts can make their portfolio selection 

decisions. 

Thus, an advanced computer model for optimization of the portfolio of petroleum 

assets has been developed. The model is implemented in a MATLAB® computational 

environment and allows optimization of the portfolio using three different return 

measures (NPV, GRR, PI).  The model has been successfully applied to the set of 

synthesized projects yielding reasonable solutions in all three return planes. Analysis of 

obtained solutions has shown that the given computer model is robust and flexible in 

terms of input data and output results. Its modular architecture allows further inclusion 

of complementary “blocks” that may solve optimization problems utilizing different 

measures (than considered) of risk and return as well as different input data formats. 
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CHAPTER I 

INTRODUCTION 

 

Currently, worldwide petroleum business is the business of large, integrated, multi-level 

and multi-national players. Incorporation and mergers are the common trend in the 

industry. According to Slocum (Slocum, 2001), as a result of recent mergers, the five 

largest oil companies operating in the United States now control 41% of domestic oil 

exploration and production. When their international oil production is included, these 

five corporations control 15% of the world’s oil production.  

Contemporary integrated petroleum companies do not operate in one or few 

fields anymore. Now their portfolios consist of few dozen E&P projects and usually 

spread all over the world. Petroleum producing projects are now considered as quite 

liquid assets, with their own worldwide market where they are readily bought and sold 

by the market participants. Thus, now it is important not only to manage individual 

projects by themselves, but also taking into account different interactions between 

projects, to manage the whole portfolios. 

From financial point of view petroleum producing assets and conventional 

financial assets (such as stocks) have a great deal of similarities. Their cash flow profiles 

consist of the same major elements. First, an investor pays the purchase price, the role of 

which in case of petroleum assets plays PV of exploration and development investment.  

 
____________ 
This thesis follows the style of SPE Production & Operations. 
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Then comes the annual stream of dividends, which is similar to the stream of annual 

after tax cash inflows from sale of oil. After some period of time, investors sell their 

stocks, thus receiving selling price. At the similar stage mature petroleum fields may 

also be sold for some selling price to independents, or they are abandoned with 

abandonment cost. In both cases, the purchase price that investors are willing to pay for 

the asset is defined by the future cash inflows that they are expecting to receive. Thus the 

process of asset pricing in both cases is mainly a process of estimation of future cash 

flow streams and their consequent discounting down to the present. 

However, there are also some differences. First of all, this process of cash flow 

estimation is based on different input data. In the case of financial assets, their historical 

return is the best approximation of their future performance, while petroleum assets’ 

cash flow is estimated using production forecast and petroleum price forecast (Ball & 

Savage, 1999). Second, financial asset investors do not get their return back until they 

sell the stock. Thus, stocks are bought to be sold, with dividends playing only minor role 

in overall stock return. Petroleum assets, however, are “bought” for their annual 

“dividends” (annual after tax sales revenues), with consequent sale of mature field being 

less important.  Another important difference is that petroleum assets are much less 

divisible than financial assets; moreover their market is less efficient. 

Taking into account all these similarities and differences, it is no surprise that 

management of a portfolio that consists of petroleum producing assets is, in general, 

similar to that of financial assets, with some industry specific differences. 
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Contemporary portfolio management ideas mainly rely on the theory developed 

by Harry Markowitz back in 1950s. Markowitz’s Portfolio Theory (Markowitz, 1952) at 

the very beginning was applied to manage portfolio of financial assets. The main goal 

was, by means of changing fraction of total wealth invested in different individual assets 

that compose portfolio, to come up with an efficient portfolio that has the highest level 

of expected return for the given level of uncertainty of that return, that is, risk. Since 

then, Markowitz’s bright ideas have been intensively used by investment managers in 

financial markets. Much later, with the growth of oil companies, the increasing size of 

their portfolios has caused a need for more knowledgeable management in the petroleum 

industry. 

Now, an integrated approach to petroleum projects management, i.e. 

simultaneous management of the whole portfolios, is becoming increasingly popular in 

the industry, especially after works of Edwards and Hewett (1993), Hightower and 

David (1991), and others. Nonetheless this subject is still relatively new for the industry 

and not much literature is available, in particular, on step by step illustration of 

development of portfolio optimization model in petroleum industry context. Moreover 

with recent advancements in oil price uncertainty quantification methods, such as price 

forecasting method based on Sequential Gaussian Simulation (SGS) algorithm (Holmes 

et al., 2006), application of these advancements to solve portfolio management problems 

is believed to be the logical development of the subject. Therefore the objectives of this 

study were as follows: 
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1. Develop an advanced computer model for optimization of portfolio consisting of 

petroleum E&P projects. The model should be flexible and not have any 

constraints in terms of the number of projects in portfolio, types of risk and 

return measures employed and apply best known production and price 

forecasting techniques. 

2. Implement the SGS price forecasting method and apply it in portfolio selection 

model. 

3. Illustrate and explain every step of the method of building such a model, for 

further reference of industry practitioners to this study. 

4. Analyze and knowledgeably explain obtained results.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Financial Portfolio Management 

The subject of selecting the portfolio of producing petroleum assets for a long time has 

not been getting as much attention from the side of financial advisors as it deserves. 

Specific enormous industry risks have not been taken into consideration, and many 

authors (Downey, 1997) advised to form the portfolio by ranking available projects 

according to their expected profitability index, and then marching down the list until the 

investor would run out of the money. 

In the case of absolute certainty, this approach would give to the investor “the 

biggest bang for the buck” but it leaves out of the analysis one very important variable – 

the risk of actual cash flows not being equal to expected ones. Due to a set of different 

reasons related to the field, company, industry, and overall worldwide economy, actual 

cash flows are never equal to expected ones, and this uncertainty should be incorporated 

into the decision of selecting company portfolio. 

For the first time, the subject of selecting the portfolio out of a set of available 

investments under conditions of uncertain returns was thoroughly considered by 

Markowitz (1952). In his revolutionizing work, Markowitz introduced major axioms and 

concepts that formed a framework of modern financial portfolio theory. First of all, he 

quantitatively defined risk as the statistical variance of actual returns from their mean or 

expected value. Second, Markowitz showed that the abovementioned profitability index 
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rule must be rejected, because it does not prefer diversified portfolios as opposed to 

undiversified ones. Third, he showed that diversification is the result of negative and 

positive correlations between the projects. And most importantly, Markowitz introduced 

a new rule of portfolio selection:  a risk adverse investor would require more return for 

the given level of assumed risk and would want to bear less risk for the given level of 

expected return. This rule redefined the portfolio selection problem into an optimization 

problem: maximize return for the given level of risk, or vice versa: minimize risk for the 

given level of return, by changing amounts of money invested in different investment 

opportunities available to the company.  

According to Markowitz’s ideas, every portfolio that has its unique expected 

return and variance of return (i.e. risk) combination can be represented as a point on the 

risk/return plain. The whole set of portfolios available to the investor (opportunity set) is 

represented as a plain of individual points. Then while selecting our portfolio we would 

consider only the upper-left border of opportunity set, called the “efficient set” because 

all the portfolios in this set are efficient; that is, they dominate over all other available 

portfolios in the opportunity set either by offering more return for the given level of risk 

or by assuming less risk for the given level of return. 

Sharpe (1964) further enhanced Markowitz’s ideas. He showed that for 

assumptions of an efficient market if we would include in our analysis an asset that does 

not bear any risk and thus provides risk-free return, then the efficient frontier would 

change its shape from curved into the straight line called the capital market line. 

Moreover, the knowledgeable investor would select only that portfolio of risky assets, 
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called the market portfolio, which is represented by the point of tangency between the 

capital market line and the opportunity set, because the market portfolio would provide 

the straight efficient frontier with the highest slope, that is, the highest return for a unit 

of assumed risk.  

In this case of selecting the portfolio with the risk-free asset, the portfolio 

selection problem would change into selecting any point along the straight line by 

changing the amount of money invested in the market portfolio and the risk-free asset. 

Points that lie between the market portfolio and the risk-free asset can be achieved by 

investing part of the money into risk free asset and another part into market portfolio, 

while points that lie beyond market portfolio can be achieved by borrowing money at the 

risk-free rate, and investing all available money into market portfolio. 

 

2.2 Petroleum E&P Portfolio Management 

All the concepts presented earlier were developed for financial assets with the 

assumption of efficient market conditions. In 1968, David B. Hertz (Hertz, 1968) 

discussed the application of the Markowitz’s model to risky industrial projects as 

opposed to stocks. Much later, Ball and Savage (1999) showed that major differences 

between financial assets and petroleum producing assets are: 

1. Risk structure of stock portfolios is different that that of petroleum assets. E&P 

projects face both local uncertainties involving discovery and production of oil at 

a given site, and global uncertainties involving price, policies, etc. 
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2. Risk in stock portfolios is usually measured in terms of volatility, while E&P 

portfolios must specifically track downside risk. 

3. The stock market is quite efficient whereas the market of E&P projects is 

inefficient. 

4. A stock portfolio generally contains a small fraction of the outstanding shares of 

any one company, while E&P portfolio often contain 100% of its constituent 

projects, creating budgetary effects. 

Moreover, taking into account all these differences, Ball and Savage presented 

their interpretation of Markowitz’s portfolio model for application with petroleum E&P 

assets and called it the E&P portfolio optimization model. 

There were a number of other attempts of readjusting and applying Markowitz’s 

portfolio model for petroleum industry needs. Among them are works by Edwards and 

Hewett (1993), Hightower and David (1991), and others. 

McVean (2000) investigated use of different measurements of risk other than 

variance or semi-variance as was proposed by Ball and Savage (1999). He showed that 

efficient portfolios are highly dependent on the way risk is defined. That is, portfolios 

that were efficient with one definition of risk are not always efficient with another. 

Therefore, companies should assign priorities to their objectives and define risk and 

return in their analysis accordingly. 

Allan (2003) considered differences in efficient portfolios obtained using 

different levels of future price. In his work, he examined only simple expected, high, and 

low price forecast structure, and he did not use the whole distribution of price forecasts. 
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Faulder and Moseley (2003) explained their “top-down” approach in applying portfolio 

theory to petroleum property investment, as opposed to industry used conventional 

“bottom-up” approach.  

