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ABSTRACT
Seismic Attribute Analysis Using Higher Order Statistics. (August 2008)
Janelle Greenidge, B.S., University of the West Indies

Chair of Advisory Committee: Dr. Luc T. Ikelle

Seismic data processing depends on mathematicastatidtical tools such as
convolution, crosscorrelation and stack that employ second-order statistics (SOS).
Seismic signals are non-Gaussian and therefore contain information beyond SOS. One of
the modern challenges of seismic data processing is reformulating algorithms e.g.
migration, to utilize the extra higher order statistics (HOS) information in seismic data.

The migration algorithm has two key componetite moveout correction, which
corresponds to the crosscorrelation of the migration operator with the data at zero lag
and the stack of the moveout-corrected data. This study reformulated the standard
migration algorithm to handle the HOS information by improving the stack component,
having assumed that the moveout correction is accurate. The reformulated migration
algorithm outputs not only the standard form of stack, but also the variance, skewness
and kurtosis of moveout-corrected data.

The mean (stack) of the moveout-corrected data in this new concept is equivalent
to the migration currently performed in industry. The variance of moveout-corrected
data is one of the new outputs obtained from the reformulation. Though it characterizes
SOS information, it is not one of the outputs of standard migration. In cases where the

seismic amplitude variation with offset (AVO) response is linear, a single algorithm that



outputs mean (stack) and variance combines bothsthedard AVO analysis and
migration, thereby significantly improving the cosff seismic data processing.
Furthermore, this single algorithm improves theohatson of seismic imaging, since it
does not require an explicit knowledge of reflegtangles to retrieve AVO information.

In the reformulation, HOS information is capturedthe skewness and kurtosis
of moveout-corrected data. These two outputs chaniae nonlinear AVO response and
non-Gaussian noise (symmetric and nonsymmetrid) rtiey be contained in the data.
Skewness characterizes nonsymmetric, non-Gaussiaise,n whereas kurtosis
characterizes symmetric, non-Gaussian noise. Togpeits also characterize any errors
associated with moveout corrections.

While classical seismic data processing providesngle output, HOS-related
processing outputs three extra parameters i.e.vénence, skewness, and kurtosis.
These parameters can better characterize geolofpecaiations and improve the
accuracy of the seismic data processing performeidrd the application of the

reformulated migration algorithm.
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CHAPTER |

INTRODUCTION

The three key steps involved in seismic imaging areltiple-attenuation,
velocity-analysis, and migration with or without AV (amplitude variations with
offsets), depending on exploration and productidijectives. The three steps are
performed in the order assigned in Figure 1.1, demultiple and deghosting followed
by velocity estimation followed by migration withr avithout AVO-A. Let us start by

reviewing these three steps.

Demultiple and Deghostil

Velocity Estimatiol

Structural I nter pretation
uolirese id eiu | anlreIuend

P

FIGURE 1.1 Three key steps in seismic imaging. The first sepsdemultiple and deghosting and
velocity estimation. When followed by migration et#ain the structural image of the subsurface; the
interpretation in this case is characterized asustural. When followed by migration with AVO-A we
obtain more than the structure of the subsurface.dah also obtain the physical properties of thekro

formation; the interpretation in this case is chet@rized as quantitative.

This thesis follows the style and format of Geopts/s
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FIGURE 1.2 An illustration of the ray paths of seismic eventmarine data.



Seismic data, especially those related to marigeisition geometries, on which
the examples of this thesis are based, containsigface multiples, internal multiples
and primaries. Figure 1.2 illustrates typical raths describing the seismic events in
marine data. Note that the common seismic convesti@ave been used by not taking
into account Snell’s laws when drawing the ray pattowever, all computations follow
Snell's laws.

The goal of the demultiple and deghosting stepeiarsic imaging is to produce
data that are void of multiples and ghosts. Inldst two decades, significant efforts
have been made to address the multiple-attenupt@viem. For example, Watts (2005)
and Singh (2005) have presented very efficient rélyms for removing free-surface
multiples and demonstrated the feasibility of thechhologies in very complex
geologies. In this thesis, data containing onlymaries will be considered. In other
words, it has assumed that multiples have beenvedifsom the data.

We will now consider velocity estimation and thegnation of seismic data with
only primaries. The velocity estimation and migpatisteps in seismic imaging are
intertwined. Although the velocity model must bé&ireated before performing migration
as described in Figure 1.2, the migration algoritieeds to be formulated first because
velocity-estimation is based on the same algorgismmigration.

Let us denote, the source positiorx;, the receiver position arnx} the image

point, as depicted in Figure 1.3.
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FIGURE 1.3 Typical ray path of primaries in the context of raiipn techniques as used in this thesis.

A field of primaries can be described in the fragmespace (F-X) domain, as

follows:
P(Xs Xi, ©) = [ G(x5,X,0) M(x) G(x, X, ®) d, (1.1)

where PXs, X, ®) is the field of primaries, Gx{ X, ®) is the Green’s function which
describes wave propagation from source to imagatpd &, x;, o) is the Green’s
function which describes wave propagation from iengpint to receiver, and MY
characterizes the physical properties of the sdidbser It must be emphasized here that
the model used in equation (1.1) to describe ota daonly valid for primaries, and
hence the assumption that multiples (free-surfagiipfes and internal multiples) have
been attenuated is needed.

