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ABSTRACT 

Seismic Attribute Analysis Using Higher Order Statistics. (August 2008) 

Janelle Greenidge, B.S., University of the West Indies 

Chair of Advisory Committee: Dr. Luc T. Ikelle 

 

Seismic data processing depends on mathematical and statistical tools such as 

convolution, crosscorrelation and stack that employ second-order statistics (SOS). 

Seismic signals are non-Gaussian and therefore contain information beyond SOS. One of 

the modern challenges of seismic data processing is reformulating algorithms e.g. 

migration, to utilize the extra higher order statistics (HOS) information in seismic data. 

The migration algorithm has two key components: the moveout correction, which 

corresponds to the crosscorrelation of the migration operator with the data at zero lag 

and the stack of the moveout-corrected data. This study reformulated the standard 

migration algorithm to handle the HOS information by improving the stack component, 

having assumed that the moveout correction is accurate. The reformulated migration 

algorithm outputs not only the standard form of stack, but also the variance, skewness 

and kurtosis of moveout-corrected data. 

The mean (stack) of the moveout-corrected data in this new concept is equivalent 

to the migration currently performed in industry. The variance of moveout-corrected 

data is one of the new outputs obtained from the reformulation. Though it characterizes 

SOS information, it is not one of the outputs of standard migration. In cases where the 

seismic amplitude variation with offset (AVO) response is linear, a single algorithm that 
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outputs mean (stack) and variance combines both the standard AVO analysis and 

migration, thereby significantly improving the cost of seismic data processing. 

Furthermore, this single algorithm improves the resolution of seismic imaging, since it 

does not require an explicit knowledge of reflection angles to retrieve AVO information. 

In the reformulation, HOS information is captured by the skewness and kurtosis 

of moveout-corrected data. These two outputs characterize nonlinear AVO response and 

non-Gaussian noise (symmetric and nonsymmetric) that may be contained in the data. 

Skewness characterizes nonsymmetric, non-Gaussian noise, whereas kurtosis 

characterizes symmetric, non-Gaussian noise. These outputs also characterize any errors 

associated with moveout corrections.  

While classical seismic data processing provides a single output, HOS-related 

processing outputs three extra parameters i.e. the variance, skewness, and kurtosis. 

These parameters can better characterize geological formations and improve the 

accuracy of the seismic data processing performed before the application of the 

reformulated migration algorithm. 
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CHAPTER I 

INTRODUCTION 

 

The three key steps involved in seismic imaging are multiple-attenuation, 

velocity-analysis, and migration with or without AVO (amplitude variations with 

offsets), depending on exploration and production objectives. The three steps are 

performed in the order assigned in Figure 1.1, i.e., demultiple and deghosting followed 

by velocity estimation followed by migration with or without AVO-A. Let us start by 

reviewing these three steps. 

 

 

 

 

 

 

 

 

 

FIGURE 1.1 Three key steps in seismic imaging. The first steps are demultiple and deghosting and 

velocity estimation. When followed by migration we obtain the structural image of the subsurface; the 

interpretation in this case is characterized as structural. When followed by migration with AVO-A we 

obtain more than the structure of the subsurface. We can also obtain the physical properties of the rock 

formation; the interpretation in this case is characterized as quantitative. 
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FIGURE 1.2 An illustration of the ray paths of seismic events in marine data. 
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 Seismic data, especially those related to marine acquisition geometries, on which 

the examples of this thesis are based, contain free-surface multiples, internal multiples 

and primaries. Figure 1.2 illustrates typical ray paths describing the seismic events in 

marine data. Note that the common seismic conventions have been used by not taking 

into account Snell’s laws when drawing the ray paths. However, all computations follow 

Snell’s laws. 

The goal of the demultiple and deghosting step in seismic imaging is to produce 

data that are void of multiples and ghosts. In the last two decades, significant efforts 

have been made to address the multiple-attenuation problem. For example, Watts (2005) 

and Singh (2005) have presented very efficient algorithms for removing free-surface 

multiples and demonstrated the feasibility of the technologies in very complex 

geologies. In this thesis, data containing only primaries will be considered. In other 

words, it has assumed that multiples have been removed from the data. 

We will now consider velocity estimation and the migration of seismic data with 

only primaries. The velocity estimation and migration steps in seismic imaging are 

intertwined. Although the velocity model must be estimated before performing migration 

as described in Figure 1.2, the migration algorithm needs to be formulated first because 

velocity-estimation is based on the same algorithm as migration. 

Let us denote xs, the source position, xr, the receiver position and x, the image 

point, as depicted in Figure 1.3. 
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FIGURE 1.3 Typical ray path of primaries in the context of migration techniques as used in this thesis.  

 

A field of primaries can be described in the frequency-space (F-X) domain, as 

follows: 

P(xs, xr, ω) = ∫ ω) ,( xx  ,G s  M(x) G(x, xr, ω) dx,   (1.1) 

where P(xs, xr, ω)  is the field of primaries, G (xs, x, ω) is the Green’s function which 

describes wave propagation from source to image point, G (x, xr, ω) is the Green’s 

function which describes wave propagation from image point to receiver, and M(x) 

characterizes the physical properties of the subsurface. It must be emphasized here that 

the model used in equation (1.1) to describe our data is only valid for primaries, and 

hence the assumption that multiples (free-surface multiples and internal multiples) have 

been attenuated is needed. 