A number of other papers were written on this subject. The one that is worth 

mentioning is by Davidson and Davis (1995), where the authors illustrated simple and as 

they believe effective model for E&P portfolio optimization, which is not based on 

Markowitz’s ideas. 

 

2.3 Price Uncertainty Quantification  

Oil and gas price forecast is an important part of any E&P economic model. According 

to Campbell et al. (2001), errors in project evaluation are more attributable to price 

uncertainty than any other uncertainty type. Therefore, a rigorous price risk 

quantification method is an essential part of any economic model. In our portfolio 

optimization model, we decided to use price forecasting based on sequential Gaussian 

simulation. According to conducted literature survey, due to relative novelty of the 

method nobody has done this before. 

Sequential Gaussian Simulation (SGS) has been employed by geostatisticians to 

model spatial correlation in reservoir properties. Holmes et al. (2006) recently applied 

SGS to model temporal correlation in oil price data and used it to generate multiple equi-

probable future price realizations for quantifying price uncertainty. 

Olsen et al. (2005) investigated applicability of five different price uncertainty 

quantification models, such as conventional, bootstrap, inverted hockey stick, historical, 
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and SGS in petroleum project performance evaluation. They found that conventional 

hockey stick price forecasts typically underestimate the volatility of future oil and gas 

prices, often significantly, and recommended SGS as the most rigorous and at the same 

time most difficult to implement technique.  
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CHAPTER III 

METHODOLOGY 

 

3.1 Oil Price Forecasting Module 

In their paper summarizing 5 oil price forecasting methodologies commonly used at the 

moment by industry practitioners, Olsen et al. (2005) pointed out that the method based 

on Sequential Gaussian Simulation (SGS) is the most rigorous and as a result, the most 

recommended one. Its major advantage over Bootstrapping method is that it takes into 

account both the frequency distribution and the semi-variogram of uninflated historical 

price data. The semi-variogram describes the historically observed temporal variability 

in the price of oil. Use of the semi-variogram ensures that changes in future oil price 

with time are consistent with historical changes leading to the most realistic forecasts. 

Therefore in our computer model, we decided to use this price forecasting methodology. 

In order to implement the SGS method, we followed procedure described by 

Holmes et al. (2006) First we took the historical monthly average spot price data for 

West Texas Intermediate (WTI) starting from January 2000 until June 2007. This 

information is available in the tabular form from the Energy Information Administration 

web site (Energy Information Administration, 2007). Our price data is spread over 

considerable period of time (7.5 years).  Therefore, inflation should be accounted for. 

Consumer Price Index (CPI) data for the same period of time has been taken from U.S. 

Department of Labor, Bureau of Labor Statistics web site (U.S. Department of Labor, 

2007). Using CPI data, historical price data has been brought to common dollar values, 
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1st of July, 2007 U.S. dollar has been chosen as the common dollar (Fig. 3.1). Both 

actual historical prices, as well as inflation adjusted prices are shown on Fig. 3.2. 

 

 

 

 

 

 

 

 

Fig. 3.1 - Value of July 1, 2007 US dollar 

 

 

 

 

 

 

 

 

 

Fig. 3.2 - WTI actual historical prices and prices brought to 

common July 2007 dollars 
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In order to use SGS, oil price data should be normally distributed. Distribution of 

our inflation adjusted price data is far from a normal distribution (Fig.3.3).  Therefore 

we needed to apply a normal score transformation to our data. The normal score 

transformation ranks each data point and assigns it a corresponding position in the 

standard normal distribution. Fig.3.4 shows inflation adjusted price data after being  

 

 

 

 

 

 

 

Fig. 3.3 - Histogram of inflation adjusted oil price data 

 

 

 

 

 

 

 

 

Fig. 3.4 – Normal score transformed oil price data 
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normal score transformed, while Fig.3.5 shows its distribution. As it can be seen, now 

our data has standard normal distribution. 

 

 

 

 

 

 

 

 

Fig. 3.5 – Histogram of normal score transformed oil price data 

Now using this normally distributed price data, we may implement the temporal 

continuity model of oil price change in the form of a semivariogram. This 

semivariogram shows dependence of oil price variance to the lag-time. It is computed as 

follows. Let z(ta) represent the price value at time ta, and z(ta + h) represent the price 

value h lag time units apart. All observations h time units apart from each other are 
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calculated. The semivariogram is 

�
=

+−=
)(

1

2)]()([
)(2

1
)(*

hN

a
aa htztz

hN
hγ   (3.1) 



 15 

where �*(h) is the estimated semivariogram for lag h. The semivariogram is half the 

average squared difference between the values of each pair (King, 2000). The 

semivariogram for our normal score transformed price data is shown on Fig.3.6 by a 

dotted line. A solid line represents fit with the spherical model (Houlding, 2000). 

Equation of solid line is 
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Fig. 3.6 – Semivariogram of normal score transformed oil price data 
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conditional probability distribution. In our case, the conditional probability distribution 

for a given month was determined by the mean and variance from ordinary kriging (OK) 

that uses price, either previously predicted or actual, in the preceding months. Randomly 

sampling this conditional distribution yields a predicted price for a given month. A 

complete oil price realization is created by predicting prices one month at a time, starting 

from July 2007, and moving forward sequentially. Since the conditional distribution is 

based on the historical data, the realization honors both the frequency distribution and 

the semivariogram of the historical data (Holmes et al. 2006).  

The algorithm for SGS is as follows: 

1. If the price data is not univariate normal, transform the data to obtain normal 

scored prices. 

2. Construct a model of temporal continuity for the normal scored data. 

3. Define a random path through all of the months to be simulated, that is each 

month exactly once. 

4. Use Ordinary Kriging to determine the mean and variance of the Gaussian 

conditional probability distribution at a given month. Retain a specified 

number of neighboring data to be used as conditioning data. Both previously 

simulated price values and original data are included. 

5. Draw randomly from conditional probability distribution and assign that 

value to the node being simulated. 

6. Repeat steps 4 and 5 for all simulation months. 
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7. Back transform the simulated normal values into the original price values 

using original inflation adjusted price data distribution. 

8. Repeat steps 3 – 7 for multiple realizations. 

We believe step 4 requires some more explanation. Ordinary kriging is the 

technique developed in geostatistics to interpolate the value of an attribute at an 

unobserved location from observations of its value at nearby locations. It assigns weights 

to each available observation based on its distance from unobserved location using 

semivariogram, and calculates expected value of attribute at given unobserved location 

and its error by the following formulas (Kanevski & Maignan, 2004) 
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where z1 … zn are attribute values at location; x1 … xn, *)(ˆ xZ , expected attribute value 

at unobserved location x*; 2
OKσ , interpolation error; ),( 1 nxxγ , semivariogram value at h 

equal to the distance between locations x1 and xn (see Eq.3.1) 

In the case of price forecasting, attribute is the oil price, unobserved locations are 

months to be simulated, and observations are normal ranked historical monthly data. 

Though Holmes et al. used GSLIB© software to generate their forecasts, above  
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Fig. 3.7 – Uninflated SGS oil price forecasts 

 

 

 

 

 

 

 

 

Fig. 3.8 –Inflated SGS oil price forecasts 

described complex SGS algorithm has been implemented in MATLAB® computational 

environment. We have generated 50 equiprobable price forecast realizations starting 
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from July 2007 through June 2028. 12 of these realizations are depicted on Fig.3.7. 

However these forecasts are in July 2007 U.S. dollars, therefore annual inflation rate of 

3% has been added to them, resulting in inflated price forecasts shown on Fig.3.8. 

For further convenient access in the model all 50 realizations were arranged in an 

252 x 50 array, with each realization being a column and each month a row. Thus we 

have completed price forecasting module of our model and proceeded to the next one. 

 

3.2 Production Forecasting Module 

Every E&P project’s original oil in place figures (OOIP) were simulated using formula 

for volumetric estimates. Volumetric estimates of oil and gas reserves are generally used 

at early times in the life of a field. These estimates are considered preliminary as 

compared to the estimates obtained from using historical performance. The formula 

(Mian, 2002)  

 

 

where N is reserves, STB; φ , porosity, fraction; Sw, formation water saturation, fraction; 

h, formation thickness, feet; A, drainage area, acres; B0, formation volume factor, 

rb/STB; RE, recovery efficiency, fraction. 

We used Monte Carlo simulation to obtain full distribution of reserves of the 

given field. Each of the parameters in the volumetric formula was distributed according 

to its naturally occurring distribution shape, taking into account correlations between 
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different parameters. Distribution shapes for each parameter (Cronquist, 2001) are 

described in Table 3.1. 

Table 3.1 Naturally occurring distribution types of volumetric analysis parameters 

Parameter Type of Frequency Distribution Correlations 

Porosity, φ  Typically Gaussian, but may exhibit slight skew, 
either positive or negative; tendency towards 
positive skew and log-normal distributions in 
carbonates and negatively skewed beta distributions 
in sandstones. Typically exhibits covariance with 
initial water saturation, Sw. 

Interstitial water 
saturation, Sw 

Typically exhibits negative skew, but may approach 
a symmetric distribution, or a distribution with a 
positive skew. 

Net pay, h Typically exhibits positive skew, with log-normal 
being a good approximation. May exhibit covariance 
with drainage area. 

Permeability, k Typically exhibits positive skew, with log-normal 
being a good approximation; nature of the 
distribution may be controlled by the type of 
depositional environment and/or post depositional 
diagenesis; typically, covariant with porosity. 

OOIP, N Generally exhibits positive skew, with log-normal 
being a good approximation. 

Recovery 
efficiency, RE 

Typically exhibits positive skew, with log-normal 
being a good approximation; may exhibit covariance 
with porosity, irreducible water saturation, 
permeability, and/or net pay, depending on drive 
mechanism. 

Initial well 
potential 

Typically exhibits positive skew, with log-normal 
being a good approximation. 

Drainage area, A May be well approximated by Gaussian normal 
distribution. Typically, covariant with net pay. 