Equation (1.1) can also be written as follows:

PXs, Xr, ©) = j L(Xs, X, %, ®) M(X) dX, (1.2)



where Ls, X, X, ®) = G(Xs, X, ®) G(X, X;, ®). The operator L is generally known as the
migration operator. One can seek to solve fox)MKrough a classical inverse-problem
technique such as the least-square-optimizatiomigqae. However, if we assume that
the data have been corrected for geometrical sprgatihe inverse solutions of equation

(1.2) can be expressed as follows (lkelle and Arans@005):
M(X) = j dxsj dxr j do L' (Xs X, Xr, ®) P(Xs, Xr, ®), (1.3)

where L is the complex conjugate of L. The approximate tmiuM(x) is known as

migration. Notice that the solution in equatior8jlcan be rewritten as follows:

M(X) = j dxs[ dx M'(xs, X, %), (1.4)

where M'ks, X, X;) = jdco L'(Xs X, X, ®) P(s, X, ®). This formula depicts the two

critical steps involved in migration. The first gtevolves the computation of Mg X,
Xr), which corresponds to the moveout correctionasddNotice that this computation is
equivalent to taking the crosscorrelation of thgnaiion operator L and the data at zero
lag. Therefore the operator L must be very simitarthe data to produce effective
moveout-corrected data. The second step, whiclegponds to reconstructing ¥)( is
equivalent to summing M' over the source and recgdositions. This is known as stack.
To develop more insight into the migration form(la4), let us look at the
particular case of a 1D model of the earth. In taise, the data ®( x;, ®) depends only
on offset, i.e.

PXs, Xr, ®) = PKsXr, 0,®) = Pip(XsXr, ®) = Pip(Xp, ®) (1.5)



wherexy = XsX; is the offset and #3(xn, ®) describes a CMP (common midpoint) gather.
In this case, the migration operator L without getnisal spreading becomes (lkelle and

Amusden, 2005):

L(Xn, ®, 2) = exp{—i%,/xi+zz} (1.6)

To simplify the discussion we have assumed in egumafl.5) that the
background velocity is constant and denoted V. g¢g€quation (1.5), the migration in

equation (1.4) reduces to:

Mip(2) = [ dxn Mip'(xh, 2), (1.7)

where  Mp'(Xh, ) = j do exp {—i%,h&{} d(Xn, ©).

Figures 1.4 and 1.5 illustrate the various opesatotroduced in the previous
paragraph and the operations associated with tReor. (4) homogeneous half-spaces
with a horizontally flat interface have been usedgenerate the data. The migration
operator was then computed using the velocity efttp interface. There must be a

similarity between the moveout of the seismic eseimt our data and that of the



ﬁﬁﬁﬁﬁﬁﬁﬁ

JUl T
-1 “M ] im il uwn il -

|

H
|
I

[T -

\ii"nnun w mu R 1 W
e HWH\NINHIN

Hl

| HHMHWHNHMWHHW T

0 0 T

D Moveou-corrected gather, Np', produced using th



| H|H|H O HHHIWMM T
-4l - -

.r. (R T
il MNW I

| n il uu \|||'\IMHMIL J

I




migration operator. The moveout-corrected datay'(M,, z), which corresponds to the
crosscorrelation of I, ®, X) and Rp(xn, ®) at zero lag, is obviously flat as can be seen
in Figures 1.4 and 1.5. Normally, the AVO analysihich will be discussed later, is
taking place on the moveout-corrected datay'®™,, z) in Figures 1.4 (c) and 1.5 (¢),
with each offset converted into reflection angldeTmigration is then performed to
obtain M,p(z) which allows us to locate the reflector.

Now that we have introduced the migration techrsguet us describe the second
step of the processing chain, as depicted in Figutei.e. velocity-analysis. As can be
seen from the examples in Figures 1.4 and 1.5,ntbeeout-corrected data is very
sensitive to the shape of the migration operatdnickvin turn is very sensitive to the
velocity model. In Figure 1.6 the moveout-correateidration operator is different from
that of the moveout-corrected data. Thereforep'(M, z) in this case is no longer flat.
So the basic idea of velocity-analysis consistahputing Mp'(Xn, z) for various
velocity models and selecting the one for which ii@veout-corrected data are flat. In
this thesis, we will assume that the velocity-asslyhas been performed and therefore
we assume that we have a correct velocity model.

Assuming that we now have a correct velocity molE{xs, X, X;) can now be
constructed, and from MK( x, x;) migrated sections M} can be produced, as described
in equation (1.3). However, such an image will pdevthe locations of key reflectors in
the subsurface without providing any informatioroabthe change of properties that

cause the reflections. An alternative approach isse the moveout-corrected data,
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M'(xs, X, X), before stack to characterize the various refiectAs pointed out earlier,
the moveout-corrected data describes how the resgaf the seismic data at a specific
reflector vary with offsets. If the offsets are werted into angles, it is discovered that
the variation of seismic responses with angles (ffasets conversion to angles) is
actually a variation of the reflection coefficiemtgh angles.