Equation (1.1) can also be written as follows: 

          P(xs, xr, ω) =∫ ω) , , ,L( rs xxx  M(x) dx,     (1.2) 

xs 
xr 

x 

source 

receiver 

image point 
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where L(xs, x, xr, ω) = G(xs, x, ω) G(x, xr, ω). The operator L is generally known as the 

migration operator. One can seek to solve for M(x) through a classical inverse-problem 

technique such as the least-square-optimization technique. However, if we assume that 

the data have been corrected for geometrical spreading, the inverse solutions of equation 

(1.2) can be expressed as follows (Ikelle and Amusden, 2005): 

M(x) ≈ ∫∫∫ dωdd rs xx  L*(xs, x, xr, ω) P(xs, xr, ω),   (1.3) 

where L* is the complex conjugate of L. The approximate solution M(x) is known as 

migration. Notice that the solution in equation (1.3) can be rewritten as follows: 

M(x) = ∫∫ rs dd xx  M'(xs, x, xr),     (1.4) 

where M'(xs, x, xr) = ∫dω  L*(xs, x, xr, ω) P(xs, xr, ω). This formula depicts the two 

critical steps involved in migration. The first step involves the computation of M'(xs, x, 

xr), which corresponds to the moveout correction of data. Notice that this computation is 

equivalent to taking the crosscorrelation of the migration operator L and the data at zero 

lag. Therefore the operator L must be very similar to the data to produce effective 

moveout-corrected data. The second step, which corresponds to reconstructing M(x), is 

equivalent to summing M' over the source and receiver positions. This is known as stack. 

To develop more insight into the migration formula (1.4), let us look at the 

particular case of a 1D model of the earth. In this case, the data P(xs, xr, ω) depends only 

on offset, i.e. 

P(xs, xr, ω) = P(xs-xr, 0, ω) = P1D(xs-xr, ω) = P1D(xh, ω)  (1.5) 
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where xh = xs-xr is the offset and P1D(xh, ω) describes a CMP (common midpoint) gather. 

In this case, the migration operator L without geometrical spreading becomes (Ikelle and 

Amusden, 2005): 

L(xh, ω, z) = exp 








+− z
22

hV

ω
i x                   (1.6) 

To simplify the discussion we have assumed in equation (1.5) that the 

background velocity is constant and denoted V. Using equation (1.5), the migration in 

equation (1.4) reduces to: 

M1D(z) = ∫ hdx  M1D'(xh, z),       (1.7) 

where   M1D'(xh, z) = ∫dω  exp 








+− z
22

hV

ω
i x  d(xh, ω).  

Figures 1.4 and 1.5 illustrate the various operators introduced in the previous 

paragraph and the operations associated with them. Four (4) homogeneous half-spaces 

with a horizontally flat interface have been used to generate the data. The migration 

operator was then computed using the velocity of the top interface. There must be a 

similarity between the moveout of the seismic events in our data and that of the 
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FIGURE 1.4 An example of the process of migration. (a) CMP gather, P1D. (b) Moveout-corrected gather, M1D', produced using the 

appropriate moveout velocity. (c) Stack of moveout-corrected data, M1D. 
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0 2 4 -2 -4 x 10-5 
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FIGURE 1.5 An example of the process of migration. (a) CMP gather, P1D. (b) Moveout-corrected gather, M1D', produced using the 

appropriate moveout velocity. (c) Stack of moveout-corrected data, M1D. 

 

Example 2 
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migration operator. The moveout-corrected data, M1D'(xh, z), which corresponds to the 

crosscorrelation of L(xh, ω, x) and P1D(xh, ω) at zero lag, is obviously flat as can be seen 

in Figures 1.4 and 1.5. Normally, the AVO analysis, which will be discussed later, is 

taking place on the moveout-corrected data, M1D'(xh, z) in Figures 1.4 (c) and 1.5 (c), 

with each offset converted into reflection angle. The migration is then performed to 

obtain M1D(z) which allows us to locate the reflector. 

Now that we have introduced the migration techniques, let us describe the second 

step of the processing chain, as depicted in Figure 1.1, i.e. velocity-analysis. As can be 

seen from the examples in Figures 1.4 and 1.5, the moveout-corrected data is very 

sensitive to the shape of the migration operator, which in turn is very sensitive to the 

velocity model. In Figure 1.6 the moveout-corrected migration operator is different from 

that of the moveout-corrected data. Therefore, M1D'(xh, z) in this case is no longer flat. 

So the basic idea of velocity-analysis consists of computing M1D'(xh, z) for various 

velocity models and selecting the one for which the moveout-corrected data are flat. In 

this thesis, we will assume that the velocity-analysis has been performed and therefore 

we assume that we have a correct velocity model. 

Assuming that we now have a correct velocity model, M'(xs, x, xr) can now be 

constructed, and from M'(xs, x, xr) migrated sections M(x) can be produced, as described 

in equation (1.3). However, such an image will provide the locations of key reflectors in 

the subsurface without providing any information about the change of properties that 

cause the reflections. An alternative approach is to use the moveout-corrected data, 



1
0

 

  

             

         

FIGURE 1.6 An example of process of migration using an incorrect moveout velocity. (a) CMP gather, P1D. (b) Moveout-corrected gather, M1D', 

produced using an inappropriate moveout velocity. (c) Stack of moveout- corrected data, M1D. 

 

Time (s) 
Time (s) 

Time (s) 

0 

1 

2 

Offset  (km) 
Offset  (km) 

x 10-5 -1 0 1 2 



11 

 

 

M'(xs, x, xr), before stack to characterize the various reflectors. As pointed out earlier, 

the moveout-corrected data describes how the responses of the seismic data at a specific 

reflector vary with offsets. If the offsets are converted into angles, it is discovered that 

the variation of seismic responses with angles (via offsets conversion to angles) is 

actually a variation of the reflection coefficients with angles. 

One of the difficulties of converting offsets into angles is that at each timestep 

the moveout-corrected response must be converted to AVA (amplitude variations with 

angles) response. The difficulties of this process arise because the velocity profile that 

emerges from velocity-analysis is usually smooth. Such a profile may be accurate 

enough to predict the traveltimes that are needed for constructing the migration operator 

but are not often good enough to predict the ray bending associated with Snell’s law that 

is needed for converting offsets to reflection angles.  