 

 

Fig. 3.9 shows simulated physical parameters data that was generated using 

MATLAB® for application in the model. In this figure recovery coefficient RE 
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distributed log-normally is correlated with the normally distributed porosity, with 

correlation coefficient, � = 0.6. In the same manner, net pay, h distributed log-normally 

is covariant with the drainage area, distributed normally. Our model has been developed 

in such a way, allowing not only paired correlations but also triple, quaternary, and so on  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 - Correlation between different parameters in the  

volumetric estimates formula 
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up until nth level of correlation, with different correlation coefficient values. For 

example, the same porosity numbers were correlated both with interstitial water 

saturation and with recovery efficiency coefficient, which led to the secondary 

correlation between latter two parameters. Moreover, correlated parameters may have 

different shapes of distributions, even individually specific, defined by histogram. 

Monte Carlo simulation with n = 1000 iterations has produced following 

distribution of reserves for given filed, showed at the Fig. 3.10.  

 

 

 

 

 

 

 

 

Fig. 3.10 - Distribution of OOIP, n =1000 

As you can see, distribution is positively skewed, well resembling log-normal 

distribution. This is an expected result, as it is shown in Table 3.1, OOIP figures usually 

in nature are distributed log-normally. This can be explained by the statistical Central 

Limit Theorem. According to this theorem, product of random variables is the random 

variable itself with distribution approaching log-normal distribution as the number of 
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random variables approaches infinity, independent of the distribution shapes of random 

variables (Montgomery, 2007). 
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lim  (3.6) 

where P ~ log-N(�, �2); Xi ~ any distribution. 

Since the original oil in place numbers calculated from Eq.3.5 is the product of 

specifically distributed random variables, it is reasonable to expect them to be log-

normally distributed: the result that we got in our model. 

The next step was to come up with forecasted production profiles. For this 

purpose, we used the hyperbolic decline curve formula proposed by Arps (Seba, 1998) 

(Eq.3.7). The hyperbolic decline curve is a concave upward curve when plotted on semi 

logarithmic graph paper. As a consequence, the decline rate, a, is not a constant value 

but rather is the slope of the tangent to the rate-time curve at any point. The curvature of 

the curve is defined by hyperbolic exponent, b. Hyperbolic exponent is constant in time. 

b
iiot tabqq

1

0 )**1(*
−

+=   (3.7) 

where qot, production rate at time t0, STB/month; qi, initial production rate, STB/month; 

ai, initial decline rate, fraction; b, hyperbolic exponent. 

In normal petroleum operations, the value of b ranges between 0 and 1.0. Value 

of b depends on fluid type, drive mechanism, formation type, whether stimulation has 

been applied, and number of other factors. Typical b values and situations when they can 

be expected (Fetkovich, 1994) are listed in the Table 3.2. 
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Fig. 3.11 shows frequency distribution of b hyperbolic exponent values as they 

occur in nature (Arps, 1944). As it can be seen from this figure, the majority of 

reservoirs have b value less than 0.5. Also, b values more than 1.0 are exhibited by tight 

gas/oil reservoirs and reservoirs that are still in infinitely acting, transitional flow. Thus 

by changing b values, as the rough, first level approximation, we may simulate different 

fluid types, formation types, and drive mechanisms. In our model initial production rate, 

qi in Eq.3.7 has been calculated as the percentage of total reserves from Eq.3.5. Value of 

b has been distributed according to the drive mechanism we wanted to simulate (b=0 for 

volumetric reservoir, b ~ U(0.2, 0.4) for solution gas drive). Initial decline rate (ai) has 

been calculated by equating ultimate production volume (Np) in Eq.3.8 (Seba, 1998) to 

previously calculated reserves volume from equation for volumetric estimates, and then  

Table 3.2 Typical values of b and situations when they are observed 

Value of b Specific Situation 
b indeterminable • Constant or increasing rate 

• Flow all transient 
b = 0, exponential • Single phase liquid flow 

• High pressure gas 
• Depletion or solution gas drive with unfavorable kg/ko 
• Poor waterflood performance 
• Wells with high backpressure 
• Liquid loaded gas wells 
• Gravity drainage with no free surface 

b = 0.3 • Typical for solution-gas drive 
b = 0.4 to 0.5 • Typical for gas wells 
b = 0.5 • Gravity drainage with a free surface 

• Full water drive in oil reservoir 
b > 0.5 • Layered, no cross flow reservoirs 
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Fig. 3.11 - Distribution of hyperbolic exponent b in nature 

solving Eq.3.8 for ai, with economic limit qEL being equal to 1000 STB/month. This 

way, the model assures total depletion of previously estimated reserves before reaching 

economic limit, and no production in excess of estimated reserves. 
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Moreover, to come up with actual production profiles three more time-variables 

were introduced in the model: (1) length of delay period, when production rate equals 0; 

(2) length of development period, when production rate rises from 0 up until qi; (3) 

length of production plateau period, when production stays at the level of qi. After these 

three periods, production starts to decline according to Eq.3.7 until it depletes all 

reserves.  
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All three time-period variables are distributed uniformally with the possibility of 

changing min and max according to the specific situation and expectations of the project 

analysts. 

In our implementation, we considered four different production profile types, 

obtained by changing time-period variable values: (1) Accelerated profile, with 

minimum delay period, fast development period, and long plateau period; (2) Delayed 

profile, with considerable delay period, fast development, and long plateau; (3) Centered 

plateau profile, with intermediate delay and development periods, short plateau, and long 

subsequent decline; and (4) Profile with subsequent enhanced oil recover (EOR). Figs. 

3.12 – 3.15 show these profile types. First graph of each figure shows n=100 realizations 

of each profile type, while second graph shows generic shape of profile, by averaging all 

realizations at the first graph for each month. Let us remind that height of each 

realization curve (qi) has been determined as percentage of total reserves, distribution of 

which is shown on Fig. 3.10. 



 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 - n =100 realizations of accelerated profile type and  

average profile curve shape 
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Fig. 3.13 - n =100 realizations of delayed profile type and  

average profile curve shape 
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Fig. 3.14 - n =100 realizations of centered plateau profile type and  

average profile curve shape 
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Fig. 3.15 - n =100 realizations of EOR profile type and  

average profile curve shape 
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Minimum and maximum values of time-variables for production profiles shown 

on Fig. 3.12 - 3.15 are summarized in the Table 3.3. As it has been said, these values 

can be easily changed by the users of the model, allowing them to come up with their 

own situation specific profile shapes, based on their best estimates. 

Table 3.3 Minimum and maximum values of time-variables for production profiles 

Delay period, months Development period, 
months 

Production plateau 
period, months 

Profile type 

Min Max Distribution Min Max Distribution Min Max Distribution 
Accelerated 0 2 uniform 0 24 uniform 84 108 uniform 
Delayed 48 73 uniform 12 48 uniform 84 108 uniform 
Centered 24 36 uniform 24 36 uniform 24 36 uniform 
EOR production profile is more complex 

 

In summarizing the work done for implementation of production forecasting 

module of our model, we would like to note that these production forecasts should be 

considered as the rough, first level approximations of actual production rates. During 

actual application of computer model for real life cases, we recommend using production 

forecasts from more reliable sources than simple decline curve analysis, such as history 

matched reservoir simulation. 

 

3.3 Cash Flow and Performance Evaluation Module 

Results of price forecasting and production forecasting modules were used to generate 

each project’s cash flow. Based on this cash flow, each project’s performance indicators 

were calculated. 
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Fig.3.16 shows typical E&P project cash flow scheme used in our model. The 

project timeline is divided on three major periods: exploration, development, and 

production. The project’s entire cash outflows are categorized on two broad categories: 

capitalized and afterwards depreciated capital expenditures (CAPEX), and immediately 

expensed as occurred operating expenses (OPEX), whereas project’s cash inflows 

consist of only one category: revenues from sale of oil. There are four major capital 

expenditures for simplicity denoted as CAPEX 1, 2, 3, and 4 (see Fig.3.16).  

 

 

 

 

 

 

 

 

Fig. 3.16 - Typical E&P project cash flow scheme used in the model 

The algorithm of the cash flow module works as follows. At this stage, the 

program already has the whole probability distribution of reserves, shown on the 

Fig.3.10. Corresponding to each of n=1000 realizations of reserves, program has 

generated n=1000 production profiles. Some of these profiles are economically viable, 

some are not. Based on each of these production profiles, the model generates a cash 
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flow profile. Then discounting this profile back to present, we come up with the value of 

economic indicator (NPV, PI, GRR) that shows whether this profile is economically 

successful or not. Thus every realization of reserves corresponds to one value of 

economic indicator. Consequently we get distribution of economic indicators, which is 

calculated based on the distribution of reserves, and this distribution also includes 

economically unfavorable outcomes. 

To come up with a cash flow profile, first for each production profile model 

assigns fixed expenditure on G&G survey (CAPEX1). Next, after having results of the 

seismic survey and passage of some user defined period of time program assign fixed 

exploratory drilling expense (CAPEX2) to every of n=1000 realizations. After data from 

the exploratory wells have been acquired, we proceed with development and in all 

n=1000 realizations incur CAPEX3, field development expenses. These are the highest 

capital expenditures; therefore they consist of fixed part plus variable part, which vary 

with the volume of reserves to be produced. All these three initial capital outflows are 

divided by time periods that may be specified by the user of the model.  

The logic behind this algorithm is as follows. At the time of field development 

we do not know with absolute certainty, whether the project eventually will yield 

positive net present value (NPV). Even after drilling production wells, there is a 

possibility of reserves being low resulting in losses. As will be seen later, the described 

approach yields distribution of major economic indicators which also include the 

probability of unfavorable results (NPV < 0, PI < 1, and GRR < hurdle rate), thus 

ensuring coverage of all possible outcomes. 
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In our illustration, all CAPEX and OPEX amounts were calculated so that mean 

of profitability index (PI) distribution would lay around 2.0. This would give us a whole 

distribution of possible outcomes including highly successful (PI > 2.0) as well as highly 

unsuccessful (0 < PI < 1.0). 

At the stage of production, the project incurs only variable field operating 

expenses (OPEX) that vary with the production rate, and obtains cash inflows in the 

from of revenues from sales, which are calculated by multiplying production in given 

month with the price value at that month. Finally, after all reserves are depleted, the 

project incurs CAPEX4, abandonment costs, which are variable to the amount of 

ultimate production. 

All three initial capital expenditure amounts are depreciated using straight line 

method. In our model, we have implemented full cost accounting procedures (Gallun, 

2001), therefore, CAPEX1 and CAPEX2 are capitalized. Tax benefits from incurring 

losses are also accounted for in form of deferred tax assets. Corporate tax rate is 36 %. 