One of the difficulties of converting offsets intmgles is that at each timestep
the moveout-corrected response must be convertéd/#f (amplitude variations with
angles) response. The difficulties of this procasse because the velocity profile that
emerges from velocity-analysis is usually smoothclSa profile may be accurate
enough to predict the traveltimes that are neededdnstructing the migration operator
but are not often good enough to predict the raydivgy associated with Snell’'s law that
is needed for converting offsets to reflection asgl

In summary, characterizing reflectors using seisamplitude variations with
offsets is known as AVO analysis. The first stephis process consists of correcting the
data for geometrical spreading. In the second ttevelocity model is used to produce
moveout-corrected data and in the third step theDAM moveout-corrected data is
converted into AVA. And in the final step, the da&sl small-angle approximation of
the reflection coefficient is used, i.e.

Rop (X) = A(X) + B(x) sirfo, (1.8)
to recover changes in impedance (which is relatef(x)) and Poisson’s ratio (which is

related to BX)), that are associated with each reflector.
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The stack of moveout-corrected data, i.e.,xM'k, X)) in equation (1.4) and
M1p'(Xn, Z) in equation (1.7), is actually equivalent &kibg the mean of these data at
each timestep. In this thesis, we propose to coenth#t variance of the same moveout-
corrected data at each timestep. It turns outdbidutting both the mean and variance is
equivalent to recovering the AVO parametersy)A{nd B), without the complex step
of converting AVO to AVA. Moreover, the computati@f mean and variance can be
done in parallel, hence eliminating most of therapens described above. As such, the
cost of seismic processing will be significantlgueed, as well as its accuracy, because
errors associated with converting offsets to angiide avoided.

Because seismic events are non-Gaussian, as wskdxe in Chapter Il, we can
also output other cumulants such as skewness arnmslas In Chapter II, these
cumulants will be described, in addition to recgjlithe notion of non-Gaussianity and
the statistical concepts associated with it. Wd d@dmonstrate that outputting these
additional cumulants will allow us to characterek formations beyond the small-
angle approximation. In other words, we are alske &b include nonlinear AVO. In
Chapter lll, preliminary results will be providelat confirm the potential usefulness of
these new parameters for characterizing interfagesiscussing one dimensional (1-D)

examples.
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CHAPTERIII
SOME BACKGROUND OF STATISTICAL AVERAGES OF NON-GAUSSIAN

RANDOM VARIABLES

Introduction

Let us consider migrated data without stack. Eaohge/reflection point is
illuminated several times as illustrated in Fig 01D medium, as adapted from lkelle

and Amundsen (2005).

R5 R4 R3 R2 R1S1 S2 S3 S4 S5

Ver s P,

Ves 5 P,

Reflection point

Recelver position before NMO correction
Receiver position after NMO correction

Source position before NMO correction

celn

Source position after NMO correction

FIGURE 2.1 An illustration of a CMP gather before and after NMO correction. The angle @ is the

incident angle.

The image point being imaged consists of N trahat ¢orrespond to N source-receiver
pairs or offsets. These traces are known as a ceanmmdpoint (CMP) gather. If an

NMO or traveltime correction is performed then falt offsets the traveltime from
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source to image point will be identical to the &l#ivne from image point to receiver.
Each offset can now be considered as descriptigerahdom event and the set of events
as a random variable. Therefore, for each timestep,can compute the statistical
averages.

The classical approach consists of summing the tdgbeoduce an image of that
point. However, since it is well recognized thag trarious illuminations contain more
information than the classical stack, geophysiclsase developed several tools of
attribute analysis in order to extract this infotima. In this thesis, | propose an
alternative way of capturing this information. Thew statistically based approach
consists of treating migrated data without stackrasdom variables. Hence, the
migrated data can be characterized at a given inpaget by either the statistical
moments or cumulants. In Chapters Il and IV wel wilow the applications of this
concept.

This chapter focuses on a review of statisticakrayes, including the averages
associated with non-Gaussian random variables, asal on other basic statistical

notions that will be needed later on in this analys

Moments and Cumulants
Let us denote M (Xf) as a random variable at point X. This randomalze
varies with, the reflection angle. The statistical momentshef random variable can

be defined as follows:

mn (X, 0) = E[M" = fwx” p(x)dx (2.1)
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where E is the mathematical expectation. For thiécpdar case of the discrete random

variable, this can now be defined as:

mn (X, 0) = j"; X p(x)dx (2.2)

When n=1 we have the'brder moment known as the mean, when n=2 we have
the 2 order moment, etc. The migration defined so fanitustry corresponds to thé& 1
order moment (mean) only, and ignores the highderstatistics of the seismic data.
Therefore, if we stop here we would lose all thierimation about the other moments,
especially those related to non-Gaussianity.

An alternative way to describe non-Gaussian randamnables is to introduce the

cumulant. The first four orders are defined in Tlabdle 2.1 below.

TABLE 2.1 First four orders of cumulants.

Cumulants
n Order (cn) Statistical Name
1 IS C Mean
2 ¢ [ Variance
3 3¢ G Skewness
4 4" [ Kurtosis

Using X as a random variable, the relation betwaenulants and moments has
been described in Table 2.2 below, as adapted fkelte and Amundsen (2005). The
quantity g (or my) is the mean,c(or ) is the variance,sds the skewness and is the

kurtosis.
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TABLE 2.2 Relation between the first five moments and cumulants.