In summary, characterizing reflectors using seismic amplitude variations with 

offsets is known as AVO analysis. The first step in this process consists of correcting the 

data for geometrical spreading. In the second step the velocity model is used to produce 

moveout-corrected data and in the third step the AVO of moveout-corrected data is 

converted into AVA. And in the final step, the classical small-angle approximation of 

the reflection coefficient is used, i.e.  

  Rpp (x) = A(x) + B(x) sin2
θ,      (1.8) 

to recover changes in impedance (which is related to A(x)) and Poisson’s ratio (which is 

related to B(x)), that are associated with each reflector. 
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The stack of moveout-corrected data, i.e., M'(xs, x, xr) in equation (1.4) and 

M1D'(xh, z) in equation (1.7), is actually equivalent to taking the mean of these data at 

each timestep. In this thesis, we propose to compute the variance of the same moveout-

corrected data at each timestep. It turns out that outputting both the mean and variance is 

equivalent to recovering the AVO parameters, A(x) and B(x), without the complex step 

of converting AVO to AVA. Moreover, the computation of mean and variance can be 

done in parallel, hence eliminating most of the operations described above. As such, the 

cost of seismic processing will be significantly reduced, as well as its accuracy, because 

errors associated with converting offsets to angles will be avoided. 

Because seismic events are non-Gaussian, as will be seen in Chapter II, we can 

also output other cumulants such as skewness and kurtosis. In Chapter II, these 

cumulants will be described, in addition to recalling the notion of non-Gaussianity and 

the statistical concepts associated with it. We will demonstrate that outputting these 

additional cumulants will allow us to characterize rock formations beyond the small-

angle approximation. In other words, we are also able to include nonlinear AVO. In 

Chapter III, preliminary results will be provided that confirm the potential usefulness of 

these new parameters for characterizing interfaces by discussing one dimensional (1-D) 

examples. 
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CHAPTER II 

SOME BACKGROUND OF STATISTICAL AVERAGES OF NON-GAUSSIAN 

RANDOM VARIABLES 

 

Introduction 

Let us consider migrated data without stack. Each image/reflection point is 

illuminated several times as illustrated in Fig 2.1 for 1D medium, as adapted from Ikelle 

and Amundsen (2005).  

 

 

 

 

 

 

 

 

 

 

FIGURE 2.1 An illustration of a CMP gather before and after NMO correction. The angle θ is the 

incident angle. 

 

The image point being imaged consists of N traces that correspond to N source-receiver 

pairs or offsets. These traces are known as a common midpoint (CMP) gather. If an 

NMO or traveltime correction is performed then for all offsets the traveltime from 

Receiver position before NMO correction 

Receiver position after NMO correction 

Source position before NMO correction 
Source position after NMO correction 
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source to image point will be identical to the traveltime from image point to receiver. 

Each offset can now be considered as descriptive of a random event and the set of events 

as a random variable. Therefore, for each timestep, we can compute the statistical 

averages.  

The classical approach consists of summing the data to produce an image of that 

point. However, since it is well recognized that the various illuminations contain more 

information than the classical stack, geophysicists have developed several tools of 

attribute analysis in order to extract this information. In this thesis, I propose an 

alternative way of capturing this information. This new statistically based approach 

consists of treating migrated data without stack as random variables. Hence, the 

migrated data can be characterized at a given image point by either the statistical 

moments or cumulants. In Chapters III and IV we will show the applications of this 

concept. 

This chapter focuses on a review of statistical averages, including the averages 

associated with non-Gaussian random variables, and also on other basic statistical 

notions that will be needed later on in this analysis. 

 
 
Moments and Cumulants 

Let us denote M (X, θ) as a random variable at point X. This random variable 

varies with θ, the reflection angle. The statistical moments of this random variable can 

be defined as follows: 

mn (X, θ) = E[Mn] = dxxpxn )(∫
∞

∞−                       
(2.1) 
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where E is the mathematical expectation. For the particular case of the discrete random 

variable, this can now be defined as:  

mn (X, θ) = dxxpx k
n )(∫

∞

∞−                                    
(2.2) 

 

When n=1 we have the 1st order moment known as the mean, when n=2 we have 

the 2nd order moment, etc. The migration defined so far in industry corresponds to the 1st 

order moment (mean) only, and ignores the higher order statistics of the seismic data. 

Therefore, if we stop here we would lose all the information about the other moments, 

especially those related to non-Gaussianity. 

An alternative way to describe non-Gaussian random variables is to introduce the 

cumulant. The first four orders are defined in the Table 2.1 below. 

 

TABLE 2.1 First four orders of cumulants. 

n Order 

Cumulants  

(cn) Statistical Name 

1 1st c1 Mean 

2 2nd c2 Variance 

3 3rd c3 Skewness 

4 4th c4 Kurtosis 

 

 

Using X as a random variable, the relation between cumulants and moments has 

been described in Table 2.2 below, as adapted from Ikelle and Amundsen (2005). The 

quantity c1 (or m1) is the mean, c2 (or µ2) is the variance, c3 is the skewness and c4 is the 

kurtosis. 
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TABLE 2.2 Relation between the first five moments and cumulants. 

n 
Moments 

(mn) 
Central Moments 

(µµµµn) 
Cumulants 

(cn) 

Cumulants(cn) 
for zero mean 

random 
variable 

0 mo = 1 µ0 = 1 c0 = 0 c0 = 0 

1 m1 = E(x) µ1 = 0 c1 = m1 c1 = 0 

2 m2 = E(x2) µ2 = m2 – m1
2 c2 = m2 – m1

2 c2 = m2 

3 m3 = E(x3) µ3 = m3 – 3 m2m1 + 2 m1
3 c3 = m3 – 3 m2m1 + 2 m1

3 c3 = m3 

4 m4 = E(x4) µ4 = m4 – 4 m3m1 + 6 m2 m1
2 – 3m1

4 c4 = m4 – 4 m3m1 – 3 m2
2 + 12 m2 m1

2 – 6m1
4 c4 = m4 – 3 m2

2 

 

For more information on random variables, moments and cumulants see Appendix A. 