Fig.3.17 shows the cumulative after tax net cash flow curves for centered plateau 

production profile type depicted on the Fig.3.14. As it can be seen, some of the curves 

do not go high enough and stay just above zero, thus not ever paying back and yielding 

negative NPV. 

Using the after tax net cash flow data, we calculated project performance 

indicators for each iteration. Among many different types of performance indicators and 

return measures, we decided to stop on the following three: net present value, growth 

rate of return, and profitability index. 
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The net present value (NPV), also referred to as the present value of cash surplus 

or present worth, is obtained by subtracting the present value of periodic cash outflows 

from the periodic value of periodic cash inflows. The present value is calculated using 

the weighted average cost of capital of the investor, also referred to as hurdle rate (Mian, 

2002). NPV is calculated using Eq.3.9. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 - Cumulative after tax net cash flow curves 
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where NCFt is after tax net cash flow at time t; id, the discount rate, i.e. the required 

minimum annual rate of return on new investment; n, project’s economic life in units of 

t. The major reason for selecting NPV as one of the return measures for our model is that 
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its units of measurement are in present U.S. dollars. Thus NPV explicitly illustrates 

monetary increase in company’s value brought by acceptance of the project.  

We calculated NPV value at 12% discount rate for each after-tax net cash flow 

curve on Fig.3.17, thus obtaining NPV distribution illustrated on Fig.3.18. As it can be 

seen, shape of distribution is positively skewed, which is expected result, taking into 

account shape of reserves distribution on Fig.3.10. Moreover, NPV distribution also 

includes some probability of NPV being less than zero. 

 

 

 

 

 

 

 

 

 

Fig. 3.18 - Distribution of NPV calculated at 12% discount rate 

The growth rate of return (GRR) is calculated by first compounding all the 

positive net cash flows forward to some time horizon, t years in the future. Any cash 

flow beyond that time is discounted back to this point. Secondly, all the negative cash 

flows discounted to time zero to get the present value of investment. The rate at which 

the positive cash flows are compounded and the negative investments are discounted is 
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the opportunity rate of the organization. GRR is the rate at which present value of 

negative investments should grow to yield future value of all positive net cash flows at 

time t. GRR is calculated using Eq.3.10. 
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where FVt, future value of all positive net cash flows at time t; PV0, present value of all 

negative net cash flows at time zero. 

GRR is the measure of percentage return. At the same time, it does not have such 

shortcomings as possibility of multiple rates, reinvestment rate assumption, and trial-

and-error calculation that internal rate of return, alternative measure of percentage 

return, has.  Therefore we decided to include it in our analysis. Distribution of GRR 

calculated based on Fig.3.17 data is shown on Fig.3.19. Here again, some area of the  

 

  

 

 

 

 

 

 

 

Fig. 3.19 - Distribution of GRR calculated at 12% discount rate, t=25 years 
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histogram lies below 12% hurdle rate, indicating probability of losses. 

The third return measure used in our model, profitability index (PI), is a unit less 

performance indicator that simply shows how much present value benefits created per 

dollar of investment when company accepts the project. Formula for PI calculation is 

shown next. 

0

1
PV
NPV

PI +=    (3.11) 

 

 

 

 

 

 

 

 

 

Fig. 3.20 - Distribution of PI calculated at 12% discount rate 

Fig.3.20 shows distribution of PI calculated for each net cash flow curve shown 

on the Fig.3.17. As you can see, the distribution is positively skewed, with log-normal 

being a good approximation. 

Thus, we have implemented the procedure of obtaining full distribution of return 

for any individual petroleum asset. Moreover, we have obtained full distributions for 
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three different measures of return. Now, we may proceed with using these distributions 

to optimize a portfolio that consists of a number of individual assets. 

 

3.4 Portfolio Optimization  

Table 3.4 shows major variables of production forecasting and cash flow handling 

modules, and the way these variables may be changed by the user of the model. By 

means of changing these variables and applying four different production profile types, 

explained in the section 3.2, we have synthesized eleven different template projects that 

may be included in company’s portfolio. Table 3.5 describes every project’s distinction 

from the others.  

In our illustration we have differentiated projects based on the type of drive 

mechanism and expected production profile shape. We believe that both these factors are 

important causes of differences between projects, though we also realize that there are 

some other important differences such as whether reserves are short or long, geographic 

location of reserves, proximity to markets, etc. We also assumed that both drive 

mechanism and expected production profile shape would be beforehand determined by 

reservoir engineers and available for decision making.  

For each of eleven synthesized projects, the full distribution of PI, GRR, and 

NPV data has been generated in the way it is explained above. These return distribution 

parameters are shown in Table 3.6. We applied our portfolio optimization model to this 

set of synthesized projects to test its functionality and obtain optimized portfolio. 
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Table 3.4 Major variables of production forecasting and  

cash flow handling modules  

Variable Options that may be changed 

Number of iterations, n Single value 

Area, A 

Net pay, h 

Water saturation, Sw 

Porosity, � 

Recovery factor, RE 

Formation volume factor, B0 

Distribution shape  
and parameters 

Initial maximum production rate, qi Single value percentage of N 

Hyperbolic exponent, b 

Delay time period length @ q=0 

Production increase period length 

Distribution shape 
and parameters 

Plateau period length Distribution shape and 
parameters 

Production profile shape Complex curve specified by 
the user 

Percentile to be rejected after G&G Single value 
Percentile to be rejected after exploratory drilling 
(dry hole rate) 
G&G costs 

Exploratory drilling costs 

Development costs, fixed component 

Development costs, variable component 

Single value 

Operating expenses/STB produced (lifting costs) Single value 

Tax rate Single value percentage 

Weighted average cost of capital, discount rate Single value 
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Table 3.5 Description of eleven synthesized projects  

Project Code Project Description 

ACC Accelerated profile, volumetric reservoir 
ACC_SOL Accelerated profile, solution-gas drive 
DLD Delayed profile, volumetric reservoir 
DLD_SOL Delayed profile, solution-gas drive 
DBL EOR profile (with double plateaus), volumetric reservoir 
DBL_SOL EOR profile (with double plateaus), solution-gas drive 
CNT Centered plateau profile, volumetric reservoir 
CNT_SOL Centered plateau profile, solution-gas drive 
TGH Tight oil reservoir (b distributed ~ 2.0 – 5.0) 
HRP So-called high return project  
LRP So-called low return project 

 
 
 

Table 3.6 Return distribution parameters for eleven synthesized projects 

Project 
code 

Mean 
of PI 

Standard 
deviation 

of PI 

Mean of 
GRR, 

fraction 

Standard 
deviation 
of GRR 

Mean of 
NPV, $ 

Standard 
deviation of 

NPV 

ACC 2.7068 1.1555 0.1663 0.0212 1.22E+09 9.61E+08 
ACC_SOL 3.5535 1.4066 0.1801 0.0201 1.78E+09 1.26E+09 

DLD 5.3770 1.2627 0.2027 0.0128 1.11E+09 7.02E+08 
DLD_SOL 5.6929 1.2819 0.2057 0.0117 1.17E+09 7.54E+08 

DBL 3.7317 1.4229 0.1828 0.0192 1.72E+09 1.22E+09 
DBL_SOL 3.4682 1.3019 0.1792 0.0196 1.63E+09 1.22E+09 

CNT 2.4235 0.8232 0.1623 0.0175 9.04E+08 6.95E+08 
CNT_SOL 2.5768 0.9127 0.1651 0.0182 9.41E+08 6.85E+08 

TGH 3.7626 1.1318 0.1844 0.0158 2.24E+09 1.42E+09 
HRP 6.8289 1.3792 0.2149 0.0108 2.46E+10 1.34E+10 
LRP 1.6387 0.6526 0.1423 0.0191 3.81E+08 4.08E+08 
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An important point to note here is that while distributions of reserves may be 

absolutely independent of each other (e.g. they represent geographically distant fields), 

the distribution of their economic indicators should actually indicate some dependence, 

because all fields are producing in the same oil price environment. In our model, this fact 

was realized in the following way. First we numbered each of 50 equiprobable price 

forecasts starting from 1 to 50. Then we generated a 1000x1 dimensional vector of 

random numbers from 1 to 50 and used this vector as the order of forecasts. Then we 

applied forecasts to every of n=1000 production profiles according to this order, without 

changing order when moving from one project to another. In this way we ensured that 

price forecast, e.g. number 26 was applied to the 1st profile (out of 1000 available) of 

every of 11 projects, forecast number 42 was applied to the 2nd profile of every of 11 

projects, and so on. 

In matrix form, the portfolio optimization problem can be described as follows. 

Consider an investor that seeks a best allocation of wealth among a basket of risky 

assets, called a portfolio. The best can be defined as an allocation such that the risk 

incurred is minimum for that level of expected return or the expected return is maximum 

for that level of risk. The data of the problem consists in an array of returns (Dias, 2003), 

where each component i of this array is the expected return to the asset i in the 

considered horizon: 

r = (r1, r2, …, rn) 

We have also a covariance matrix as the shown below: 
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where �i
2 is variance of asset i's return; �ij, covariance between assets i and j. 

This matrix is positive semidefinite. The expected return for a portfolio with n 

assets is  

Rp = x’r  (3.12) 

where each component i of the array x = (x1, x2, …, xn) is the fraction of the 

investor’s total wealth allocated in the asset i. The portfolio risk (variance of return) is  

�p
2 = x’Cov x  (3.13) 

By assumption, the investor will allocate all his wealth in the selected portfolio. 