Cumulants(c,)
n Moments Central M oments Cumulants for zero mean
(mn) random
(1n) (Cn) variable
0 m =1 po=1 =0 =0
1 my = E(x) p=0 CL=m =0
2 m= E(X) p2 = mp—m? Co=Mmp—m’ G=m
3 m= E(X) pa = mg—3 mm; + 2 m® C3 = my—3 mmy + 2 m® G=m
4 my= E(X) pa=my—4 mmg+ 6 m m®—3m* | &= my—4 mm—- 3 m’+ 12 m m’- 6m* c=m-3m

For more information on random variables, moments@amulants see Appendix A.

Non-Gaussian Probability Distributions

The first 2 orders of moments and cumulants (he. mean and variance) are
characterized as Gaussian or second order stat{&@S), and moments and cumulants
greater than the second order (e.g. skewness amolsig) are characterized as higher
order statistics (HOS). When the HOS cumulantszare they are also characterized as
Gaussian, however once the cumulants of order grélaain two have non-null values
they are characterized as non-Gaussian.

Table 2.3 provides detailed descriptions aboutrtizenents and cumulants for
different probability density functions. It effeetly confirms that for non-Gaussian
random variables, the higher order cumulants are-zevo. Notice also that for
symmetric distributions the odd cumulants, e.g.3Aeorder cumulant (skewness), are
zero. This can clearly be observed with the Lapkeg Uniform distributions, chosen
because they describe the extreme cases; the bndistribution with negative kurtosis

(sub Gaussian) and the Laplace distribution witsitpe@ kurtosis (super Gaussian).
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In Table 2.3, the Rayleigh distribution shows aaragle of non-Gaussian, non-
symmetric random variables. We can see that whenaihdom variable is non-Gaussian
and non-symmetric that we have extra informatiorough both the skewness and
kurtosis.

To date, the extra information that can be captumdtie HOS has not yet been
exploited in seismic data processing. Practicalsi data processing is actually limited
to the mean, since the variance is not really uSedhnigues based on SOS recover only
limited information about non-Gaussian signals, @adsuch information related to
deviations from Gaussianity is not extracted. Betésults can be realized using HOS
over SOS, since HOS allows for the processing isfide signals that are non-Gaussian.
Studying the higher order statistics will allowanfnation extra to that used in traditional
seismic imaging to be utilized. This will enablettbe estimates of parameters in noisy
situations or shed light on non-linearities thatrba inherent in the seismic data.

One of challenges that will be addressed in the aeapter is not only recovery
of the seismic attributes: the mean, variance, skew and kurtosis for each image
point, but also connecting this new informationsggecific geologies. For example, in
areas where the reflection coefficient can be desdrby R = A + Bx, the skewness and
kurtosis are expected to be zero. Here A will kaiaccharacterize the mean and B can
characterize the variance. In other words, thessizdl averages can be used to recover
A or B at small angles. As more realistic casescaresidered, HOS can then be utilized

to characterize the other parameters.
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TABLE 2.3 First four moments and cumulants of the Gaussian, Laplace, Uniform and Rayleigh

distributions.

Gaussian Distribution

Px(X) px(x) = exp —x42c?)
2o
n mg(n) cg(n)
1 0 0
2 o° 2
> 3 0 0
X 4 3" 0
L aplace Distribution
r' N )\‘
Px(X) p(X) = — exp (A1 x|)
2
n mE(n) CE(n)
1 0 0
2 2/2 22
R 3 0 0
X 2 2402 12/
Uniform Distribution
r' N l
p(x) = — xe [-c, +c]
px(x) 2c
n mE(n) CE(n)
1 1 0 0
— 2 I3 c’/3
2c s 3 0 0
-C +C X 4 3¢5 -2¢15
Rayleigh Distribution
pu(X) = Xlo® exp (-x¥2a?) x>
A X
P(X) 0 m§<n) °§<n)
T T
2 2
T
2 202 2-—)a?
o ( > ) o
X T T T
3 30— -3a’(1-— )\ﬁ
2 3 |2
4 8at 1/20* (12n-37-8)
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CHAPTER 11

HOSAND AVO SEISMIC DATA

Introduction

Energy is partitioned into reflected and transmditemergy at an interface that
separates two different layers, as illustrated igufe 3.1. The reflection and
transmission is dependent on the angle of incidehoé the incoming wave, as well as
the physical properties of the two layers. The m&samplitudes of the reflected and
transmitted energy depend on the contrast in thysipél properties across the boundary,
i.e. the amplitudes carry information about thetcast of elastic parameters of two (2)
rock formations. The Zoeppritz equations, whichirdethe reflection and transmission
coefficients, are used to relate the reflected amadsmitted energy to the physical

properties of the two layers. In this thesis, w# anly refer to the reflection coefficient.

Incident wave Reflected wave

6; = angle of incidenc
0, = angle of reflection

Vi, P1

6, = angle of transmission

V1 = velocity of wave in upper medium

Vs, P2

V, = velocity of wave in lower medium
2 y Transmitted wave

p1 = density of upper mediu

p2 = density of lower medium

FIGURE 3.1 Typical ray paths of seismic energy in a model comprising two homogeneous hal f-spaces.
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The linearized expressions of the Zoeppritz egnatiare derived using the
small-angle approximation. For the reflection cmaé$it the linear approximation can be

given by:

R=A+Bx (3.1)
wherex = sirfo
At larger angles, the reflection coefficient cangbeen by:

R=A+Bx+Cx (3.2)