 

Non-Gaussian Probability Distributions 

The first 2 orders of moments and cumulants (i.e. the mean and variance) are 

characterized as Gaussian or second order statistics (SOS), and moments and cumulants 

greater than the second order (e.g. skewness and kurtosis) are characterized as higher 

order statistics (HOS). When the HOS cumulants are zero they are also characterized as 

Gaussian, however once the cumulants of order greater than two have non-null values 

they are characterized as non-Gaussian.  

Table 2.3 provides detailed descriptions about the moments and cumulants for 

different probability density functions. It effectively confirms that for non-Gaussian 

random variables, the higher order cumulants are non-zero. Notice also that for 

symmetric distributions the odd cumulants, e.g. the 3rd order cumulant (skewness), are 

zero. This can clearly be observed with the Laplace and Uniform distributions, chosen 

because they describe the extreme cases; the Uniform distribution with negative kurtosis 

(sub Gaussian) and the Laplace distribution with positive kurtosis (super Gaussian). 
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In Table 2.3, the Rayleigh distribution shows an example of non-Gaussian, non-

symmetric random variables. We can see that when the random variable is non-Gaussian 

and non-symmetric that we have extra information through both the skewness and 

kurtosis.  

To date, the extra information that can be captured in the HOS has not yet been 

exploited in seismic data processing. Practical seismic data processing is actually limited 

to the mean, since the variance is not really used. Techniques based on SOS recover only 

limited information about non-Gaussian signals, and as such information related to 

deviations from Gaussianity is not extracted. Better results can be realized using HOS 

over SOS, since HOS allows for the processing of seismic signals that are non-Gaussian. 

Studying the higher order statistics will allow information extra to that used in traditional 

seismic imaging to be utilized. This will enable better estimates of parameters in noisy 

situations or shed light on non-linearities that may be inherent in the seismic data. 

One of challenges that will be addressed in the next chapter is not only recovery 

of the seismic attributes: the mean, variance, skewness and kurtosis for each image 

point, but also connecting this new information to specific geologies. For example, in 

areas where the reflection coefficient can be described by R = A + B x, the skewness and 

kurtosis are expected to be zero. Here A will basically characterize the mean and B can 

characterize the variance. In other words, the statistical averages can be used to recover 

A or B at small angles. As more realistic cases are considered, HOS can then be utilized 

to characterize the other parameters.  
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TABLE 2.3 First four moments and cumulants of the Gaussian, Laplace, Uniform and Rayleigh 

distributions. 

px(x) 

x 

px(x) 

x 

px(x) 

-c 

px(x) 

x 

+c x 

Gaussian Distribution 
 

px(x) = 
σ2π

1
 exp( −x2/2σ2 ) 

n (n)
xm  

(n)
xc  

1 0 0 

2 σ2 σ2 
3 0 0 
4 3σ4 0 

Laplace Distribution 
 

px(x) = 
2

λ

 exp (-λ x) 

n (n)
xm  

(n)
xc  

1 0 0 

2 2/λ2 2/λ2 

3 0 0 

4 24/λ4 12/λ4 

Uniform Distribution 
      

px(x) = 
2c

1
          x∈ [-c, +c] 

n (n)
xm  (n)

xc  
1 0 0 

2 c2/3 c2/3 
3 0 0 

4 3c4/5 -2c4/15 

Rayleigh Distribution 
 px(x) = x/α2 exp (−x2/2α2 )        x≥ 0     

n (n)
xm  (n)

xc  

1 α
2

π

 α
2

π

 

2 2α2 (2-
2
π

) α2 

3 3α3

2

π

 -3α3(1-
3

π

)
2

π

 

4 8α4 1/2α4 (12π-3π2-8) 

 

c2

1
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CHAPTER III 

HOS AND AVO SEISMIC DATA  

 

Introduction 

Energy is partitioned into reflected and transmitted energy at an interface that 

separates two different layers, as illustrated in Figure 3.1. The reflection and 

transmission is dependent on the angle of incidence, θ of the incoming wave, as well as 

the physical properties of the two layers. The seismic amplitudes of the reflected and 

transmitted energy depend on the contrast in the physical properties across the boundary, 

i.e. the amplitudes carry information about the contrast of elastic parameters of two (2) 

rock formations. The Zoeppritz equations, which define the reflection and transmission 

coefficients, are used to relate the reflected and transmitted energy to the physical 

properties of the two layers. In this thesis, we will only refer to the reflection coefficient.  

 

 

 

 

 

 

FIGURE 3.1 Typical ray paths of seismic energy in a model comprising two homogeneous half-spaces. 

Transmitted wave 

Incident wave 

V1, ρ1 

Reflected wave 

V2, ρ2 

θi θr 

θt 

θi = angle of incidence 

θt = angle of transmission 

θr = angle of reflection 

V1 = velocity of wave in upper medium 

V2 = velocity of wave in lower medium 

ρ1  = density of upper medium 

ρ2  = density of lower medium 
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The linearized expressions of the Zoeppritz equations are derived using the 

small-angle approximation. For the reflection coefficient the linear approximation can be 

given by: 

R = A + B x      (3.1) 

where x = sin2
θ 

At larger angles, the reflection coefficient can be given by: 

R = A + B x + C x2     (3.2) 

 This is a second order approximation in x. Numerically it has been shown that the linear 

approximation works best for angles of θ < 35° and the second order approximation 

works best for angles of θ < 60°, after which the expressions become unstable. 