Having return distributions of the assets in consideration, we constructed such 

covariance matrixes between assets. An example covariance matrix for PI of 11 

synthesized assets is shown in Table 3.7. As you can see, covariances between all 11 

projects are positive, indicating positive correlations between returns of projects. This is 

explained by common price environment for all 11 projects, which was implemented in 

the way explained above. 
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Table 3.7 Return covariance matrix for PI distribution of eleven synthesized projects 

 ACC ACC_SOL DLD DLD_SOL DBL DBL_SOL CNT CNT_SOL TGH HRP LRP 

ACC 1.3351 0.1123 0.0723 0.1601 0.2202 0.1656 0.0246 0.0848 0.0930 0.1575 0.0148 

ACC_SOL 0.1123 1.9784 0.2335 0.2440 0.1098 0.1521 0.0218 0.0577 0.1262 0.3397 0.0287 

DLD 0.0723 0.2335 1.5944 0.5089 0.2168 0.2595 0.1540 0.2251 0.2503 0.4641 0.0947 

DLD_SOL 0.1601 0.2440 0.5089 1.6433 0.2673 0.2410 0.1750 0.2246 0.3202 0.4991 0.1770 

DBL 0.2202 0.1098 0.2168 0.2673 2.0247 0.1357 0.0956 0.1614 0.1110 0.3590 0.0516 

DBL_SOL 0.1656 0.1521 0.2595 0.2410 0.1357 1.6949 0.1263 0.0748 0.2251 0.2248 0.0564 

CNT 0.0246 0.0218 0.1540 0.1750 0.0956 0.1263 0.6776 0.1139 0.1001 0.2399 0.0267 

CNT_SOL 0.0848 0.0577 0.2251 0.2246 0.1614 0.0748 0.1139 0.8330 0.1065 0.2423 0.0502 

TGH 0.0930 0.1262 0.2503 0.3202 0.1110 0.2251 0.1001 0.1065 1.2809 0.3635 0.0758 

HRP 0.1575 0.3397 0.4641 0.4991 0.3590 0.2248 0.2399 0.2423 0.3635 1.9023 0.0952 

LRP 0.0148 0.0287 0.0947 0.1770 0.0516 0.0564 0.0267 0.0502 0.0758 0.0952 0.4259 
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Next we developed an algorithm that would generate random portfolio weight 

vectors x. It is important to make sure that this algorithm generates weight vectors x that 

cover all possible combinations of wealth allocation between 11 projects.  

We believe this point needs some more explanation. In this context weight of any 

project in the portfolio is the fraction of this project’s cost in the total wealth invested in 

the whole portfolio. It is not investor’s percentage of participation in this project. Thus 

weight of project i (Wi) in portfolio is calculated according to the following equation: 

i
ii W

TW
INf

=    (3.14) 

where fi is investor’s percentage of participation in project i; INi, total cost of project i; 

TW, total cost of the portfolio. 

Thus Eq.3.14 sets constraints to the maximum weight of project i in the given 

portfolio that corresponds to fi = 100% participation, and minimum weight that 

corresponds to fi = minimum participation percentage (usually 1/16 or 1/12). That is 

algorithm that would generate weight vectors should generate them in discreet way, 

taking into account maximum and minimum weight values for each project. 

In our implementation, for the reasons of simplicity and not knowing total 

amount that we are willing to invest in our portfolio, we generated continuous set of 

weight vectors with the only constraint for the weights to sum up to 1.0. The algorithm 

was implemented in MATLAB® computational environment. We ran this portfolio 

weights generation algorithm 10,000 times, and for each generated portfolio calculated 

its return and risk using Eq. 3.12 and 3.13, and plotted it as a dot on risk – return plane. 

The result is shown on the Fig.3.20. 
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Fig. 3.21 - Opportunity set available to the investor (return measure – PI) 

Fig.3.21 depicts the opportunity set available to the investors that has 11 projects 

in their portfolio. Positions of individual projects are depicted as black circles, while 

grey dots depict portfolios that consist of these projects. By means of changing wealth 

allocation from one asset to another, investors may attain any point within this set. 

However, of course, knowledgeable investors are interested only in efficient portfolios 

that provide the highest return for given level of risk or lowest risk for given level of 

return. Such portfolios form so-called “efficient frontier” and on this picture lie along the 

upper-left edge of opportunity set. Applying the same technique to other measures of 

return (GRR, NPV) we obtained analogous opportunity sets and efficient frontiers 
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shown in the Figs. 3.22 – 3.23. Thus we have completed development part of our model, 

and now we may proceed to the analysis of obtained results. 
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Fig. 3.22 - Opportunity set available to the investor (return measure – GRR) 
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Fig. 3.23 - Opportunity set available to the investor (return measure – NPV) 
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CHAPTER IV 

RESULTS AND ANALYSIS 

 

4.1 Analysis of Efficient Portfolios 

A closer look at the efficient frontier is required. Fig.4.1 shows efficient frontier when 

return is measured by profitability index. This frontier consists of 95 efficient portfolios. 

On Fig.4.1 efficient frontier is divided on 5 regions based on portfolio risk. The first 

region is least risk and fifth is the highest risk region.  

 

 

 

 

 

 

 

 

 

Fig. 4.1 – Efficient frontier (return measure – PI) 

Fig.4.2 (a) – (e) show the portfolios’ project structure in regions 1 – 5. Each line 

corresponds to one portfolio, line shows fraction of total wealth invested in each project 

in every particular portfolio. Fig.4.2 (a) corresponds to 10 portfolios in region 1 of 
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Fig.4.1, (b) corresponds to region 2, (c) to region 3, (d) to region 4, and (e) to region 5. 

Looking at the Fig.4.2, one can easily notice change in portfolio structure with the 

change in its risk level. Wealth in portfolios of lowest risk region 1 (Fig.4.2 (a)) is 

spread between 11 projects almost evenly. Though one can also notice that projects DLD 

and DLD_SOL on average have more weight than others. In region 2 (Fig.4.2 (b)) we 

can clearly see three “favorites”, projects DLD, DLD_SOL, and HRP, with the former 

two weighting on average more than latter one. Portfolios in region 3, medium risk level, 

consist half of DLD and DLD_SOL, and half of HRP (Fig.4.2 (c)). In region 4 HRP 

dominates over all other projects, though DLD and DLD_SOL still have some weight 

(Fig.4.2 (d)). And in region 5, highest risk region, efficient portfolios almost totally 

consist of project HRP (Fig.4.2 (e)). 

The same way we can analyze efficient frontier obtained using GRR as the 

measure of return. Fig.4.3 shows this frontier divided on three regions, based on risk, 

and Fig.4.4 (a) - (c) show structures of efficient portfolios in three regions. Here again, 

efficient portfolios mainly consist of three projects DLD, DLD_SOL, and HRP. This 

consistency in result between two different measures of return can be explained if we’ll 

take a look at the Table 3.6. These three projects (DLD, DLD_SOL, and HRP) have the 

highest expected values of PI and GRR as well as highest variance of these indicators. 

Therefore it is logical that they constitute a major part of investment in medium and high 

risk efficient portfolios. In low risk efficient portfolios, diversification is the major 

source of risk reduction, which is achieved by spreading wealth between all projects. 
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Fig. 4.2 - Efficient portfolio structures for region 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e)
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Fig. 4.2 - Continued  
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Fig. 4.3 – Efficient frontier (return measure – GRR) 
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Fig. 4.4 - Efficient portfolio structures for region 1 (a), 2 (b), and 3 (c) 
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4.2 Sensitivity Analysis of Individual Projects 

Along with the analysis of efficient portfolios, we have conducted sensitivity analysis of 

individual projects. The objective of this analysis was to find an accurate estimation of 

which variables listed in Table 3.4 is crucial for proper evaluation of project’s 

performance. 

”Spider-charts” were constructed, indicating the percentage change of input 

variable in consideration on horizontal axes and the percentage change in output variable 

(in our case NPV) on vertical axes. These charts are shown on Fig.4.5 (a) – (f).  

Fig.4.5 (a) and (b) show change in expected NPV as function of change in 

expected value of physical variables that are included in Eq.3.5: area and porosity. We 

can see that there is almost 1 to 1 positive relationship. Thus these variables are crucial, 

and their estimation should be done with corresponding level of consideration and 

regard. 

Fig.4.5 (c) shows change in expected NPV as function of change in decline rate a 

in Eq.3.7. Surprisingly we found that this variable is not quite important: almost 100% 

change in decline rate led only to 6% change in NPV. This fact can be explained by the 

production profile type for which sensitivity analysis has been performed. We did it for 

accelerated profile type Fig.3.12. Because of its relatively long plateau period, decline 

period, the time when decline rate a really comes into play, is not very long, and as a 

result not very important. However for other types of production profiles, especially with 

short peaks followed by long decline periods, this variable should be estimated with 

attention. 
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Next comes analysis of cash flow variables: Fig.4.5 (d), (e), and (f) show 

sensitivity charts for amount of fixed CAPEX, amount of variable OPEX, and tax rate 

respectively. Among these three variables, tax rate has been found to be the most 

important one while CAPEX and OPEX change did not affect NPV so drastically. This 

can be explained by the fact that CAPEX and OPEX affect the project’s performance 

only at early stages, leaving excess subsequent profits (if there are any) almost 

unaffected, while tax rate influences all profits evenly. Therefore, when the project’s life 

is much longer than its payback period, project’s eventual performance is more 

dependent on tax rate. 
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Fig. 4.5 - Project sensitivity analysis charts 
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Fig. 4.5 - Continued 
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CHAPTER V 

CONCLUSIONS 

 

The objective of this research was development of an advanced computer based model 

for optimization of portfolio of petroleum producing assets. We wanted to develop this 

model applying best price estimation, production forecasting, and portfolio selection 

practices available now in the industry. The following are conclusions drawn as the 

result of this study. 

1. For the first time in published literature, oil price forecasts generated using 

Sequential Gaussian Simulation (SGS) technique have been used to solve the 

portfolio optimization problem. As a result of this study, it has been found that 

SGS price forecasts can be and recommended to be successfully applied to 

portfolio optimization.  

2. An advanced computer model for optimization of portfolio of petroleum assets 

has been developed. The model is based on Markowitz’s Portfolio Theory and 

implemented in a MATLAB® computational environment. 

3. A developed computer model allows optimization of portfolio using three 

different return measures (NPV, GRR, PI).  The model has been successfully 

applied to the set of synthesized projects yielding reasonable solutions in all three 

return planes. 

4. Analysis of obtained solutions has shown that the given computer model is 

robust and flexible in terms of input data and output results. Its modular 
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architecture allows further inclusion of complementary “blocks” that may solve 

optimization problem utilizing different (than considered) measures of risk and 

return as well as different input data formats. 