This is a second order approximatiorxilNumerically it has been shown that the linear
approximation works best for angles tbi< 35° and the second order approximation

works best for angles 6f< 60°, after which the expressions become unstable

These approximations produce small inaccuraciesaadincorporated in the
seismic data as noise. In practice, the noise &gsdcwith the seismic data acquisition
geometries is also integrated into the data. For tbason, the reflection coefficient

given in equation (3.2) above can now be descridyed
R=A+Bx+CxX+n=R +1 (3.3)
where R=A+Bx+ CxX

In this thesis we will describe Ro andas two (2) random variables.
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Examples of the Effect of Noiseon CMP AVA Seismic Data

Consider several examples of CMP AVA data in FiguB2 to 3.9. These
examples show the effect of adding different typed variances of noise to linear and
nonlinear AVA. Each figure contains four (4) diagi® of the AVA data and their
associated histograms, as the variance of the ramided is increased. We have also
computed the corresponding statistical averagestHese examples as illustrated in

Table 3.1.

Analysis of Results

From the histograms, we can observe that as ther ofdhe noise is increased,
the data tends more and more toward the type ckntbiat is added. It is also clear that
seismic data does not tend to the Gaussian distsibuT herefore, we can characterize
seismic data at a given image point as non-Gausar@om variables. The experiment
was repeated several times giving the same copdlusiat the seismic data behaved
more like a non-Gaussian distribution.

So one might ask the following question: In whasesacan seismic data be
described by a Gaussian random variable? One pessibe is that the seismic response
is invariant with the reflection angle. This is h®wer non physical, since we can see
from the Zoeppritz equations that it is impossildihave constant reflection coefficient

with angle. Alternatively, we can get a Gaussiatrdiution if the reflection coefficients
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TABLE 3.1 Satigtical averages of AVO seismic data for different types and variances of additive noise

presented in Figures 3.2 to 3.9.

Gaussian (Linear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.000: -0.53802! 0.001280 0.00017256 -0.042923
0.003 -0.538022 0.00128765 0.000619463 -0.0424862
0.03 -0.538384 0.00218992 0.00316914 -0.0191433
0.3 -0.53844! 0.090121 0.013441 0.0042407

Gaussian (Non-linear)

Variance of Noise Mean Variance Skewness Kurtosis

0.000: -0.39376: 0.021795 0.37514 -0.16014:

0.00: -0.39380: 0.021806 0.37557 -0.15990:

0.03 -0.393533 0.0226981 0.347874 -0.153352

0.3 -0.391978 0.111797 0.0458331 -0.00273106
LaPlacian (Linear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.000: -0.53802 0.0012800 1.90102-05 -0.042917
0.003 -0.538029 0.00129885 -0.00229077 -0.0420918
0.03 -0.537569 0.00311477 -0.012903 0.0590645
0.3 -0.53658: 0.17846! 0.051694 1.2722.

LaPlacian (Non-linear

Variance of Noise Mean Variance Skewness Kurtosis
0.0003 -0.393773 0.0217951 0.37518 -038%01
0.00s -0.39380: 0.021822 0.37418 -0.16005;
0.0¢ -0.39354 0.023583 0.32876 -0.14044!

0.3 -0.394912 0.201337 0.090346 1.09169
Rayleigh (Linear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.000: -0.53765. 0.001280 -3.13495-05 -0.042937
0.00s -0.53425 0.0012837 0.000470458 -0.042720
0.03 -0.50051 0.00164901 0.0507358 -0.024¢720
0.3 -0.160657 0.0404481 0.588773 ((0Y0rie]

Rayleigh (Non-linear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.0003 -0.393385 0.0217955 0.375145 -0.160138
0.003 -0.389972 0.021791 0.374719 -0.160138
0.0¢ -0.3561: 0.022212 0.36825! -0.15613;

0.3 -0.017382 0.060506 0.39954 -0.0099764
Unifam (Linear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.000: -0.53802 0.0012804 4.09828-05 -0.04293:
0.00s -0.53805! 0.0012832 -0.00089082 -0.042752
0.03 -0.538072 0.0015817 -0.00317656 -0.032922
0.3 -0.538883 0.0311004 0.00700946 J539

Uniform (NonHinear)

Variance of Noise Mear Variance Skewnes Kurtosic
0.0003 -0.393764 0.0217959 0.375178 -0.160142
0.003 -0.393768 0.0217955 0.375155 -0.160066
0.0¢ -0.39378; 0.022068 0.36751. -0.15663;

0.3 -0.39323 0.050838 0.10660: -0.12862:
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vary in the form, R = A + B sf, where@ are uniformly distributed. Because seismic
data are sampled in offset, this scenario is atgealistic. Thus, the random variables of
interest in this analysis are non-Gaussian mostetime.

Let us focus consider the histograms and statistitained for each example. In
all cases we can see that for very little varian€eadditive noise, the data is non-
Gaussian. The data is Uniform in the linear AVAeaAs the variance of the noise is
increased to the point where there is too muchendige data tend to the distribution of
the noise added.

For the case of the additive Gaussian noise weHitiear AVA data, we see that
as the variance of the noise increases, the datltosvard a Gaussian distribution and
with the nonlinear AVA, the data tend toward a nonmetric non-Gaussian
distribution, i.e.