These approximations produce small inaccuracies and are incorporated in the 

seismic data as noise. In practice, the noise associated with the seismic data acquisition 

geometries is also integrated into the data. For this reason, the reflection coefficient 

given in equation (3.2) above can now be described by: 

R = A + B x + C x2 + η = Ro + η  (3.3) 

where Ro = A + B x + C x2 

In this thesis we will describe Ro and η as two (2) random variables. 

 

 



21 

 

Examples of the Effect of Noise on CMP AVA Seismic Data 

Consider several examples of CMP AVA data in Figures 3.2 to 3.9. These 

examples show the effect of adding different types and variances of noise to linear and 

nonlinear AVA. Each figure contains four (4) diagrams of the AVA data and their 

associated histograms, as the variance of the noise added is increased. We have also 

computed the corresponding statistical averages for these examples as illustrated in 

Table 3.1.  

 
Analysis of Results 

From the histograms, we can observe that as the order of the noise is increased, 

the data tends more and more toward the type of noise that is added. It is also clear that 

seismic data does not tend to the Gaussian distribution. Therefore, we can characterize 

seismic data at a given image point as non-Gaussian random variables. The experiment 

was repeated several times giving the same conclusion that the seismic data behaved 

more like a non-Gaussian distribution.  

So one might ask the following question: In what cases can seismic data be 

described by a Gaussian random variable? One possible case is that the seismic response 

is invariant with the reflection angle. This is however non physical, since we can see 

from the Zoeppritz equations that it is impossible to have constant reflection coefficient 

with angle. Alternatively, we can get a Gaussian distribution if the reflection coefficients  
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FIGURE 3.2 Effect of Gaussian noise on linear AVA seismic data for different variances of the noise. 
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FIGURE 3.3 Effect of Gaussian noise on nonlinear AVA seismic data for different variances of the noise. 
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FIGURE 3.4 Effect of Laplacian noise on linear AVA seismic data for different variances of the noise. 
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FIGURE 3.5 Effect of Laplacian noise on nonlinear AVA seismic data for different variances of the noise. 
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FIGURE 3.6 Effect of Rayleigh noise on linear AVA seismic data for different variances of the noise. 
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FIGURE 3.7 Effect Rayleigh noise on nonlinear AVA seismic data for different variances of the noise. 
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FIGURE 3.8 Effect of Uniform noise on linear AVA seismic data for different variances of the noise. 
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FIGURE 3.9 Effect of Uniform noise on nonlinear AVA seismic data for different variances of the noise. 
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TABLE 3.1 Statistical averages of AVO seismic data for different types and variances of additive noise 

presented in Figures 3.2 to 3.9. 

Gaussian (Linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003  -0.538025 0.0012805 0.000172566 -0.0429237 
0.003 -0.538022 0.00128765 0.000619463 -0.0424862 
0.03 -0.538384 0.00218992 0.00316914 -0.0191433 
0.3      -0.538449 0.0901212 0.0134413 0.00424079 

Gaussian (Non-linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.393761 0.0217956 0.375146 -0.160141 
0.003 -0.393801 0.0218062 0.375577 -0.159903 
0.03 -0.393533 0.0226981 0.347874 -0.153352 
0.3      -0.391978 0.111797 0.0458331 -0.00273106 

LaPlacian (Linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.538027 0.00128005 1.90102e-05 -0.0429171 
0.003 -0.538029 0.00129885 -0.00229077 -0.0420918 
0.03 -0.537569 0.00311477 -0.012903 0.0590645 
0.3      -0.536581 0.178466 0.0516943 1.27223 

LaPlacian (Non-linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.393773 0.0217951 0.37518          -0.160133 
0.003 -0.393801 0.0218226 0.374189 -0.160052 
0.03 -0.393542 0.0235839 0.328764 -0.140445 
0.3      -0.394912  0.201337 0.090346 1.09169 

Rayleigh (Linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.537653 0.0012804 -3.13495e-05 -0.0429372 
0.003 -0.534257 0.00128375 0.000470458      -0.0427205 
0.03 -0.50051 0.00164901 0.0507358        -0.0277204 
0.3      -0.160657 0.0404481 0.588773         0.0420479 

Rayleigh (Non-linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.393385 0.0217955 0.375145  -0.160138 
0.003 -0.389972 0.021791 0.374719 -0.160138 
0.03 -0.35611 0.0222127 0.368259 -0.156131 
0.3      -0.0173828 0.0605068 0.399546 -0.00997649 

Uniform (Linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.538026 0.00128048 4.09828e-05      -0.042938 
0.003 -0.538055 0.00128321 -0.000890827 -0.0427528 
0.03 -0.538072 0.0015817 -0.00317656      -0.0329229 
0.3      -0.538883 0.0311004 0.00700946       -0.193539 

Uniform (Non-linear) 
Variance of Noise Mean Variance Skewness Kurtosis 

0.0003 -0.393764 0.0217959 0.375178 -0.160142 
0.003 -0.393768 0.0217955 0.375155 -0.160066 
0.03 -0.393782 0.0220683 0.367511 -0.156631 
0.3      -0.393237 0.0508386 0.106608 -0.128628 
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vary in the form, R = A + B sin2θ, where θ are uniformly distributed. Because seismic 

data are sampled in offset, this scenario is also unrealistic. Thus, the random variables of 

interest in this analysis are non-Gaussian most of the time. 

Let us focus consider the histograms and statistics obtained for each example. In 

all cases we can see that for very little variance of additive noise, the data is non-

Gaussian. The data is Uniform in the linear AVA case. As the variance of the noise is 

increased to the point where there is too much noise, the data tend to the distribution of 

the noise added. 