5. Industry participants will benefit from using this proposed model by means of 

optimizing their portfolio of assets and expecting highest return for assumed 

level of risk. 
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APPENDIX A 

MATLAB CODE FOR VARIOGRAM GENERATION  

AND SGS PRICE FORECASTING 

 

price_data=[1.094331707;-0.256429712;-1.112616861;-1.024592393;-

0.215515948;-0.771389342;-1.396053408;-0.350197509;-0.436190648;-

0.458176841;-0.329121979;-0.114640397;0.607301574;0.360793305; 

0.514156101;0.536996776;0.706047289;0.784853134;0.913249927;0.798460728

;0.655874678;0.718868053;0.491580583;0.004973489;-0.054735476;-

0.144734328;-0.287395477;0.124658832;-0.034821317;-0.277044376;-

0.548522283;-0.56012112;-0.854447399;-1.131281786;-1.04155283;-

0.41441333;-0.004973489;-0.074671366;0.371429764;0.693341543; 

0.469252884;0.425276777;0.350197509;-0.01492096;0.246163647; 

0.403598571;0.287395477;0.571795808;0.82613034;0.731808084;0.329121979;

-0.164868332;-0.23592346;-0.607301574;-0.185069399;1.076405303; 

1.297542929;1.345166634;1.189794977;1.058818296;0.928449208;0.084649956

;-0.084649956;0.164868332;0.23592346;-0.024869907;0.256429712; 

0.318639364;0.392830814;0.631401894;0.480386797;-0.225707954;-

0.403598571;-0.371429764;-0.392830814;-0.134689794;0.054735476; 

0.382108412;0.215515948;0.074671366;0.195197808;0.144734328;-

0.154793486;-0.382108412;-0.480386797;-0.266722875;-0.195197808;-

0.246163647;-0.318639364;-0.502836307;-0.718868053;-0.668259041;-

0.928449208;-0.643590103;-1.169844649;-1.575767629;-1.479941389;-

1.510356896;-1.542237572;-1.252692984;-0.868865622;-0.61930677;-

0.491580583;-0.731808084;-1.058818296;-0.991526475;-0.913249927;-

1.15034938;-0.943866065;-0.758063952;-0.812217801;-0.525542166;-

0.595383277;-0.883466774;-1.210230452;-1.007921679;-0.975393555;-

1.189794977;-1.076405303;-0.706047289;-0.82613034;-0.74487183;-

0.360793305;0.064700206;-0.447156725;-0.571795808;-0.425276777;-

0.297777464;0.094636982;0.277044376;0.01492096;0.308191647;0.297777464;

-0.308191647;-0.536996776;-0.798460728;-0.583548958;-0.95951059;-

0.840204652;-0.693341543;-0.784853134;-0.514156101;-0.655874678;-

1.23118423;-1.450836487;-1.611169162;-1.688737002;-1.64871347;-
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1.778042802;-2.01742871;-1.946561721;-2.100165493;-1.731664396;-

1.884304423;-2.200410581;-2.880674359;-2.329336053;-2.514954878;-

1.828594899;-1.42291118;-1.37016654;-1.345166634;-0.898258749;-

0.631401894;-0.17495994;-0.469252884;-0.044776177;0.185069399; 

0.436190648;0.74487183;0.771389342;0.034821317;0.583548958;0.868865622;

0.680746755;0.812217801;0.95951059;0.943866065;1.024592393;0.458176841;

0.643590103;0.61930677;0.17495994;0.225707954;0.41441333;0.205346281;-

0.064700206;0.154793486;-0.094636982;-0.680746755;-1.297542929;-

1.320980289;-1.274797425;-1.094331707;-0.339640886;-

0.104633456;0.044776177;-0.205346281;0.024869907;0.266722875; 

0.525542166;0.339640886;-0.124658832;0.447156725;0.840204652; 

0.991526475;0.854447399;0.104633456;0.114640397;0.548522283;0.56012112;

0.668259041;0.134689794;0.502836307;0.595383277;0.758063952;0.883466774

;0.898258749;1.007921679;0.975393555;1.112616861;1.04155283;1.131281786

;1.169844649;1.210230452;1.396053408;1.274797425;1.15034938;1.23118423;

1.252692984;1.42291118;1.37016654;1.320980289;1.450836487;1.611169162;1

.884304423;2.01742871;1.778042802;1.542237572;1.575767629;1.946561721;1

.688737002;1.828594899;2.100165493;2.329336053;2.200410581;2.880674359;

2.514954878;1.731664396;1.479941389;1.510356896;1.64871347]; 

 

variogramm_data=0; 

for step=1:250 

    n=252-step; 

    total_diff_sq=0; 

    head=0; 

    tail=0; 

    for j=1:n 

        stepped_out=j+step; 

        total_diff_sq=total_diff_sq+(price_data(stepped_out,1)-

price_data(j,1))^2; 

        head(j,1)=price_data(stepped_out,1); 

        tail(j,1)=price_data(j,1); 

    end 

    variogramm_data(step,1)=step; 

    variogramm_data(step,2)=total_diff_sq/(2*n); 
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variogramm_data(step,3)=(total_diff_sq/(2*n))/(std(head)*std(tail)); 

end 

variogramm_data 

plot(variogramm_data(:,1),variogramm_data(:,2),'+'); 

  

xlswrite('variogramm_data', variogramm_data); 

 
prices_cdf=[13.96603659 0.001984127;14.75117468 0.005952381;15.40279439 

0.009920635;15.99634146 0.013888889;16.65591912 0.017857143;17.00673219 

0.021825397;17.5429816  0.025793651;17.83635697 0.029761905;18.00865653 

0.033730159;18.51592615 0.037698413;18.56214198 0.041666667;18.84630019 

0.045634921;19.09759556 0.049603175;20.05512376 0.053571429;20.08311385 

0.057539683;20.19375596 0.061507937;20.40084815 0.06547619;20.80283951 

0.069444444;20.91814011 0.073412698;21.17065455 0.077380952;21.3410411  

0.081349206;21.51561974 0.08531746;21.75845969 0.089285714;22.05694476 

0.093253968;22.30361283 0.097222222;22.50977929 0.101190476;22.51057065 

0.10515873;22.90398762 0.109126984;22.93241967 0.113095238;22.95936031 

0.117063492;23.00547701 0.121031746;23.13218437 0.125;23.19520868 

0.128968254;23.28177493 0.132936508;23.60980237 0.136904762;23.61992193 

0.140873016;23.63362416 0.14484127;23.73920133 0.148809524;23.81536765 

0.152777778;23.84548197 0.156746032;23.93504685 0.160714286;24.06026161 

0.16468254;24.27650219 0.168650794;24.31845023 0.172619048;24.38881215 

0.176587302;24.39147826 0.180555556;24.40541516 0.18452381;24.46261498 

0.188492063;24.49255088 0.192460317;24.65690756 0.196428571;24.74976918 

0.200396825;24.78130293 0.204365079;24.79371769 0.208333333;24.846625   

0.212301587;24.84850746 0.216269841;24.88681359 0.220238095;24.93297405 

0.224206349;24.95053109 0.228174603;24.99382749 0.232142857;25.00139889 

0.236111111;25.00165365 0.240079365;25.0835514  0.244047619;25.09201346 

0.248015873;25.16909972 0.251984127;25.21251238 0.255952381;25.24238456 

0.259920635;25.76067187 0.263888889;26.07666441 0.267857143;26.08405573 

0.271825397;26.22470046 0.275793651;26.22644195 0.279761905;26.31389527 

0.283730159;26.42983966 0.287698413;26.50762712 0.291666667;26.51469925 

0.295634921;26.52457067 0.299603175;26.70219603 0.303571429;26.71540915 

0.307539683;26.79304054 0.311507937;27.06310078 0.31547619;27.27124479 

0.319444444;27.28511797 0.323412698;27.33273193 0.327380952;27.35429353 
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0.331349206;27.43037652 0.33531746;27.47700748 0.339285714;27.4968963  

0.343253968;27.54730159 0.347222222;27.58407042 0.351190476;27.77855177 

0.35515873;27.78821175 0.359126984;27.82812785 0.363095238;27.84113611 

0.367063492;27.84583862 0.371031746;27.95770833 0.375;28.13277184 

0.378968254;28.14917197 0.382936508;28.18241379 0.386904762;28.38939574 

0.390873016;28.43030856 0.39484127;28.44717153 0.398809524;28.4571727  

0.402777778;28.49309542 0.406746032;28.55660377 0.410714286;28.57904236 

0.41468254;28.64258065 0.418650794;28.65531796 0.422619048;28.66212471 

0.426587302;28.74230999 0.430555556;28.89801088 0.43452381;28.94648801 

0.438492063;29.3019879  0.442460317;29.30663317 0.446428571;29.32945394 

0.450396825;29.44744565 0.454365079;29.54767338 0.458333333;29.7868169  

0.462301587;29.79094955 0.466269841;29.89506193 0.470238095;29.9525618  

0.474206349;29.95523397 0.478174603;29.9940547  0.482142857;30.02011956 

0.486111111;30.04676991 0.490079365;30.14022508 0.494047619;30.17789212 

0.498015873;30.20005199 0.501984127;30.22538219 0.505952381;30.25317399 

0.509920635;30.31714953 0.513888889;30.34856507 0.517857143;30.34956272 

0.521825397;30.45793192 0.525793651;30.65061922 0.529761905;30.70478455 

0.533730159;30.75108709 0.537698413;30.86159609 0.541666667;30.86288357 

0.545634921;30.9368927  0.549603175;30.94776815 0.553571429;30.97694268 

0.557539683;31.11699155 0.561507937;31.13699259 0.56547619;31.26866894 

0.569444444;31.29518717 0.573412698;31.33700497 0.577380952;31.34316263 

0.581349206;31.34952924 0.58531746;31.48400681 0.589285714;31.68797337 

0.593253968;31.7276244  0.597222222;31.75382353 0.601190476;31.81067185 

0.60515873;31.8173891  0.609126984;31.90882166 0.613095238;31.97499369 

0.617063492;32.10223203 0.621031746;32.13687225 0.625;32.14610938 

0.628968254;32.15420994 0.632936508;32.16441579 0.636904762;32.21178058 

0.640873016;32.32782895 0.64484127;32.32844667 0.648809524;32.3382284  

0.652777778;32.44944    0.656746032;32.65988694 0.660714286;32.68247173 

0.66468254;32.68608437 0.668650794;32.79110866 0.672619048;32.96491671 

0.676587302;32.98307067 0.680555556;32.98710335 0.68452381;32.99158716 

0.688492063;33.05946004 0.692460317;33.09086022 0.696428571;33.12334256 

0.700396825;33.62733274 0.704365079;33.71764578 0.708333333;33.77980403 

0.712301587;33.8203336  0.716269841;33.91606538 0.720238095;33.93512432 

0.724206349;34.05945701 0.728174603;34.12505997 0.732142857;34.16774052 

0.736111111;34.3175977  0.740079365;34.45064685 0.744047619;34.642882   

0.748015873;34.76484919 0.751984127;34.76636141 0.755952381;34.80915705 
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0.759920635;34.84998261 0.763888889;35.02196232 0.767857143;35.1117654  