Linear AVO + Gaussian noise——» Gaussian data

Nonlinear AVO + Gaussian noise——» nonsymmetric, B@ussian data
There is a significant increase in the variancewsiess and kurtosis in the nonlinear
AVA case when compared to the linear AVA case. Agdiowing that despite the noise
being Gaussian, the data have been rendered nmssi@aubecause of the nonlinear
AVA effect.

Consider the case of non-Gaussian noise with symumdistributions, i.e.
Laplacian and Uniform noise. For additive Laplacmse with the linear AVA data, we

see that as the variance of the noise increasegldfa tend toward a symmetric, super
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non-Gaussian distribution and with the nonlinear AAVthe data tend toward a
nonsymmetric non-Gaussian distribution, i.e.

Linear AVO + Laplacian noise——» symmetric, super @aissian data

Nonlinear AVO + Laplacian noise—» nonsymmetricn+{@aussian data
For additive Uniform noise with the linear AVA datae see that as the variance of the
noise increases, the data tend toward a symmstriz,non-Gaussian distribution and
with the nonlinear AVA, the data tend toward a nonsetric non-Gaussian
distribution, i.e.

Linear AVO + Uniform noise——» symmetric, sub non-Gsian data

Nonlinear AVO + Uniform noise———» nonsymmetric, nGaussian data
For both types of additive noise, for the linear AWase, the skewness is almost null for
all variances of noise, whereas in the nonlineae ¢he skewness is large and generally
constant for all variances of noise. The kurtasithe linear AVA case though smaller is
significant and increases slightly, just as intlbalinear case. For the Laplacian additive
noise, the kurtosis tends more to a positive vdBuper Gaussian), whereas for the
Uniform additive noise it tends to a more negatiglie (sub Gaussian). Hence, in order
to distinguish between Gaussian noise and non-Gaussoise with symmetric
distributions, the kurtosis must be examined.

For the case of the non-Gaussian noise with nongtnundistributions, i.e.
Rayleigh noise, we see that with the both the firad nonlinear AVA data, as the
variance of the noise increases, the data tendrtb@wanonsymmetric non-Gaussian

distribution.
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Linear AVO + Rayleigh noise ———»  nonsymmetric, non-Gaais data

Nonlinear AVO + Rayleigh noise—» nonsymmetric, réaussian data
There is a significant increase in the skewnesthasvariance of the noise increases.
Similar to the Laplacian and Uniform noise, thetkais in the linear AVA case though
smaller is significant and increases slightly, jastin the nonlinear case.

Summarizing, we can say that the skewness can bd ts characterize
nonsymmetric, non-Gaussian noise and the kurtoais lbe used to characterize
symmetric, non-Gaussian noise in the data. Non-§ansdata result from either the
presence of non-linear AVA effects or non-Gaussiaise. Also, since seismic data are
generally considered to be statistically symmetaigy significant value of skewness
may indicate bad processing and in this case iddoe that the moveout correction was

not performed correctly.
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CHAPTER IV
ANALYSISOF HOSMIGRATION THROUGH ONE-DIMENSIONAL

GEOLOGICAL MODELS

The standard migration algorithm used in convemtioseismic migration
consists of two major processes, moveout correc@mhthen the stack of the moveout-
corrected data; as described earlier in Chapt®ut.formulation of this HOS migration
algorithm is based on adapting only the stack comapb of the standard algorithm.
Assuming that the moveout correction has been pedd accurately, the stack
component is improved such that more informatiogsent in the seismic data can be

output from the new algorithm.

Formulation of the HOS Migration Algorithm
The formulation of the HOS migration algorithm issed on treating the

moveout-corrected data as a random variable, asuslied before. This moveout-
corrected data is defined by:

M'(Xs, X, X;) = j do L (Xs, X, Xr, ©) PXs, X, ©) (4.1)
Traditional migration then sums this data over rdeeivers and sources to produce the
stack.

M(X) = dxs[ dx, M'(Xs, X, X) (4.2)
where PXs, X, o) is the seismic data in the F-X domain andslLk, X, ®) is the

migration operator, as introduced in the previcuespter.
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Instead of outputting only the stack, from the nmecorrected data we can

output the parameters;(R) to my(x) as defined below:

mu(x) = J dXsJ dx: M'(Xs, X, Xy), (4.3)
mp(X) = J dxsf dx: (M'(Xs, X, X1))?, (4.4)
me(X) = [ dxsf dx: (M'(Xs, X, X)), (4.5)
mu(X) = [ dxsf dx: (M'(Xs, X, X))%, (4.6)

These parameters actually define the statisticahemts as described in Table (2.2). The
parameter afx) is actually the stack in the standard migraadgorithm. Using n(x) to

my(X) the new algorithm can now output the parametarmmce, skewness and kurtosis
in addition to the mean. These three (3) additi@umhulants are defined in Table (4.1)

below.

TABLE 4.1 Output parameters of HOS migration.

OUTPUT PARAMETERS | EQUATIONSDEFINING THE OUTPUT PARAMETERS
Mean, Mx) my(X)
Variance, Vx) My(X) — (My(x))?
Skewness, X) Ma(X) — 3my(X)my(X)) + 2(m(x))*
Kurtosis, Kix) mu(X) — 4ma(X)my(X) — 3(Mx(X))* +12ma(X)My(x))* - 6 (My(x))?

Description of M odel

The model used for testing the HOS migration athariwas a one-dimensional
(1-D) model comprising of several homogeneous Ryén order to simplify the
examples used, the model was constructed in tefritee traveltime rather than depth.