For the case of the additive Gaussian noise with the linear AVA data, we see that 

as the variance of the noise increases, the data tend toward a Gaussian distribution and 

with the nonlinear AVA, the data tend toward a nonsymmetric non-Gaussian 

distribution, i.e.  

Linear AVO + Gaussian noise  Gaussian data   

Nonlinear AVO + Gaussian noise   nonsymmetric, non-Gaussian data 

There is a significant increase in the variance, skewness and kurtosis in the nonlinear 

AVA case when compared to the linear AVA case. Again showing that despite the noise 

being Gaussian, the data have been rendered non-Gaussian because of the nonlinear 

AVA effect. 

Consider the case of non-Gaussian noise with symmetric distributions, i.e. 

Laplacian and Uniform noise. For additive Laplacian noise with the linear AVA data, we 

see that as the variance of the noise increases, the data tend toward a symmetric, super 
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non-Gaussian distribution and with the nonlinear AVA, the data tend toward a 

nonsymmetric non-Gaussian distribution, i.e. 

Linear AVO + Laplacian noise  symmetric, super non-Gaussian data

 Nonlinear AVO + Laplacian noise   nonsymmetric, non-Gaussian data 

For additive Uniform noise with the linear AVA data, we see that as the variance of the 

noise increases, the data tend toward a symmetric, sub non-Gaussian distribution and 

with the nonlinear AVA, the data tend toward a nonsymmetric non-Gaussian 

distribution, i.e. 

Linear AVO + Uniform noise   symmetric, sub non-Gaussian data

 Nonlinear AVO + Uniform noise   nonsymmetric, non-Gaussian data 

For both types of additive noise, for the linear AVA case, the skewness is almost null for 

all variances of noise, whereas in the nonlinear case the skewness is large and generally 

constant for all variances of noise. The kurtosis in the linear AVA case though smaller is 

significant and increases slightly, just as in the nonlinear case. For the Laplacian additive 

noise, the kurtosis tends more to a positive value (super Gaussian), whereas for the 

Uniform additive noise it tends to a more negative value (sub Gaussian). Hence, in order 

to distinguish between Gaussian noise and non-Gaussian noise with symmetric 

distributions, the kurtosis must be examined. 

For the case of the non-Gaussian noise with nonsymmetric distributions, i.e. 

Rayleigh noise, we see that with the both the linear and nonlinear AVA data, as the 

variance of the noise increases, the data tend toward a nonsymmetric non-Gaussian 

distribution.  
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Linear AVO + Rayleigh noise  nonsymmetric, non-Gaussian data 

Nonlinear AVO + Rayleigh noise   nonsymmetric, non-Gaussian data 

There is a significant increase in the skewness as the variance of the noise increases. 

Similar to the Laplacian and Uniform noise, the kurtosis in the linear AVA case though 

smaller is significant and increases slightly, just as in the nonlinear case.  

Summarizing, we can say that the skewness can be used to characterize 

nonsymmetric, non-Gaussian noise and the kurtosis can be used to characterize 

symmetric, non-Gaussian noise in the data. Non-Gaussian data result from either the 

presence of non-linear AVA effects or non-Gaussian noise.  Also, since seismic data are 

generally considered to be statistically symmetric, any significant value of skewness 

may indicate bad processing and in this case it could be that the moveout correction was 

not performed correctly. 
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CHAPTER IV 

ANALYSIS OF HOS MIGRATION THROUGH ONE-DIMENSIONAL 

GEOLOGICAL MODELS 

 

The standard migration algorithm used in conventional seismic migration 

consists of two major processes, moveout correction and then the stack of the moveout-

corrected data; as described earlier in Chapter I. Our formulation of this HOS migration 

algorithm is based on adapting only the stack component of the standard algorithm. 

Assuming that the moveout correction has been performed accurately, the stack 

component is improved such that more information present in the seismic data can be 

output from the new algorithm.  

 

Formulation of the HOS Migration Algorithm 

The formulation of the HOS migration algorithm is based on treating the 

moveout-corrected data as a random variable, as discussed before. This moveout-

corrected data is defined by:  

M'(xs, x, xr) = ∫dω  L*(xs, x, xr, ω) P(xs, xr, ω)  (4.1) 

Traditional migration then sums this data over the receivers and sources to produce the 

stack. 

M(x) = ʃ dxs ʃ dxr M'(xs, x, xr)     (4.2) 

where P(xs, xr, ω)  is the seismic data in the F-X domain and L(xs, x, xr, ω) is the 

migration operator, as introduced in the previous chapter. 
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Instead of outputting only the stack, from the moveout-corrected data we can 

output the parameters m1(x) to m4(x) as defined below:  

   m1(x) = ʃ dxs ʃ dxr M'(xs, x, xr),     (4.3)  

   m2(x) = ʃ dxs ʃ dxr (M'(xs, x, xr))
2,     (4.4) 

   m3(x) = ʃ dxs ʃ dxr (M'(xs, x, xr))
3,     (4.5) 

   m4(x) = ʃ dxs ʃ dxr (M'(xs, x, xr))
4,     (4.6) 

These parameters actually define the statistical moments as described in Table (2.2). The 

parameter m1(x) is actually the stack in the standard migration algorithm. Using m1(x) to 

m4(x) the new algorithm can now output the parameters variance, skewness and kurtosis 

in addition to the mean. These three (3) additional cumulants are defined in Table (4.1) 

below. 

TABLE 4.1 Output parameters of HOS migration. 