0.771825397;35.14273171 0.775793651;35.46355713 0.779761905;35.81013263 

0.783730159;36.01544815 0.787698413;36.50618056 0.791666667;36.58325139 

0.795634921;36.75682698 0.799603175;36.93237575 0.803571429;37.44184257 

0.807539683;37.56786761 0.811507937;37.78846652 0.81547619;37.94195595 

0.819444444;38.05242152 0.823412698;38.46630973 0.827380952;39.56587963 

0.831349206;39.57390608 0.83531746;39.79358283 0.839285714;39.81810956 

0.843253968;39.91928736 0.847222222;40.58410365 0.851190476;41.14427504 

0.85515873;42.2634816  0.859126984;42.33553522 0.863095238;43.2367234  

0.867063492;43.38114918 0.871031746;45.58989529 0.875;47.83959873 

0.878968254;48.87036704 0.882936508;48.92185752 0.886904762;49.67058329 

0.890873016;50.95264814 0.89484127;51.23753798 0.898809524;51.38539514 

0.902777778;51.67365879 0.906746032;54.80687265 0.910714286;55.30969477 

0.91468254;56.61876777 0.918650794;57.01533889 0.922619048;58.49501029 

0.926587302;58.57073435 0.930555556;59.08   0.93452381;59.08120482 

0.938492063;60.67276316 0.942460317;61.21439589 0.946428571;62.05224814 

0.950396825;62.71777105 0.954365079;63.14291319 0.958333333;63.19953722 

0.962301587;63.66805234 0.966269841;67.11863869 0.970238095;67.15387195 

0.974206349;67.39339104 0.978174603;70.1350951  0.982142857;70.70474074 

0.986111111;70.94546898 0.990079365;72.42983784 0.994047619;74.00659438 

0.998015873]; 

 

a = 26; Co=0; C=1; 

prices=(-251:0)'; prices(:,2)=price_data; 

m=252; 

set=(1:m)'; 

set(:,2)=floor(rand(m,1)*1000); 

sorted_set=sortrows(set,2); 

route=sorted_set(:,1); 

 

for k=1:m 

n=length(prices(:,1)); 

Gamm_matrx=0; 

for i=1:n 

    for j=1:n 

        if prices(j,1)==prices(i,1) 
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            Gamm_matrx(i,j)=Co; 

        elseif abs(prices(j,1)-prices(i,1))>a 

            Gamm_matrx(i,j)=1; 

        else 

            Gamm_matrx(i,j)=Co+C*(3*abs(prices(j,1)-prices(i,1))/(2*a)-

.5*(abs(prices(j,1)-prices(i,1))/a)^3); 

        end 

    end  

end 

Gamm_matrx(:,n+1)=1:1; 

Gamm_matrx(n+1,:)=1:1; 

Gamm_matrx(n+1,n+1)=0; 

  

vectr=0; 

for j=1:n 

    if abs(prices(j,1)-route(k))>a 

       vectr(j,1)=1; 

    else 

       vectr(j,1)=Co+C*(3*abs(prices(j,1)-route(k))/(2*a)-

.5*(abs(prices(j,1)-route(k))/a)^3); 

    end 

end 

  

vectr(n+1,1)=1; 

weights = Gamm_matrx\vectr; 

  

expmean=0; 

varns=0; 

for j=1:n 

    expmean=expmean+weights(j)*prices(j,2); 

    varns=varns+weights(j)*vectr(j,1); 

end 

varns=varns+weights(n+1); 

prices(n+1,1)=route(k); prices(n+1,2)=normrnd(expmean, varns); 

end 
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prices=sortrows(prices,1); 

prices(:,3)=normcdf(prices(:,2),0,1); 

frcst(1,1)=0; 

v=length(prices(:,1)); 

for i=253:v 

    reach_end=0; 

    row=0; 

    for j=1:252 

        if prices(i,3) < prices_cdf(j,2) 

            row=j; 

            break 

        end 

        if j==252 

            reach_end=1; 

        end 

    end 

    if row==1 

        frcst((i-

252),1)=(prices(i,3))*(prices_cdf(row,1))/(prices_cdf(row,2))+0; 

        frcst((i-252),2)=frcst((i-252),1)*(1.002667)^(i-252); 

    elseif reach_end==1 

        frcst((i-252),1)=(prices(i,3)-prices_cdf(252,2))*(100-

prices_cdf(252,1))/(1-prices_cdf(252,2))+prices_cdf(252,1); 

        frcst((i-252),2)=frcst((i-252),1)*(1.002667)^(i-252); 

    else 

        frcst((i-252),1)=(prices(i,3)-prices_cdf((row-

1),2))*(prices_cdf(row,1)-prices_cdf((row-1),1))/(prices_cdf(row,2)-

prices_cdf((row-1),2))+prices_cdf((row-1),1); 

        frcst((i-252),2)=frcst((i-252),1)*(1.002667)^(i-252); 

    end 

end 

xlswrite('forecast',frcst); 
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MATLAB CODE FOR PRODUCTION AND  

CASH FLOW FORECASTING FOR PROJECT “ACC” 

 

m=1000; 

n=m; 

Sw = normrnd(.3,.09,n,1); 

% making shure that Sw is within 0 -> 1 

for i=1:n 

    if Sw(i)<0 

       Sw(i)=0;  

    end 

    if Sw(i)>1 

       Sw(i)=.9999;  

    end 

end 

 

Bo = unifrnd(1.05,1.5,n,1); 

Area_h_mus = [0 0]; 

Area_h_sigmas = [1 0.6; 0.6 1]; 

Area_h = mvnrnd(Area_h_mus,Area_h_sigmas,n); 

Area = Area_h(:,1)*300+3600; 

h = Area_h(:,2)*0.165526349+4.08064508; 

h = exp(h); 

 

phi_Cr_mus = [0 0]; 

phi_Cr_sigmas = [1 0.6; 0.6 1]; 

phi_Cr = mvnrnd(phi_Cr_mus,phi_Cr_sigmas,n); 

phi = phi_Cr(:,1)*.08+.3; 

Cr = phi_Cr(:,2)*.28012669-1.0890584; 

Cr = exp(Cr); 

% making shure that Cr and phi are within 0 -> 1 

for i=1:n 

    if Cr(i)<0 

       Cr(i)=0;  
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    end 

    if Cr(i)>1 

       Cr(i)=.9999;  

    end   

    if phi(i)<0 

       phi(i)=0;  

    end 

    if phi(i)>1 

       phi(i)=.9999;  

    end 

end 

for i=1:n 

   N(i,1)= 7758 * Area(i,1) * h(i,1) * phi(i,1) * (1 - Sw(i,1)) * Cr 

(i,1) / Bo(i,1); 

   qi(i,1) = N(i,1)*.08/12; 

   t_reach_plateau(i,1) = round(unifrnd(0,24,1,1)); 

   t_at_plateau(i,1) = round(unifrnd(84,108,1,1)); 

   t_delay(i,1) = round(unifrnd(0,1,1,1)); 

end 

%hist(N,30); 

q1_N=prctile(N,30); 

q2_N=prctile(N,50); 

 

a_month = unifrnd(.10/12,.20/12,n,1); 

Production = 0; 

for i=1:n 

    j=1; 

    Total_Production=0; 

    while j<=t_delay(i,1) 

        Production(j,i)=0; 

        Total_Production=Total_Production + Production(j,i); 

        j=j+1; 

    end 

    while j-t_delay(i,1)<=t_reach_plateau(i,1) 

        term_rand=0;%normrnd(0,3000,1,1); 
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        Production(j,i)=(qi(i,1)/t_reach_plateau(i,1))*(j-

t_delay(i,1))+term_rand; 

        Total_Production=Total_Production + Production(j,i); 

        j=j+1; 

    end 

    while j-t_delay(i,1)-t_reach_plateau(i,1)<=t_at_plateau(i,1) 

        term_rand=0;%normrnd(0,3000,1,1); 

        Production(j,i)=qi(i,1)+term_rand; 

        Total_Production=Total_Production + Production(j,i); 

        j=j+1; 

    end 

    diff = N(i,1)-Total_Production; 

    while diff > 30000 

       term_rand=0;%normrnd(0,3000,1,1); 

       Production(j,i) = qi(i,1) * exp(-a_month(i,1)*(j-t_delay(i,1)-

t_reach_plateau(i,1)-t_at_plateau(i,1)))+term_rand; 

       Total_Production = Total_Production + Production(j,i); 

       diff = N(i,1)-Total_Production; 

    if j==252 

        percent_produced=100*Total_Production/N(i,1); 

        break 

    end 

    j=j+1; 

    end 

 

    if i==m 

        break 

    end 

end 

 

average_path=mean(Production'); 

Production(:,m+1) = average_path'; 

xlswrite('production_data_accelerated', Production); 

  

% -------------------- CASH FLOW MODULE ------------------------------- 

prices_inflated = [% --- here comes 50 SGS inflated price forecasts% ]; 
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Cash_flow = 0; 

Cum_Cash_flow = 0; 

seis_succ = 0; 

drill_succ = 0; 

investments=0; 

seismic = -20000000; 

exp_drilling = -100000000; 

prod_drilling = -200000000; 

opex = 4; 

capex = 1; 

tax_rate=.36; 

price_path = round(unifrnd(.51,50.49,n,1)); 