Since we are concerned with investigating the steskponent of migration, the
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moveout-corrected data was simulated by convoli@® CMP seismic data with the

source signature. This is described in equation§ ghd (4.8) below.
U(x,t) = RK,t) = A(t) + B(t)x + C(t) X* + n(x,t) 4.7)
D(x,t) = Ux,t) * S(t) (4.8)

where Uk,t) = AVO CMP seismic data
n(x,t) = additive noise
S(t) = source signature
Dk,t) = moveout-corrected data
The parameters A, B and C were chosen using the AMGsification based

upon reflection coefficient and offset (Barton abdder, 1999) as illustrated in Figure

4.1 below.

AMEAINY)

Offset (degrees)
35

sin’6
-ve
CLASS 1

CLASS 2

CLASS 4

CLASS 3

"

FIGURE 4.1 AVO Classification based upon reflection coefficient and offset (Barton and Crider, 1999).
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At specific traveltimes, the events were charaeeetiby different AVO responses. This
can be expressed generally by:
Uk(X,t) = Ac(t) + Bi(®) X + G(t) X° (4.9)
These parameters describing the geological modestaown in Table (4.2) and

the AVO CMP seismic data generated for the modelllustrated in Figure 4.2 below.

TABLE 4.2 Parameters defining the geological model used for analys's of new HOS migration algorithm.

PARAMETERS DEFINING
GEOMETRY
A B c TYPE OF AVO EQUATION DEFINING EACH

RESPONSE EVENT

-0.8 0.2 0.0 Linear WYxt) =-0.8+0.8

-0.6 0.15 0.1 Nonlinear Uxt) =-0.6 +0.15+ 0.1¢

0.2 0.2 0.2 Nonlinear Pxt) =-0.2-0.2+0.2°

-0.05 0.3 0.3 Nonlinear 0xt) =-0.05-0.8+0.3¢

0.05 -0.35 0.0 Linear d0x,t) =0.05-0.3%

0.05 -0.35 0.5 Nonlinear d0x,t) =0.05-0.35+ 0.5¢

0.4 -0.55 0.7 Nonlinear 0xt) =0.4-0.5%+0.%
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Examples of HOS Migration

For the purposes of this investigation three exas@re consided using the
geological model described above. In the first gxamno noise is added to the events.
In the second example, Gaussian noise is addeactoeent. And in the final example,
different types of noise are added to the everisekch case the statistics, i.e. the mean,
variance, skewness and kurtosis are computed folpihe equations defined in Table

4.1. This is illustrated in Figures 4.3 to 4.5 exdpvely.

Analysis of Results

In the first example (Figure 4.3), no significartige is added in this case. All
layers are well resolved by the mean as one mighe¢at. The variance is quite small in
this case. Therefore the plot associated with i m@t be that important. However, we
can notice that the portion of the data with sigaifit interference produces a large
variance. This result is consistent with the faett the amplitude may vary over a large
range in this area. The skewness is zero foruaets with linear AVO response. This is
SO because the data is uniform and therefore syriomet observed in the previous
chapter. Notice that kurtosis is essentially negain this example, which is consistent
with the fact that data without noise tends morsuio-Gaussian.

Now, in the second example (Figure 4.4), we hawdedd>aussian noise to the
data. Basically, the results are essentially ungedrexcept for the last event which has
a large AVO curvature and is therefore non-Gausdgiars combination with Gaussian

noise produces a slightly positive kurtosis.



EXAMPLE 1: NO NOISE ADDED
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FIGURE 4.3 AVO moveout-corrected seismic data used for example 1 and the corresponding statistical

averages.



EXAMPLE 2: GAUSSIAN NOISE ADDED
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FIGURE 4.4 AVO moveout-corrected seismic data used for example 2 and the corresponding statistical

averages.



EXAMPLE 3: DIFFERENT TYPES OF NOISE ADDED
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FIGURE 4.5 AVO moveout-corrected seismic data used for example 3 and the corresponding statistical
averages.
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In the final example (Figure 4.5), we have adddteitint types of noise. The
noise component varies with time and includes &lissian and non-Gaussian noise,
with the non-Gaussian noise being either Unifornbaplacian. For the first two events
in the data, the noise is Laplacian and we caritsgethe kurtosis has captured well this
information with the positive kurtosis (super Gaasy The middle events with Uniform
noise can clearly captured with the negative kist(@ub Gaussian). For the last event,
we have Gaussian noise and nonlinear AVO behalidhis case it is still not clear how

to define the result which can be sub GaussianpersGaussian.



CHAPTER V

SUMMARY AND CONCLUSIONS

The main motivation for the use of HOS in seismic imaging is the fact that many
signals in real life cannot be accurately modeled using the traditional 2™ order measures.
How accurately seismic imaging can be done depends on both the quality of the sensing
equipment and also very much on the effectiveness of the mathematical algorithms that
are used. Hence it is important when seismic imaging algorithms are improved.

If seismic modeling and imaging are to be improved, then more of the information
available in the data must be extracted and used. The examples presented confirm that
extra information carried by HOS can be obtained using my algorithm over conventional
imaging algorithms.

The mean attribute produces the same results as the present imaging technique
known as stack, whereas variance, skewness and kurtosis allow us to detect and
characterize linear and non-linear AV O behavior and the non-Gaussianity of the data.