OUTPUT PARAMETERS EQUATIONS DEFINING THE OUTPUT PARAMETERS 

Mean, M(x) m1(x) 

Variance, V(x) m2(x) – (m1(x))2  

Skewness, S(x) m3(x) – 3m2(x)m1(x)) + 2(m1(x))3  

Kurtosis, K(x) m4(x) – 4m3(x)m1(x) – 3(m2(x))2 +12m2(x)m1(x))2 – 6 (m1(x))2  

 

Description of Model 

The model used for testing the HOS migration algorithm was a one-dimensional 

(1-D) model comprising of several homogeneous layers. In order to simplify the 

examples used, the model was constructed  in terms of the traveltime rather than depth. 

Since we are concerned with investigating the stack component of migration, the 
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moveout-corrected data was simulated by convolving AVO CMP seismic data with the 

source signature. This is described in equations (4.7) and (4.8) below. 

U(x,t) = R(x,t) = A(t) + B(t) x + C(t) x2 + η(x,t)  (4.7) 

D(x,t) = U(x,t) * S(t)      (4.8) 

where U(x,t) = AVO CMP seismic data 

           η(x,t)  = additive noise 

           S(t) = source signature 

           D(x,t) = moveout-corrected data 

The parameters A, B and C were chosen using the AVO classification based 

upon reflection coefficient and offset (Barton and Crider, 1999) as illustrated in Figure 

4.1 below. 

 

 

 

 

 

 

 

FIGURE 4.1 AVO Classification based upon reflection coefficient and offset (Barton and Crider, 1999). 
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At specific traveltimes, the events were characterized by different AVO responses. This 

can be expressed generally by: 

Uk(x,t) = Ak(t) + Bk(t) x + Ck(t) x
2    (4.9) 

These parameters describing the geological model are shown in Table (4.2) and 

the AVO CMP seismic data generated for the model are illustrated in Figure 4.2 below. 

 

TABLE 4.2 Parameters defining the geological model used for analysis of new HOS migration algorithm. 

PARAMETERS DEFINING 
GEOMETRY 

 
 

A B C 
TYPE OF AVO 

RESPONSE 
EQUATION DEFINING EACH 

EVENT 

-0.8 0.2 0.0 Linear U1( x,t) = - 0.8 + 0.2x 

-0.6 0.15 0.1 Nonlinear U2( x,t)  = - 0.6 + 0.15x + 0.1x2 

-0.2 -0.2 0.2 Nonlinear U3( x,t)  = - 0.2 - 0.2x + 0.2x2 

-0.05 -0.3 0.3 Nonlinear U4( x,t)  = - 0.05 - 0.3x + 0.3x2 

0.05 -0.35 0.0 Linear U5( x,t)  = 0.05 - 0.35x 

0.05 -0.35 0.5 Nonlinear U6( x,t)  = 0.05 - 0.35x + 0.5x2 

0.4 -0.55 0.7 Nonlinear U7( x,t)  = 0.4 - 0.55x + 0.7x2 
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FIGURE 4.2 AVO moveout-corrected seismic data of geological model. 
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Examples of HOS Migration  

For the purposes of this investigation three examples are consided using the 

geological model described above. In the first example, no noise is added to the events. 

In the second example, Gaussian noise is added to each event. And in the final example, 

different types of noise are added to the events. For each case the statistics, i.e. the mean, 

variance, skewness and kurtosis are computed following the equations defined in Table 

4.1. This is illustrated in Figures 4.3 to 4.5 respectively. 

 
Analysis of Results 

In the first example (Figure 4.3), no significant noise is added in this case. All 

layers are well resolved by the mean as one might expect. The variance is quite small in 

this case. Therefore the plot associated with it may not be that important. However, we 

can notice that the portion of the data with significant interference produces a large 

variance. This result is consistent with the fact that the amplitude may vary over a large 

range in this area.  The skewness is zero for the events with linear AVO response. This is 

so because the data is uniform and therefore symmetric as observed in the previous 

chapter. Notice that kurtosis is essentially negative in this example, which is consistent 

with the fact that data without noise tends more to sub-Gaussian.  

Now, in the second example (Figure 4.4), we have added Gaussian noise to the 

data. Basically, the results are essentially unchanged except for the last event which has 

a large AVO curvature and is therefore non-Gaussian. This combination with Gaussian 

noise produces a slightly positive kurtosis. 
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EXAMPLE 1: NO NOISE ADDED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.3 AVO moveout-corrected seismic data used for example 1 and the corresponding statistical 

averages. 
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EXAMPLE 2: GAUSSIAN NOISE ADDED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.4 AVO moveout-corrected seismic data used for example 2 and the corresponding statistical 

averages. 
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EXAMPLE 3: DIFFERENT TYPES OF NOISE ADDED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.5 AVO moveout-corrected seismic data used for example 3 and the corresponding statistical 

averages. 
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In the final example (Figure 4.5), we have added different types of noise. The 

noise component varies with time and includes both Gaussian and non-Gaussian noise, 

with the non-Gaussian noise being either Uniform or Laplacian. For the first two events 

in the data, the noise is Laplacian and we can see that the kurtosis has captured well this 

information with the positive kurtosis (super Gaussian). The middle events with Uniform 

noise can clearly captured with the negative kurtosis (sub Gaussian). For the last event, 

we have Gaussian noise and nonlinear AVO behavior. In this case it is still not clear how 

to define the result which can be sub Gaussian or super Gaussian. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

The main motivation for the use of HOS in seismic imaging is the fact that many 

signals in real life cannot be accurately modeled using the traditional 2nd order measures. 

How accurately seismic imaging can be done depends on both the quality of the sensing 

equipment and also very much on the effectiveness of the mathematical algorithms that 

are used. Hence it is important when seismic imaging algorithms are improved. 

If seismic modeling and imaging are to be improved, then more of the information 

available in the data must be extracted and used. The examples presented confirm that 

extra information carried by HOS can be obtained using my algorithm over conventional 

imaging algorithms. 