 

for i=1:m 

    capex_vctr=0; 

    prod_cf_vctr =0; 

    depreciation1_vctr=0; 

    depreciation2_vctr=0; 

    depreciation3_vctr=0; 

    total_deprtn_vcrt=0; 

    prod_cf_vctr=0; 

    capex_vctr(1,1) = seismic; 

    depreciation1_vctr(1,1) = 0; depreciation1_vctr(2:85,1) = 

(seismic/7)/12; depreciation1_vctr(97,1)=0; 

    if N(i)<q1_N  

        seis_succ(i,1)=0; 

        drill_succ(i,1)=0; 

    else 

        seis_succ(i,1)=1; 

    end 

    if seis_succ(i,1)==1 

        capex_vctr(7,1) = exp_drilling; 

        depreciation2_vctr(1:7,1) = 0; depreciation2_vctr(8:91,1) = 

(exp_drilling/7)/12; depreciation2_vctr(97,1)=0; 

        if N(i)<q2_N 
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            drill_succ(i,1)=0; 

        else 

            drill_succ(i,1)=1; 

        end 

        if drill_succ(i,1) ==1 

            capex_vctr(13,1) = prod_drilling-N(i,1)*capex; 

            depreciation3_vctr(1:13,1) = 0; depreciation3_vctr(14:97,1) 

= (capex_vctr(13,1)/7)/12; 

            for j=1:252          

prod_cf_vctr(13+j,1)=Production(j,i)*prices_inflated(j,price_path(i,1))

-Production(j,i)*opex; 

            end 

        else 

            capex_vctr(13,1) = 0; 

            depreciation3_vctr(97,1) = 0; 

        end 

    else 

        capex_vctr(13,1) = 0; 

        depreciation2_vctr(97,1) = 0; 

        depreciation3_vctr(97,1) = 0; 

    end 

    capex_vctr(300,1)=0; 

total_deprtn_vcrt=depreciation1_vctr+depreciation2_vctr+depreciation3_v

ctr; total_deprtn_vcrt(300,1)=0; 

    prod_cf_vctr(300,1)=0; 

     

    for j=1:300 

        Cash_flow(j,i)=capex_vctr(j,1)+prod_cf_vctr(j,1)-

(prod_cf_vctr(j,1)+total_deprtn_vcrt(j,1))*tax_rate; 

    end 

    investments(i,1)=(-1)*sum(capex_vctr); 

end 

for i=1:m 

    for j=1:300 

        if j==1 

            Cum_Cash_flow(j,i)=Cash_flow(j,i); 
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        else 

            Cum_Cash_flow(j,i)=Cum_Cash_flow(j-1,i)+Cash_flow(j,i);             

        end 

    end 

end 

NPV_data=0; NPV_data_succ=0; 

PI_data=0; PI_data_succ=0; 

FV_data=0; GRR_data_succ=0; GRR_data=0; 

disc_rate=.12/12; 

count=1; 

for i=1:m 

    NPV_data(i,1)=0; FV_data(i,1)=0; GRR_data(i,1)=0; 

    PI_data(i,1)=0; 

    for j=1:300 

        if drill_succ(i,1)>0 && Cash_flow(j,i)>0 

FV_data(i,1)=FV_data(i,1)+Cash_flow(j,i)*((1+disc_rate)^(300-j)); 

        elseif drill_succ(i,1)==0 

            FV_data(i,1)=0; 

        end 

        NPV_data(i,1)=NPV_data(i,1)+Cash_flow(j,i)/((1+disc_rate)^j); 

    end 

    GRR_data(i,1) = (1+((FV_data(i,1)/investments(i,1))^(1/300)-1))^12-

1; 

    PI_data(i,1) = 1+NPV_data(i,1)/investments(i,1); 

    if drill_succ(i,1)>0 

        PI_data_succ(count,1) = 1+NPV_data(i,1)/investments(i,1); 

        NPV_data_succ(count,1) = NPV_data(i,1); 

        GRR_data_succ(count,1) = 

(1+((FV_data(i,1)/investments(i,1))^(1/300)-1))^12-1; 

        count=count+1; 

    end 

end 

acc_NPV_data = NPV_data; 

acc_NPV_data_succ = NPV_data_succ; 

acc_PI_data = PI_data; 

acc_PI_data_succ = PI_data_succ; 
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acc_GRR_data = GRR_data; 

acc_GRR_data_succ = GRR_data_succ; 
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MATLAB CODE FOR GATHERING DATA AND GENERATING 

OPPORTUNITY SET AND EFFICIENT FRONTIER 

 

NPV_data_total=0; 

NPV_data_succ_total =0; 

GRR_data_total =0; 

GRR_data_succ_total =0; 

PI_data_total =0; 

PI_data_succ_total =0; 

  

NPV_data_total = [acc_NPV_data acc_sol_NPV_data dld_NPV_data 

dld_sol_NPV_data dbl_NPV_data dbl_sol_NPV_data cnt_NPV_data 

cnt_sol_NPV_data tgh_NPV_data hrr_NPV_data lrr_NPV_data]; 

NPV_data_succ_total = [acc_NPV_data_succ acc_sol_NPV_data_succ 

dld_NPV_data_succ dld_sol_NPV_data_succ dbl_NPV_data_succ 

dbl_sol_NPV_data_succ cnt_NPV_data_succ cnt_sol_NPV_data_succ 

tgh_NPV_data_succ hrr_NPV_data_succ lrr_NPV_data_succ]; 

  

GRR_data_total = [acc_GRR_data acc_sol_GRR_data dld_GRR_data 

dld_sol_GRR_data dbl_GRR_data dbl_sol_GRR_data cnt_GRR_data 

cnt_sol_GRR_data tgh_GRR_data hrr_GRR_data lrr_GRR_data]; 

GRR_data_succ_total = [acc_GRR_data_succ acc_sol_GRR_data_succ 

dld_GRR_data_succ dld_sol_GRR_data_succ dbl_GRR_data_succ 

dbl_sol_GRR_data_succ cnt_GRR_data_succ cnt_sol_GRR_data_succ 

tgh_GRR_data_succ hrr_GRR_data_succ lrr_GRR_data_succ]; 

  

PI_data_total = [acc_PI_data acc_sol_PI_data dld_PI_data 

dld_sol_PI_data dbl_PI_data dbl_sol_PI_data cnt_PI_data cnt_sol_PI_data 

tgh_PI_data hrr_PI_data lrr_PI_data]; 

PI_data_succ_total = [acc_PI_data_succ acc_sol_PI_data_succ 

dld_PI_data_succ dld_sol_PI_data_succ dbl_PI_data_succ 

dbl_sol_PI_data_succ cnt_PI_data_succ cnt_sol_PI_data_succ 

tgh_PI_data_succ hrr_PI_data_succ lrr_PI_data_succ]; 
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for f=1:11 

     

    NPV_data_means_vector(f,1)=mean(NPV_data_total(:,f)); 

    NPV_data_succ_means_vector(f,1)=mean(NPV_data_succ_total(:,f)); 

    GRR_data_means_vector(f,1)=mean(GRR_data_total(:,f)); 

    GRR_data_succ_means_vector(f,1)=mean(GRR_data_succ_total(:,f)); 

    PI_data_means_vector(f,1)=mean(PI_data_total(:,f)); 

    PI_data_succ_means_vector(f,1)=mean(PI_data_succ_total(:,f)); 

    NPV_data_stds_vector(f,1)=std(NPV_data_total(:,f)); 

    NPV_data_succ_stds_vector(f,1)=std(NPV_data_succ_total(:,f)); 

    GRR_data_stds_vector(f,1)=std(GRR_data_total(:,f)); 

    GRR_data_succ_stds_vector(f,1)=std(GRR_data_succ_total(:,f)); 

    PI_data_stds_vector(f,1)=std(PI_data_total(:,f)); 

    PI_data_succ_stds_vector(f,1)=std(PI_data_succ_total(:,f));    

end 

  

GRR_data_succ_cov = cov(GRR_data_succ_total); 

PI_data_succ_cov = cov(PI_data_succ_total); 

NPV_data_succ_cov = cov(NPV_data_succ_total); 

GRR_data_cov = cov(GRR_data_total); 

PI_data_cov = cov(PI_data_total); 

NPV_data_cov = cov(NPV_data_total); 

 

Cov_mtrx = NPV_data_succ_cov; 

sds = NPV_data_succ_stds_vector; 

ret = NPV_data_succ_means_vector; 

n=10000; 

prj_wghts_array=0; 

  

for j=1:10000 

nmbr_prj=11; 

indexes(1:nmbr_prj,1)=1:nmbr_prj; 

wght=0; 

resid=1; 
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prj=0; 

prj_wghts=0; 

 

for i=1:nmbr_prj 

prj=round(unifrnd(.51,(nmbr_prj+1.49-i),1,1)); 

wght=unifrnd(0,resid,1,1); 

prj_wghts(i,1)=indexes(prj,1);  

  

if i==nmbr_prj 

    prj_wghts(i,2)=resid; 

else 

    prj_wghts(i,2)=wght; 

end 

  

indexes(prj,:)=[]; 

resid=resid-wght; 

end 

  

prj_wghts=sortrows(prj_wghts,1); 

prj_wghts_array(1:nmbr_prj,j)=prj_wghts(:,2); 

end 

  

prj_wghts_array=prj_wghts_array'; 

for i=1:n 

    Rp(i,1) = prj_wghts_array(i,:)*ret; 

    SD_p(i,1) = 

sqrt(prj_wghts_array(i,:)*Cov_mtrx*prj_wghts_array(i,:)'); 

     

end 

plot(SD_p,Rp,'*'); 

efficient_frontier=0; 

efficient_proj_weights_array=0; 

efficient_proj_weights_array(1,nmbr_prj)=0; 

z=1; 

for j=1:10000 
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    cont=0; 

    for v=1:10000 

        if SD_p(v,1)<SD_p(j,1) && Rp(v,1)>=Rp(j,1) 

            cont=1; 

            break 

        end 

    end 

    if cont==1 

        continue 

    end 

    efficient_frontier(z,1)=SD_p(j,1); efficient_frontier(z,2)=Rp(j,1); 

efficient_frontier(z,3)=3; 

    efficient_proj_weights_array(z,:)=prj_wghts_array(j,:); 

    z=z+1; 

end 

  

plot(efficient_frontier(:,1),efficient_frontier(:,2),'*'); 

xlswrite('efficient_frontier_NPV', [efficient_proj_weights_array 

efficient_frontier]); 
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