Using skewness and kurtosis allows for the identification of the transition from
Gaussianity to non-Gaussianity, which coincides with the onset of the seismic event
despite noise presence. Skewness and kurtosis establish an effective statistical test in
identifying signals with asymmetrical distributions and nonlinear AVO behavior. The
simplicity of the method makes it an attractive candidate for huge seismic data
assessment in areal time context.

Another important conclusion is that there is a significant improvement in the

computation time, accuracy and the cost of seismic data processing, because the single
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algorithm allows for the output of three parameters, the variance, skewness and kurtosis,
simultaneously and because we are avoiding errors associated with converting offsets to
angles when analyzing the AVO behavior. Furthermore, we will also be improving the
resolution of the seismic data since knowledge of the reflection angles is not necessary to
retrieve AV O information.

Hence it is recommended that HOS be employed as a tool in the assessment of

seismic data during the processing stage in seismic imaging.
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APPENDIX A

RANDOM VARIABLES, MOMENTSAND CUMULANTS

Random Variables

Random variables are mathematical quantities that @wsed to represent
probabilistic uncertainty. A random variableis can be described completely by a
domain of values and a function (probability distition or probability density function,

pdf) p, or equivalently, by an expectation value functi{r} such that

E{x} = f; X p(x)dx

Random variables can also be characterized byh#ecteristic function. This

characteristic function can be defined by
¥(w)= | d™p(x)dx=E(*)
wheree"™ can be expanded as a Taylor series. The seconactérastic function which

is also commonly used, is defined by

Y(w) = In®(w)

Moments
When summarizing certain properties of a randonabse by using expectations
of the random variable to some power, these expensacan be described as moments.

Thek™ momentmy of a random variable is given by
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m =E{x‘} = f x* p(x)dx
Using this definition of moments, i =E{x“}, and that of the first characteristic

function defined in equation (2.2), we obtain
D(@) =Y m, (o)
k=0
Hence the moments can be derived by the differgomiaf the characteristic function,

such that

o @)
—1 k

dw

If 7 =E{x} is the first order statistical moment (tmeanor average value of the

random variable), thi" central moment is defined as

s =B{(x=m)} = [~ (x=m)* p(x)clx

Clearly,mp=po=1, m=pnand = 0.

Cumulants

Cumulants can also be used to describe randomblesialhey allow Gaussian
and non-Gaussian random variables to be distingdishuch easier than moments. The

cumulants gare defined by the cumulant-generating function

K 2

9(e) = log(E(exp@X)) = ick% o+ @Dy

The moment-generating function is given by



49

1+ i Ck% = ex;{i wk!CkJ =exp@(w))

The cumulant-generating function is the logarithitt® moment generating function.
The cumulants are given by derivatives (at zer@(o)

o = g(0)
e.g.¢=p=g(0), e =c"=g"(0)

The cumulants of a distribution are closely relatedistribution's moments. The
first cumulant is the expected value; the secorithind cumulants are respectively the
second and third central moments (the second dentrment is the variance); but the
higher cumulants are neither moments nor centrahems, but rather more complicated
polynomial functions of the moments. Working withneulants can have an advantage
over using moments because for independent vasiabknd Y,

g,., (@) =10g(E(e""")) = log(E(e"")).log(E(e")) = log (E(€")) + log(E(e""))

o Oxy(@=g,(@)+g (o)

so that each cumulant of a sum is the sum of theesponding cumulants of the
addends. More generally, we can rewrite equatip@gx
k(X +Y) = al(X) + a(Y)
This property of cumulants is known as additivity.
A more formal definition of the cumulants can beeay in terms the second
characteristic function of a probability distribani as defined above. Similar to

moments,
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W)=Y ¢ (i)

The cumulantsy can therefore be defined by the relation,

g ho(w)
I

dw

Variance, Skewness, Kurtos's
The variance or dispersion of a distribution indicates the sgreof the

distribution with respect to the mean value. It bardefined as follows:

o” =E{(x-n)* =] (x=n)* p(x)dx
A lower value of variance indicates that the digition is concentrated close to the

mean value, and a higher value indicates thatigtaliition is spread out over a wider

range of possible values.

Theskewnessf a distribution indicates the asymmetry of thgribution around

its mean, characterizing the shape of the distobutt is given by
1 1 (=
=5 E(x=n)"} == [ (x=1)° p(x)dx
O O *©

The distribution, i.e. dataset, is symmetric ibibks the same to the left and right of the
peak point. The skewness for a normal distribui®rzero and any symmetric data
should also have skewness near zero. A positiveevaf skewness indicates that the

distribution is skewed towards values greater ttinmean (i.e., skewed towards the
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right side) and a negative value indicates thatdib&ibution is skewed towards the left
side.

The kurtosis of a distribution indicates the flatness of thetdbution with
respect to the normal distribution. It is given by

o= Bl = [ (x-1)* P
Positive kurtosis indicates a peaked distributiwhereas negative kurtosis indicates a
flat distribution. Distributions with positive kursis are sometimes termed super
Gaussian and distributions with negative kurtoses sometimes termed sub Gaussian.
Kurtosis can be considered a measure of the nos<gmity of the random variable,

For a Gaussian random variable, kurtosis is zenoa funiform distribution it is negative

and for a Laplace distribution it is positive.
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