The mean attribute produces the same results as the present imaging technique 

known as stack, whereas variance, skewness and kurtosis allow us to detect and 

characterize linear and non-linear AVO behavior and the non-Gaussianity of the data. 

Using skewness and kurtosis allows for the identification of the transition from 

Gaussianity to non-Gaussianity, which coincides with the onset of the seismic event 

despite noise presence. Skewness and kurtosis establish an effective statistical test in 

identifying signals with asymmetrical distributions and nonlinear AVO behavior. The 

simplicity of the method makes it an attractive candidate for huge seismic data 

assessment in a real time context.  

Another important conclusion is that there is a significant improvement in the 

computation time, accuracy and the cost of seismic data processing, because the single 
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algorithm allows for the output of three parameters, the variance, skewness and kurtosis, 

simultaneously and because we are avoiding errors associated with converting offsets to 

angles when analyzing the AVO behavior. Furthermore, we will also be improving the 

resolution of the seismic data since knowledge of the reflection angles is not necessary to 

retrieve AVO information. 

Hence it is recommended that HOS be employed as a tool in the assessment of 

seismic data during the processing stage in seismic imaging. 
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APPENDIX A 

RANDOM VARIABLES, MOMENTS AND CUMULANTS 

 

Random Variables 

Random variables are mathematical quantities that are used to represent 

probabilistic uncertainty. A random variable x is can be described completely by a 

domain of values and a function (probability distribution or probability density function, 

pdf) p, or equivalently, by an expectation value function, {.}Ε  such that 

 

 

Random variables can also be characterized by the characteristic function. This 

characteristic function can be defined by 

)E)( e( p(x)dxe xixi ωωω ==Ψ ∫
∞

∞−
 

where e
iwx

 can be expanded as a Taylor series. The second characteristic function which 

is also commonly used, is defined by 

)(ln)( ωω Φ=Ψ  

 

Moments 

When summarizing certain properties of a random variable by using expectations 

of the random variable to some power, these expectations can be described as moments. 

The kth moment mk of a random variable x is given by  

∫
∞

∞−
⋅=Ε dxxpxx )(}{
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Using this definition of moments, i.e. }{ k
k xm Ε= , and that of the first characteristic 

function defined in equation (2.2), we obtain 
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Hence the moments can be derived by the differentiation of the characteristic function, 

such that 
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If }{ xΕ=η  is the first order statistical moment (the mean or average value of the 

random variable), the kth central moment is defined as  

∫
∞

∞−
−=−Ε= dxxpxx kk

k )()(}){( ηηµ  

Clearly, m0 = µ0 = 1, m1 = η and µ1 = 0.  

 

Cumulants 

Cumulants can also be used to describe random variables. They allow Gaussian 

and non-Gaussian random variables to be distinguished much easier than moments. The 

cumulants ck are defined by the cumulant-generating function 
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The moment-generating function is given by 
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The cumulant-generating function is the logarithm of the moment generating function. 

The cumulants are given by derivatives (at zero) of g(ω) 

ck = g(k)(0) 

e.g. c1 = µ = g'(0), c2 = σ2 = g''(0) 

The cumulants of a distribution are closely related to distribution's moments. The 

first cumulant is the expected value; the second and third cumulants are respectively the 

second and third central moments (the second central moment is the variance); but the 

higher cumulants are neither moments nor central moments, but rather more complicated 

polynomial functions of the moments. Working with cumulants can have an advantage 

over using moments because for independent variables X and Y, 

))(log())(log())(log()).(log())(log()( )( wYwXwYwXYXw

YX
eeeeeg Ε+Ε=ΕΕ=Ε= +

+
ω

i.e. 
)()()( ωωω ggg YXYX

+=
+  

so that each cumulant of a sum is the sum of the corresponding cumulants of the 

addends. More generally, we can rewrite equation (x) as: 

ck(X + Y) = ck(X) + ck(Y) 

This property of cumulants is known as additivity. 

A more formal definition of the cumulants can be given in terms the second 

characteristic function of a probability distribution, as defined above. Similar to 

moments, 
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The cumulants ck can therefore be defined by the relation, 
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Variance, Skewness, Kurtosis 

The variance or dispersion of a distribution indicates the spread of the 

distribution with respect to the mean value. It can be defined as follows: 

∫
∞

∞−
−=−Ε= dxxpxx )()(}){( 222 ηησ  

A lower value of variance indicates that the distribution is concentrated close to the 

mean value, and a higher value indicates that the distribution is spread out over a wider 

range of possible values. 

The skewness of a distribution indicates the asymmetry of the distribution around 

its mean, characterizing the shape of the distribution. It is given by  

∫
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31 η

σ
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σ
γ  

The distribution, i.e. dataset, is symmetric if it looks the same to the left and right of the 

peak point. The skewness for a normal distribution is zero and any symmetric data 

should also have skewness near zero. A positive value of skewness indicates that the 

distribution is skewed towards values greater than the mean (i.e., skewed towards the 
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right side) and a negative value indicates that the distribution is skewed towards the left 

side. 

The kurtosis of a distribution indicates the flatness of the distribution with 

respect to the normal distribution. It is given by 

∫
∞

∞−
−=−Ε= dxxpxx )()(

1
}){(

1 4
4

4
42 η

σ
η

σ
γ  

Positive kurtosis indicates a peaked distribution, whereas negative kurtosis indicates a 

flat distribution. Distributions with positive kurtosis are sometimes termed super 

Gaussian and distributions with negative kurtosis are sometimes termed sub Gaussian. 

Kurtosis can be considered a measure of the non-Gaussianity of the random variable, x. 

For a Gaussian random variable, kurtosis is zero, for a uniform distribution it is negative 

and for a Laplace distribution it is positive.  
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